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Realization of circular polarized 
multiple band multi‑mode OAM 
antenna using a ring patch for IoT 
applications
Umar Fayyaz 1*, Shahab Ahmad Niazi 1, Khaled AlJaloud 2, Abdul Aziz 1, 
Waqar Ahmad Malik 3 & Rifaqat Hussain 4

A multiband and multi-mode antenna with circular polarized conical patterns is suitable for achieving 
desired spectral efficiency, increased capacity, and spatial diversity for IoT applications. However, 
simultaneous excitation of such circular polarized multiple Orbital Angular Momentum (OAM) 
modes through a single patch antenna is challenging due to the complexity of simultaneously 
fulfilling distinct requirements of each mode. In this paper, a ring patch antenna is designed to excite 
different OAM states at different frequencies simultaneously. First, characteristic mode analysis is 
used to analyze the possibility of simultaneous excitation of multiple OAM modes at corresponding 
frequencies through a simple ring patch antenna. Then, a dual port ring patch antenna is designed and 
fabricated to verify the capability of generating multiple OAM states at corresponding frequencies. 
Furthermore, it also presents the guidance to suppress unwanted OAM modes.

The demand for explosive data traffic has increased tremendously due to rapid expansion in the Internet of things 
(IoT)1. However, it led to resource allocation and network congestion issues, thereby introducing challenges for 
communication technologies. 5G radio networks are used to support three different device connectivities, ultra-
reliable low latency communication (URLLC), massive machine type communication (mMTC) and extended 
mobile broadband (eMBB)2. Particularly, eMBB is crucial for smart sensing devices in new era of IoT to increase 
he network spectral efficiency and user data rates, such as virtual reality (VR) and ultra-high quality video 
streaming3–5. While URLLC and mMTC enable IoT connectivity for machine-type traffic6.

EM waves with OAM have been reported as a promising solution to increase spectrum utilization efficiency 
for IoT applications7. The traditional approaches to increase the channel capacity have been extensively explored 
in the last few decades such as time and frequency division multiplexing8. Consequently, enhancing channel 
capacity or supporting more users using these resources becomes more challenging. However, 5G and beyond 
5G future networks are expected to be developed using new modes domain through the orthogonal access 
of multiple users since the introduction of orbital angular momentum (OAM) for radio domain in 20079. 
Theoretically, an electromagnetic wave may carry infinite orthogonal OAM states. So, simultaneous excitation of 
multiple OAM modes may help to achieve the desired increased data capacity for future wireless communication 
applications10–14.

Several techniques have been proposed to generate RF or mm-wave carrying OAM15–29. Intelligent 
metasurfaces30 and chiarilty assited phase metasurfaces31 have been used for advanced control of electromagnetic 
waves and effective decoupling of circular polarized components, respectively. Among these approaches, spiral 
phase plate32 has the simplest structure, which has been used widely for the generation of OAM beam. However, 
it can generate only one OAM mode once the design is decided. Furthermore, antenna array33 is another widely 
used approach for generating multiple OAM modes by controlling phase between adjacent elements. However, 
the complexity and cost of the system is increased with the increase of OAM modes.
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Single patch antenna to excite circular polarized OAM waves are proposed in27,34,35. However, these could 
excite only one mode at a time. Furthermore, several single patch antennas have been proposed in36–40 to excite 
multiple conical patterns of TMnm modes using complex structure of substrate integrated waveguides (SIW), 
however excited modes are not circularly polarized. A multimode concentric ring patch antenna is proposed 
in41. However, it has a separate ring and dual port configuration for the excitation of each mode.

This work presents the design of a dual port single ring patch antenna to excite multiple OAM modes 
at different frequencies. It can generate multiple circular polarized OAM states at different frequencies 
simultaneously and suppress undesired states effectively. Each excited OAM mode (l = 2, 4 and 6) is associated 
with corresponding TMn1 mode ( TM31 , TM51 and TM71 ), respectively, at their corresponding frequencies. With 
the increase of mode number, the divergence angle and radius of the vortex OAM wave also increases. So, OAM 
waves with different mode numbers can cover different users or IoT devices around the antenna along the smaller, 
medium, and larger radial distances of the corresponding OAM mode42. The multi-band feature of the proposed 
work validates its feasibility for high-speed IoT devices for W-LAN, Wi-MAX, and 5G applications2,43,44. The 
transmission of multiple data streams using different OAM modes at their corresponding frequencies increases 
the capacity of IoT networks without affecting conventional communication wireless networks spectrum. 
Therefore, the proposed antenna is suitable for such applications where many IoT devices are required to 
communicate in a crowded frequency spectrum. Furthermore, the proposed method can be used for wireless 
backhaul in cellular devices, thereby increasing the capacity and reducing latency between base stations.

This paper is organized as follows. Section II of this paper discusses the modal analysis and configuration 
of the proposed antenna. Simulated results for the proposed antenna are discussed in Section III, while the 
measured performance of the fabricated prototype and its comparison with previous works are presented in 
Section IV. Finally, in Section V, the conclusion of the proposed work is presented.

Analysis and design consideration
Theoretical background
The basic idea to excite multiple OAM modes at multiple corresponding frequencies through a simple ring patch 
is conceived from the relation for the resonant frequency of a circular patch antenna for a corresponding Tn1 
mode is given as follows45,46:

Where C is the speed of light and Xn1 is the n-th zero of the derivative of Bessel function of order n for different 
modes47, ae is the effective radius of the circular patch antenna. The terms n and m represent the angular and 
radial modes. In this relation, it can be seen that the term Xn1 is directly proportional to fn1 while keeping the 
radius ae constant. Based on this direct relation, a circular patch antenna configuration may help to excite multiple 
Tn1 modes at different frequencies for the fixed value of radius, theoretically.

The radiated electric field components excited by a TMn1 mode are as follows46:

In the above expression, V = hEoJn(ka) represents the edge voltage, Eo is the electric field at the patch edge, h 
is substrate thickness, a is patch radius and Ji is Bessel function of order i. The non-zero OAM beam can be 
generated from a circular polarized (CP) patch antenna as investigated in27.

The superposition of individual field components causes the excitation of a required circular polarized OAM 
mode as follows:

The superscripts 1 and 2 in Eq. (3) represent the individual field components radiated by both feeds. Considering 
the phase shift as π/2 for the RHCP patch antenna, the above expression is further derived to obtain x and y 
components of the total electric field as follows:

The electric field components can further be written as follows:

From Eqs. (4) and (5), A and B are written as:
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The electric field components Ex and Ey in the above expression (5) have two same terms A and B, with their 
difference and sum, respectively. Furthermore, these terms contain phase factors of form e−j(n−1)φ and e−j(n+1)φ 
respectively. The amplitude of A and B correspond to the order of the Bessel function, and the term e−j(n−1)φ is 
responsible for the excitation of RHCP OAM wave of order n− 1 for TMn1 mode. In a similar way, LHCP OAM 
wave of order −(n− 1) with dominant phase factor ej(n−1)φ , can also be excited by considering the phase shift 
as −π/2.

A specific circular polarized TMn1 mode can be excited effectively through the excitation of two feed points 
separated by a corresponding angular spacing of ’ α ’, which should be an odd multiple of 360/4n degrees46. 
Moreover, the two feed points should be excited simultaneously with excitation fields of the same amplitudes 
but a relative phase shift of −π/248. Generally, an antenna radiating an EM wave of TMn1 mode can generate 
OAM wave with a mode order of ±(l = n− 1) . Therefore, the antenna design can be done after determining the 
harmonic relationship between patch size, operating frequency and mode order. So, by adjusting the radius of 
a circular patch and angular spacing between the two feed points, an electromagnetic wave of a specific circular 
polarized OAM mode can be excited41,47. However, simultaneous excitation of such circular polarized multiple 
Orbital Angular Momentum (OAM) modes through a single patch antenna is challenging due to the complexity 
of simultaneously fulfilling distinct specific requirements of each mode.

Characteristic mode analysis
Characteristic mode analysis (CMA) may help analyze the possibility for simultaneous excitation of multiple 
OAM modes at corresponding multiple frequencies through a single patch. For this purpose, a ring patch 
is selected due to its symmetrical shape, which is suitable for achieving circular polarization. The CMA is 
performed for the ring patch in CST Microwave Studio. The analysis is also helpful to realize proposed antenna 
in a controlled manner due to its physical insight to select possible excitation points49–54. According to mode 
synthesis theory, the excitation of a specific order OAM mode can be achieved by the excitation of two degenerate 
modes with 90° phase difference and specific angular separation between excitation points35.

Figure 1 represents the distribution of characteristic currents on the ring patch surface at six different 
frequencies. The characteristic current distributions are shown pairwise for each pair of possible degenerate 
modes, and such pairs of three odd modes and three even mode pairs are shown here. The OAM wave of a 
specific order can be obtained by simultaneous excitation of the corresponding pair of degenerate modes at each 
frequency. The characteristic currents in Fig. 1a,b,c can generate odd-order OAM waves of mode first, third and 
fifth, respectively at their corresponding frequencies. Similarly, even order OAM waves of mode second, fourth 
and sixth can be obtained at their corresponding frequencies as shown in Fig. 1d,e,f. Hence, the characteristic 
mode analysis of the ring patch structure verifies the possibility that six different OAM waves at corresponding 
multiple frequencies can be excited from a single ring patch of fixed radius, as demonstrated in Eq. (1).

Realization of multiband and multimode ring patch antenna
The angular separation between the two feed points should be an odd multiple of 360/4n degrees to excite 
effective circular polarized TMn1 modes47. Based on this theory, multiple OAM modes (l = n− 1) may have 
different angular separation between two excitation points, so one may need multiple excitation points to excite 
multiple circular polarized OAM modes. However, fortunately 90 degrees angular separation between two feed 
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Figure 1.   Characteristic current distribution on antenna surface (a) l = 1 OAM mode ( TM21 ) at 3.05 GHz (b) 
l = 3 OAM mode ( TM41 ) at 4.04 GHz (c) l = 5 OAM mode ( TM61 ) at 5.28 GHz (d) l = 2 OAM mode ( TM31 ) 
at 3.49 GHz (e) l = 4 OAM mode ( TM51 ) at 4.63 GHz (f) l = 6 OAM mode ( TM71 ) at 5.92 GHz.
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points is one of the odd multiples of 360/4n for all the three even order OAM modes (l = 2, 4 and 6) . So, two 
ports with 90-degree separation may simultaneously excite these even-order circular polarized OAM modes if 
both ports are excited with equal amplitude and phase difference of π/2 radians.

Antenna configuration and simulated performance
Figure 2a represents the geometry of the proposed dual port ring patch antenna to excite circular polarized even 
order OAM modes (l = 2, 4 and 6) . The proposed ring patch antenna is modeled in Ansys HFSS. The parameters 
ro and ri are the outer and inner radii of the circular ring patch. The antenna is fabricated on a Duroid substrate 
with a relative permittivity of 2.2, a loss tangent of 0.0009, and a thickness of 1.575 mm. The substrate and ground 
have the exact dimensions of l × w . The two probe-fed ports have an angular separation of 90 degrees. Both 
the ports are excited with equal E-field amplitude, which are delayed with π/2 radians to excite desired circular 
polarized OAM modes.

The optimized reflection coefficient of the proposed dual port ring patch antenna is shown in Fig. 2b. It can 
be seen that the proposed ring patch antenna has a return loss value of less than -10 dB in the desired three 
frequency bands centered at frequencies of 3.49 GHz, 4.63 GHz, and 5.92 GHz corresponding to even order 
OAM modes (l = 2, 4 and 6) . Three resonance dips with poor impedance matching due to non-circular polarized 
odd-order oAM modes can also be seen at alternate frequency bands. These odd-order modes are suppressed 
here by optimizing the inner radius ri and offset position of both ports from the center of the ring patch. The 
development steps of the proposed antenna and suppression of undesired odd-order modes are explained in 
the next subsection.

Antenna development steps and suppression of odd order modes
The outer and inner radii, angular separation between both feed points, and offset position of feed points have key 
roles in exciting desired circular polarized OAM modes and suppressing undesired non-circular polarized OAM 
modes. These parameters are optimized to excite circular polarization for required even-order OAM modes.

Variation in outer radius of the ring patch
When the proposed two-port ring patch antenna is excited with two equal E-field amplitude and π/2 phase 
delay, then six resonant modes are observed between 3 and 6 GHz for ro = 48mm as shown in Fig. 3. It can be 
seen that the antenna can operate in six frequency bands centered at 3.04GHz, 3.50 GHz, 4.05 GHz, 4.63 GHz, 
5.27GHz and 5.92GHz for ro = 48mm . The resonance frequency of these modes can be varied by varying outer 
radii ro of the ring patch. It can be observed that the outer effective radius and resonating frequency for a specific 
mode are inversely related to each other as in Eq. (1).

Variation in inner radius and feed offset from center
The impedance matching of specific modes can be improved or reduced by optimizing the inner radii and feed 
offset of both ports from the center of the ring patch. The goal of this work is to excite only circular polarized 
OAM modes. So, the odd order OAM modes (l = 1, 3 and 5) are needed to be suppressed.

Figure 4a represents the simulated reflection coefficients of the proposed ring patch antenna by varying inner 
feed radius. It can be observed that the impedance matching of even-order modes can be improved by decreasing 
the inner radius of the ring patch. However, it reduces impedance matching of odd-order modes. So, odd-order 
modes can be suppressed by decreasing the inner radius of the ring patch.

The odd order modes can be further suppressed by varying the feed offset fd of both feeds from the center 
while keeping the inner and outer radii constant, as shown in Fig. 4. It can be seen that the impedance matching 

Figure 2.   Geometry and simulated reflection coefficient of proposed antenna structure (a) Front and side view 
(b) reflection coefficient, where w=150 mm, ro=48 mm, ri=32 mm, h=2 mm.
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of the odd order OAM modes is significantly reduced at a feed distance of 35.8mm from the center. In contrast, 
the return loss for all the circular polarized even order modes (l = 2, 4 and 6) is sufficiently less than −10 dB.

Near-field and far-field characteristics will be analyzed for the proposed ring patch antenna to help identify 
multiple excited OAM modes.

Near field characteristics
The proposed ring patch antenna’s simulated phase and amplitude of electric field distribution are shown in 
Fig. 5 at three resonant frequencies of desired even order OAM modes. The field distribution is observed on a 
rectangular plane of 500mm× 500mm at z = 50mm . All three distributions have amplitude distribution with 
null at the center and corresponding spiral phase distribution for even order OAM modes (l = 2, 4 and 6) at 
frequencies of 3.49 GHz, 4.63 GHz and 5.92 GHz, respectively, as shown in Fig. 5a,b,c, which confirms the 
excitation of desired even order OAM modes. It can be seen that the mode order of the generated OAM wave is 
increased with an increase in resonating frequency.

Farfield characteristics
Figure 6 represents the normalized simulated far-field pattern of the proposed ring patch antenna for all the 
desired even-order OAM modes at their corresponding frequencies. It can be seen that all the far-field radiation 
patterns have desired null along the beam axis, also known as phase vortex, which is the exotic feature of OAM 
carrying beams55–57. The divergence angle of the cone-shaped pattern of OAM carrying beams increases with 
an increase in OAM mode number, which can be used to cover IoT devices of different geographical regions 
located at different radial distances as in42.

Figure 3.   Simulated reflection coefficient of proposed antenna.

Figure 4.   Simulated reflection coefficient (a) variation of patch inner radius (b) variation of feed distance from 
the center.
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Figure 5.   Simulated near field phase and amplitude distribution on the plane at a distance of z=50mm (a) l = 2 
OAM mode ( TM31 ) at 3.49 GHz (b) l = 4 OAM mode ( TM51 ) at 4.63 GHz (c) l = 6 OAM mode ( TM71 ) at 5.92 
GHz.

Figure 6.   Simulated far field plots of dual port ring patch antenna for even order OAM modes (a) mode 2 (b) 
mode 4 (c) mode 6.

Figure 7.   Mode purity of proposed ring patch antenna (a) l = 2 at 3.49 GHz (b) l = 4 at 4.63 GHz (c) l = 6 at 
5.92 GHz.
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OAM mode purity
OAM mode purity is also calculated at the resonance frequency of each frequency band. Figure 7 represents 
the OAM mode purity of the proposed ring patch antenna for all three frequency bands. It can be seen that 
the proposed ring patch antenna exhibits good OAM mode purity of 86, 84, and 83 percent for OAM modes 
l = 2, 4 , and 6, respectively, in corresponding frequency bands. This OAM mode purity analysis confirms the 
simultaneous excitation of desired multiple OAM modes. It effectively suppresses the undesired modes through 
a simple configuration of the proposed dual port single-ring patch antenna.

Characterization for fabricated prototype of antenna
Reflection coefficient
Figure 8a represents the front and back view of the fabricated prototype of the proposed dual port ring 
patch antenna. Figure 8b shows the proposed antenna’s simulated and measured reflection coefficient. It can 
be observed that the proposed antenna exhibits good measured impedance characteristics at frequencies of 
3.48 GHz, 4.62 GHz, and 5.91 GHz for even-order OAM modes. Small deviations in resonance frequencies of 
the fabricated prototype are observed due to fabrication tolerance.

Near field characteristics
The measured near field distribution for phase and amplitude at all three frequencies are shown in Fig. 9a,b,c. 
Electric field distributions were measured along x and y-directions on a plane of 500 mm×500 mm at a distance of 
z=50 mm with 7 mm step size in each direction. The measured electric field distributions of phase and amplitude 
also verify that the proposed dual port ring patch antenna has successfully excited multiband circular polarized 
multiple OAM modes (l = 2, 4 and 6).

Far field characteristics
The proposed ring patch antenna’s simulated and measured normalized radiation pattern is shown in Fig. 10. 
It can be observed that the proposed ring patch antenna has significant null in broadside direction at their 
corresponding frequencies, which also confirms the characteristic of OAM wave. The simulated and measured 
radiation patterns also have a good match.

Axial ratio
The simulated and measured axial ratio performance for all three frequency bands of the proposed OAM antenna 
are shown in Fig. 11. It can be seen that the proposed antenna exhibits less than 3 dB axial ratio in all three 
frequency bands. The simulated and measured results are also in good agreement. The small fractional bandwidth 
of the antenna in each frequency band is suitable for narrow band circular polarized IoT applications58–60.

The comparison of the proposed antenna with the reported ones is presented in Table 1. It can be observed 
that the proposed dual port single-ring patch antenna has excited higher-order circular polarized multi-modes 
at multiple frequencies with less complexity, which is significant in comparison to others.

Conclusion
This paper proposes a multiple-band multi-mode OAM antenna design using a simple dual-port ring patch, 
which can excite multiple circular polarized OAM states. Each TMn1 mode ( TM31 , TM51 and TM71 ) is associated 
with corresponding OAM states (l = 2, 4 and 6) , respectively, at their corresponding frequencies. Furthermore, 
the technique is proposed for simultaneous excitation of circularly polarized radiation for even-order OAM 
modes. In addition, OAM states with opposite signs can also be excited by reversing the phase shift between 
both feeds. The proposed antenna is suitable for wireless applications in IoT devices.

Figure 8.   Fabricated prototype (a) front and back view (b) measured reflection coefficient.
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Figure 9.   Measured far field results (a) l = 2 OAM mode phase and amplitude at 3.49 GHz (b) l = 4 OAM 
mode phase and amplitude at 4.63 GHz (c) l = 6 OAM mode phase and amplitude at 5.92 GHz.

Figure 10.   Normalized far field radiation pattern (a) l = 2 at 3.49 GHz (b) l = 4 at 4.63 GHz (c) l = 6 at 5.92 
GHz.

Figure 11.   Simulated and measured axial ratio (a) l = 2 at 3.49 GHz (b) l = 4 at 4.63 GHz (c) l = 6 at 5.92 
GHz.
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