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Distinctive features 
of the oropharyngeal microbiome 
in Inuit of Nunavik and correlations 
of mild to moderate bronchial 
obstruction with dysbiosis
Mathilde Flahaut 1, Philippe Leprohon 1, Nguyen Phuong Pham 1, Hélène Gingras 1, 
Jean Bourbeau 2, Barbara Papadopoulou 1, François Maltais 3 & Marc Ouellette 1*

Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective 
was to investigate associations between respiratory health in Inuit communities and their airway 
microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health 
Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction 
group or a control group based on their clinical history and their pulmonary function, as monitored by 
spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. 
Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. 
Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, 
while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing 
taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes 
between the two groups. More microbial metabolic pathways were enriched in the control participants 
and these were often involved in vitamin and anti-inflammatory metabolism, while a link could 
be established between the enriched pathways in the disease group and inflammation. Overall, 
our results suggest a link between microbial abundance, interactions and metabolic activities and 
respiratory health in the Inuit population.

Respiratory diseases are associated with considerable socio-economic costs  worldwide1. Lung cancer, chronic 
obstructive pulmonary diseases (COPD) and lower respiratory tract infections (LRTI) are all included within the 
first seven causes of mortality in  Canada1, with tobacco smoking as the first risk factor. The COVID-19 pandemic 
has further increased the burden of respiratory diseases. The toll of respiratory diseases is higher in the Inuit of 
Nunavik (northern Quebec, Canada) compared to the general  population2–4. The Nunavik Inuit Health Survey in 
2004 reported that Inuit are disproportionally affected by LRTI, including  tuberculosis4. Severe infections early 
in life can negatively impact the long-term respiratory health. While asthma rates seem lower in Inuit children 
compared to the Canadian  average5, the prevalence of COPD or asthma has not been documented in Nunavik 
adults. To offset this gap in knowledge, a broad health survey that included a comprehensive respiratory health 
analysis of the Inuit aged 16 and over was recently conducted in  Nunavik6. In addition to a detailed questionnaire, 
this survey was further enhanced by oropharyngeal (OP) swabs, as well as spirometry measurements, a lung 
function test detecting airway  obstruction7–9. While close to 60% of Nunavimmiut reported one of the symptoms 
of respiratory health (chronic cough, chronic sputum, wheezing), the vast majority had no airway obstruction as 
determined by spirometry with 9% showing mild obstruction (GOLD 1) and 5% a moderate obstruction (GOLD 
2)6. Smoking, and other factors including previous respiratory infection, house crowding, or food security can 
impact the onset and progression of airway  obstruction6,10,11.
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Increasing evidence gathered in the last decade suggest that the airway microbiome differs between healthy 
individuals and those with bronchial  obstruction12–14. Indeed, the airway microbiome composition could protect 
or exacerbate airway inflammation, lung immunity, or susceptibility to respiratory  infections12,14,15. While there 
is variation between studies, Proteobacteria, notably the genus Haemophilus, are more abundant in the lung 
microbiota of COPD patients. On the other hand, Firmicutes, notably the genus Veillonella, and Bacteroidetes, 
notably the genus Prevotella, are prevalent in healthy  lungs12,14,16–18.

While one report has been published on the gut microbiome of  Inuit19 none has been done for the respiratory 
microbiome of this Northern population. Inuit have increased rates of respiratory infections at a young  age3 
and have three times higher smoking rates than the average Canadian  population20. The presence of these risk 
factors for the development of bronchial obstruction prompted us, in the context of a large survey of respiratory 
health in Nunavik, to scrutinize the respiratory microbiome. Here, we studied the OP microbiome using whole 
metagenome sequencing as a proxy of lung microbiome. Indeed, microaspiration of upper airway secretions 
seems to be the main source of the lung microbiota and the lower airway microbiome is broadly similar to that 
of the OP airway albeit with a lower biomass within the  lung13,21–23. Compared to the 16S rRNA gene sequencing, 
metagenome sequencing allows a more in-depth taxonomic characterization at the species level and provide 
further functional insights into the human microbiome. Here, we show that the Quebec Inuit population has a 
distinct respiratory microbiota from other population, and we found several bacterial species associated with 
either respiratory health or mild-to-moderate bronchial obstruction.

Results
Samples and abundance of taxonomic groups
Out of the 1110 Inuit participants in the Qanuilirpitaa? 2017 survey for respiratory health, 125 participants had 
a forced expiratory volume in one second  (FEV1) and forced vital capacity (FVC) ratio below 0.7 that was used 
to define bronchial  obstruction24. More than 800 participants had a  FEV1/FVC ratio above 0.7. We selected 93 
participants that met the spirometric criteria for bronchial obstruction. They were matched for age, sex, and 
geographical location with 105 participants with normal spirometry which was defined as a  FEV1/FVC ratio > 0.7 
and a FVC > 80% predicted (Table S1). The majority (84%) of participants in both groups were smokers. The 198 
OP swabs were processed to extract the metagenomes, which were sequenced on a NovaSeq 6000 platform. An 
average of 104 millions paired-ends reads was obtained per sample. This allowed the detection of 879 taxonomic 
groups among samples, twenty-six of which were shared by all samples. The most abundant phyla in both the 
control and mild-to-moderate bronchial obstruction groups were the Firmicutes (70%), the Actinobacteria 
(18%), the Bacteroidetes (7%) and the Proteobacteria (4%). The three main classes were the Bacilli and Nega-
tivicutes, both belonging to the Firmicutes phylum, and the Actinobacteria part of the Actinobacteria phylum 
(Fig. 1). A total of 509 bacterial species were detected among the 148 bacterial genera detected in the samples 
(Fig. S1 and Table S2). The genera Streptococcus and Veillonella (both from the Firmicutes phylum), Actinomyces 
and Rothia (both from the Actinobacteria phylum) and Prevotella (from the Bacteroidetes phylum) were the five 
most abundant in both groups of participants (Fig. 2 and Fig. S1).

The Inuit oropharyngeal microbiome is distinct from other oropharyngeal microbiomes
The most abundant phyla, classes and genera observed in the respiratory microbiome of Inuit are consistent with 
other reports which studied the respiratory microbiome in various  populations17,23,25,26. We further compared 
the OP microbiome of the Inuit population with other studies that used a similar approach (OP microbiome, 
Illumina metagenomic sequencing) and with sequencing data readily available. The studies retained involved US 
and European (Germany) participants studied in the context of (1)  schizophrenia27, (2) a Neisseria meningitidis 
 outbreak28 and (3) critically ill COVID-19  patients29, as well as their controls. We also included OP samples 
archived in the Human Microbiome Project (portal.hmpdacc.org), for a total of 327 OP microbiomes external 
to the current study. Men and women were included in similar proportion and they aged from 18 and over. The 
Inuit participants aged from 16 and over. More information on these external samples is given in Table S3. The 
β-diversity of the Inuit OP microbiomes was significantly distinct (p-value = 0.001) and these formed a separate 
cluster from the US/German samples when visualized by multi-dimensional scaling (Fig. 3A). To exclude bias 
because of the various diseases, we conducted an analysis with only the control groups of the various studies and 
found similar cluster separations (Fig. S2) further indicating that the Inuit OP microbiome is indeed distinct. 
We next investigated the Inuit and US/German OP samples by linear discriminant analysis effect size (LEfSe) 
at high stringency (LDA = 3.8, p-value < 0.001) to determine the features that most likely explain the distinctive 
nature of the Inuit OP microbiome. We identified signature taxa for both the Inuit and the US/German groups 
(Fig. 3B). The Inuit group had a higher abundance of two phyla: Firmicutes (including Veillonella) and Actino-
bacteria. Two genera, Streptococcus and Lactobacillus from the Bacilli class (Firmicutes phylum) were associated 
to the Inuit group. Another distinctive feature of this group was the enrichment of two genera belonging to the 
Actinobacteria phylum, Actinomyces and Bifidobacterium. In contrast, the OP microbiome from the US/German 
group was enriched in Proteobacteria and notably Gammaproteobacteria and Betaproteobacteria. The genus 
Neisseria belonging to the Betaproteobacteria class was also highlighted as more abundant in this group. Another 
class, Bacteroidia, with the two genera Prevotella and Porphyromonas was a considerable feature of US/German 
group compared to the Inuit group (Fig. 3B).

Similar results were obtained when considering the US and German populations separately. These two popu-
lations were distinct from each other and from the Inuit population and clustered separately when visualized 
by multi-dimensional scaling (Fig. S3A). A SIMPER post-hoc test further revealed that the genera Actinomyces, 
Bifidobacterium, Lactobacillus, Gemella and Streptococcus, all part of the most discriminant taxa in the LEfSe 
described above, were among the 9 shared genera that best explained the dissimilarity between the Inuit and 
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US metagenomes, and between the Inuit and German metagenomes. Importantly, none of these shared genera 
could explain the dissimilarity between the US and German samples.

Comparison between the control and bronchial obstruction groups
We next compared the OP microbiome from the control and bronchial obstruction groups in the Inuit partici-
pants to determine whether the microbial community differs according to the presence or absence of bronchial 
obstruction. We estimated α-diversity to assess the species richness within the OP community of participants 
from the bronchial obstruction and control groups, and β-diversity to evaluate the similarity of the OP com-
munities between the two groups. No substantial difference in microbial α-diversity was detected between the 
two groups, whether this was measured by the Chao1, Shannon (Fig. 4A), Simpson or ACE indexes (Fig. S4). 
Similarly, none of these four α-diversity indexes showed substantial differences between the microbiota derived 
from participants of the three geographical regions of Nunavik (Table S1 and Fig. S4). However, differences in 
α-diversity were observed between men and women according to the ACE and Chao1 indexes (Fig. S4C,D), 
irrespective of their respiratory health status. The α-diversity was also found to decrease as participants were 
getting older according to the four indices (Fig. S4A–D). According to the abundance-based Bray–Curtis dis-
similarity as the distance method, a difference in β-diversity was observed between the control and bronchial 

Figure 1.  Relative abundance of bacterial classes identified with MetaPhlAn3 in the bronchial obstruction and 
control groups. Classes on the left are in bronchial obstruction group and classes on the right are in the control 
group. Only the bacterial classes with a relative abundance higher than 1% are depicted. The abundances for the 
25 remaining bacterial classes were summed and shown by the ‘Others’ label. ***, p-value < 0.001 with Student’s 
t-test.
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obstruction groups (p-value = 0.009), suggesting differences in microbial composition (Fig. 4B). This β-diversity 
was not, however, observed when using the Jaccard coefficient (Fig. S5A). Based on this coefficient, there was 
a significant difference in β-diversity between men and women (p-value = 0.001) (Fig. S5C), as well as between 
age groups (p-value = 0.028) (Fig. S5D).

When looking for taxonomic features responsible for the β-diversity difference between the control and bron-
chial obstruction groups (Fig. 4B) we found that the Negativicutes, which were among the most abundant bacte-
rial classes in the Inuit group (Fig. 1), were significantly enriched in the control group (p-value < 0.01) (Fig. 5A). 
This is most likely due to the increased abundance in the controls of the genus Veillonella, and more specifically 
of the species V. atypica (p-value < 0.01) and V. dispar (p-value < 0.05), as found by LefSe analysis (LDA ≥ 3) 
(Fig. 5A). The genera Lactobacillus, Megasphaera and Bifidobacterium, along with the species Megasphaera 
micronuciformis, Actinomyces graevenitzii, Bifidobacterium longum, Lactobacillus gastricus and Lactobacillus 
kalixensis were also enriched (LDA ≥ 3, p-value < 0.05 or p-value < 0.01) in the control group (Fig. 5A). Overall, 
those species belong in majority to the Firmicutes phylum. In the bronchial obstruction group, an increased 
abundance was detected for the species Granulicatella elegans (as well as its associated Granulicatella genus and 
Carnobacteriaceae family) and Lactobacillus iners (as well as its associated Lactobacillus genus and Lactobacil-
laceae family), both belonging to the Firmicutes phylum (Fig. 5A). The Streptococcus genus along with 6 species 
belonging to the Proteobacteria phylum (including two Haemophilus species), were also more abundant in the 
bronchial obstruction group (Fig. 2 and Fig. 5A).

We next measured the correlation between the species highlighted by our LEfSe analysis. We found that spe-
cies enriched in the control group are frequently associated together. For example, A. graevenitzii, B. longum, M. 
micronuciformis, and V. atypica are positively correlated with at least three of the nine species found to also be 
enriched in the control group (Fig. 5B). Interestingly the presence of V. atypica seems to be negatively correlated 

Figure 2.  Heat tree for the prevalence and abundance of taxa in the group of 198 participants. The whole group 
includes 105 participant’s samples with normal spirometry and 93 with evidence of bronchial obstruction. 
The color code depicts the mean relative abundance of taxa within samples. The prevalence of taxa within the 
samples group is represented by the size of the nodes.
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Figure 3.  β-diversity metrics and signature taxa of the oropharyngeal microbiome from different populations. 
(A) Clustering of samples from the Inuit (red) and US/German (green) population based on genus-level 
taxonomic assignments. Clustering is displayed as the non-metric multidimensional scaling (NMDS) plot of 
all samples, in which the dissimilarity between samples is calculated as the Bray–Curtis distance. The statistical 
significance of the clustering pattern in the ordination plot was evaluated using the Permutational ANOVA 
(PERMANOVA) and Analysis of group Similarities (ANOSIM) tests. (B) The most significantly discriminant 
taxa between participants from the Inuit (red) and US/German (green) population were identified by linear 
discriminant analysis effect size (LEfSe). Taxa with a logarithmic LDA score ≥ 3.8 and p-value < 0.001 are shown. 
p phylum, o order, c class, f family, g genus, s species.
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with at least three species (G. elegans, Neisseria mucosa, and Neisseria sicca) that are enriched in the bronchial 
obstruction group (Fig. 5B). Species found in the bronchial obstruction group are also more likely to be cor-
related, with N. mucosa associating with four out of eight bacteria that are enriched in that group (Fig. 5B). N. 
elongata, found to be enriched in the control group, is a patent exception as it was not positively correlated with 
any of the nine other species enriched in the control group, but it was in contrast positively correlated with 
two species found enriched in the bronchial obstruction group (Fig. 5B). A co-occurrence network generated 
by Sparse Correlations for Compositional data analysis further reinforced our observation on the correlation 
between Neisseria species, G. elegans and K. denitrificans in the bronchial obstruction group and between Veil-
lonella species, A. graevenitzii and M. micronuciformis in the control group (Fig. S6).

Our approach of whole metagenome sequencing has facilitated the analysis of metabolic functions putatively 
linked to respiratory health. This was carried out using the HUMAnN 3.0 pipeline and followed by LEfSe analysis 
with default parameters (LDA = 2, p-value < 0.05). Four pathways of biosynthesis of menaquinone (vitamin K2) 
derivatives with different numbers of isoprene units in their side chains (PWY-5840, PWY-5897, PWY-5898, 
PWY-5899) were enriched in the control group (Fig. 6). Intriguingly, two other related pathways were also 
enriched in the control group: (i) The pathway of biosynthesis of 2-carboxy-1,4-naphthoquinol (PWY-5837), 
which is a branch point metabolite leading to the biosynthesis of menaquinone and (ii) A heme biosynthesis 
pathway (HEMESYN2-PWY), which requires menaquinone for the synthesis of the heme precursor protopor-
phyrin IX (Fig. 6). Enrichment of other vitamin-related pathways were also detected in the control group, such 
as the biotin (vitamin B7) biosynthesis pathway (PWY-5005) and the super pathway of coenzyme A biosynthesis 
(PANTOSYN-PWY), which involves the biosynthesis of pantothenate (vitamin B5) (Fig. 6). Coenzyme A is a 
cofactor that plays a key role in energy metabolism as found on MetaCyc database (biocyc.org/META). Many 

Figure 4.  α-diversity and β-diversity metrics of the oropharyngeal microbiome. (A) α-diversity measured by 
the Shannon index for the oropharyngeal microbiomes at the genus level from the bronchial obstruction and 
the control groups. Each dot denotes the Shannon diversity of a sample. The boxes show inter-quartile ranges 
for each group with the group’s median denoted by a line. No significant difference was observed between the 
groups by t-test. (B) Clustering of samples from the bronchial obstruction (khaki) and control (blue) groups 
based on genus-level taxonomic assignments. Clustering is displayed as the non-metric multidimensional 
scaling (NMDS) plot of all samples, in which the dissimilarity between samples is calculated as the Bray–Curtis 
distance. The statistical significance of the clustering pattern in the ordination plot was evaluated using the 
Permutational ANOVA (PERMANOVA) and Analysis of group Similarities (ANOSIM) tests.



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16622  | https://doi.org/10.1038/s41598-023-43821-4

www.nature.com/scientificreports/

pathways providing cellular energy were also increased in the control group including ATP synthesis (PWY-
7219), gluconeogenesis (PWT66-399, GLUCONEO-PWY), glycolysis (PWY-5484) and lactic fermentation 
(ANAEROFRUCAT-PWY), including a variation (P124-PWY) of the latter found mostly in the Bifidobacte-
rium genus (Fig. 6). We also noticed an increase in pathways involved in the biosynthesis of positively charged 
amino acids (PWY-5097, PWY-7400, ARGSYN-PWY, HISTSYN-PWY) and in methionine (PWY-724) although 
alternate methionine biosynthesis pathways (PWY-5347, MET-SAM-PWY, HOMOSER-METSYN-PWY) were 
also increased in the bronchial obstruction group (Fig. 6). In the latter group we detected increased pathways 

Figure 5.  Signature taxa associated with the bronchial obstruction and control groups. (A) The most 
significantly discriminant taxa between participants from the bronchial obstruction (red) and control groups 
(green) were identified by linear discriminant analysis effect size (LEfSe). Taxa with a logarithmic LDA 
score ≥ 2.0 and p-value < 0.05 (*) or p-value < 0.01 (**) are shown. p phylum, o order, c class, f family, g genus, 
s species (B) Heatmap of Pearson’s correlations for the relative abundance of the most discriminant species 
highlighted by LEfSe analysis in panel A. The orange shaded palette indicates negative correlation while the 
purple shaded palette indicates positive correlation between species relative abundance.
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involved in fatty acid biosynthesis (PWY-6284 and 6285), as well as degradation of complex sugars (PWY-6317, 
PWY-6737, PWY66-422, LACTOSECAT-PWY) (Fig. 6).

Figure 6.  Signature metabolic pathways associated with the bronchial obstruction and control groups. The 
most significantly discriminant metabolic pathways between participants from the bronchial obstruction (red) 
and control groups (green) as identified by linear discriminant analysis effect size (LEfSe).
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Convergence of biological findings through alternative bioinformatic analyses
While MetaPhlAn3 is widely used for microbiome analysis, comparison with other algorithms is warranted in 
light of some of reported differences in microbiome analysis that are software-dependent30,31. We reinvestigated 
the whole metagenome data set by using the computational tool mOTUs2.0. This tool highlighted 502 species 
and the most abundant phyla observed were similar to the analysis done with MetaPhlAn3, with Firmicutes 
dominating (Fig. S7). Consistent with the MetaPhlAn3 analysis, Streptococcus, Veillonella, Actinomyces, Rothia, 
and Prevotella were the 5 most abundant genera observed by mOTUs2.0 (Fig. S1). When we carried out a LEfSe 
analysis at LDA ≥ 3 (p-value < 0.01) the output derived from MetaPhlAn3 and mOTU2 was highly similar, with 
Veillonella (as a genus) and V. atypica, B. longum, and L. gastricus found to be enriched in the control group 
(Fig. S8). mOTUs2 also highlighted Atopobium parvum and V. tobetsuensis as enriched in the control group 
(Fig. S8). The genus Granulicatella was found by both tools as enriched in the bronchial obstruction group 
(Fig. S8).

We also attempted to discriminate the control group from the bronchial obstruction group by investigating 
MetaPhlAn3, mOTUs2 and HUMAnN3 outputs with a series of machine learning (ML) algorithms and fea-
ture selection methods (see “Material and methods” and Table S4). Our highest classification accuracy (76%) 
was achieved, after hyperparameter tuning, by the model using mOTUs2 species relative abundance as input, 
Chi-squared test as feature selection method and decision tree as classification algorithm (Table S4). We next 
examined the features retained by the best model for each microbiome data type (Supplementary Data File). 
Interestingly, many of those features were also highlighted in the LEfSe analysis. For instance, the best model 
using MetaPhlAn3 genus relative abundance as input selected Veillonella, Lactobacillus, Actinomyces, Bifidobac-
terium and Megasphaera as negative predictors of bronchial obstruction, and Granulicatella as positive predictor 
of bronchial obstruction (Fig. 7) consistent with our LEfSe analysis (Fig. 5).

Discussion
We tallied a large respiratory health survey of the Inuit population of  Nunavik6 by a comprehensive OP microbi-
ome study. The survey indicated that airway obstruction (17% vs. 12%) and diagnosed COPD (14% vs. 9%) but 
not diagnosed asthma (3% vs. 15%) were more frequent in Nunavik compared to the rest of Canada (numbers 
age-adjusted based on the Nunavik population)6. The results derived from this recent survey are in line with 
previous  studies2,5. These prevalence rates must be considered in the context that participants had to travel to 
an icebreaker in order to be evaluated for the health survey, possibly reducing the possibility for individuals 
with severe bronchial obstruction to participate. Yet we had a large group (n = 198) of Nunavimmiut OP swabs 
with linked spirometry values that provide indication about respiratory health and the presence of bronchial 
obstruction.

The overall Inuit OP microbiome composition was consistent with other studies where the four predominant 
phyla found here (Firmicutes, Actinobacteria, Bacteroidetes and Protobacteria) were also reported either in 
healthy individuals or in people with various respiratory  diseases13,16,23,32. Streptococcus was the most abundant 
genus in our samples, a finding consistent with its predominance in oral, bronchial and lung  tissues13. In addi-
tion to Streptococcus, we found that Veillonella, Actinomyces, Rothia and Prevotella made up the 5 most abundant 
genera. These results are reproducible as they were replicated by two distinct taxonomy profilers (MetaPhlAn3 
and mOTUs2). These five genera are indeed considered to be part of the core pulmonary  microbiome33,34 and are 
thought to be pivotal for a healthy respiratory  flora16,35. While the most abundant classes and genera in our Inuit 
group were alike other OP microbiomes, an analysis of similarities revealed that they nonetheless had distinctive 
features. The Inuit were indeed richer with the phyla Firmicutes and Actinobacteria, while US/German groups 

Figure 7.  Machine learning models to predict healthy and bronchial obstruction groups. The best model using 
MetaPhlAn3 genus relative abundance as input was obtained with the features selected by the Wilcoxon-test 
and a Logistic regression model with an accuracy score of 63.1%. Since the bronchial obstruction group was 
considered as the positive class, a positive coefficient means an increase and a negative coefficient a decrease in 
the probability of having obstructive syndrome. The strength of the effect is represented by the magnitude of the 
coefficient.
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were richer in Bacteroidetes and Proteobacteria. Firmicutes and Actinobacteria are predominantly associated 
with respiratory health (in contrast to Proteobacteria) and their abundance in the Inuit may reflect the relatively 
good respiratory health of this population despite high smoking  rates6. Diet and lifestyle have been shown to 
influence the gut  microbiome15,19 which is distinct between industrialized, non-industrialized and Nunavik 
 populations36. Traditional Inuit foods, which mostly includes meat from hunted species and fish, may affect to 
some extent the Inuit gut microbiome, which itself may influence the OP microbiome through the gut-lung  axis37.

It is important to acknowledge that a possible limitation of our comparison of Inuit and non-Inuit OP 
microbiomes pertains to the sample preparation methods of the different studies involved (Table S3), as sample 
preparation may introduce biases in taxon levels. However, sample preparation methods most likely had no 
impact here and should not affect our conclusions. Indeed, samples from different studies are intertwined with 
Inuit samples in an NMDS plot colored by sample prep kits (Fig. S3B). More importantly, the separation of Inuit 
samples in the NMDS plot remains when the analysis is restricted to external samples prepared with the same 
kit as we used (Fig. S3C). The sequencing platform used by the different studies also had no impact (Fig. S3D).

Alterations in microbial richness or composition are usually observed with severe  COPD12,17,26,33 or 
 bronchiectasis38. In our analysis we did not find a difference in α-diversity based on the respiratory health of our 
participants. One possible explanation is that samples from our bronchial obstruction group were derived from 
people with only mild or moderate bronchial obstruction whose OP microbiomes do not display a significantly 
different α-diversity33. While not the norm, some studies reported no differences in α-diversity between people 
with and without respiratory  disease8,39,40. However, we were able to find differences in α-diversity metrics when 
we stratified groups according to sex, women having a less diverse microbial flora. Diseases of the respiratory 
systems were found to be higher in Inuit  females2,41,42. This difference in α-diversity in the OP microbiome 
between men and women was significant and consistent with studies in other  populations43,44. The OP micro-
biome of mid-aged adult and elders were found to be  different45, a finding consistent with our observation that 
α-diversity decreases with age.

While no difference in microbial α-diversity could be detected between our two spirometry groups, their 
microbial composition was significantly different according to β-diversity metrics. Such difference in microbial 
composition was also observed when considering sex and age. Overall, a variety of genera and species part of the 
Firmicutes phylum were increased in the control group. Veillonella, a member of the core pulmonary bacterial 
 microbiome16,33 was also increased in the control group, including all its taxonomic affiliations (family, order, 
class, phylum). This genus, notably the species V. dispar and V. atypica, stands out as being consistently associ-
ated with healthy oral  microbiota35 and preserved lung  function18,34. Other Firmicutes of the Bacilli (e.g. the 
Lactobacillus genus) and Negativicutes (e.g. the Megasphaera genus) classes were also increased in the control 
group. Several Lactobacillus, including L. gastricus, are potential probiotic  candidates46 and M. micronuciformis 
seems beneficial to  health47 and is often associated with Veillonella48. The other phylum increased in the control 
group was the Actinobacteria (e.g. the genera Actinomyces and Bifidobacterium). Many reports have shown, at 
least in murine models, that B. longum can protect against lung inflammation and can decrease the severity of 
airway  disorders49. These data are meaningful as a similar enrichment was observed when we used the mOTUs2 
algorithm instead of MetaPhlAn3. Moreover, through a logistic regression model of machine learning, the same 
species were predictive of respiratory health. Species found in the control group are also more likely to be cor-
related together. Neisseria elongata was the exception but it had the lowest LDA score and may thus have been 
a false positive in the LefSe analysis.

In the bronchial obstruction group, diverse genera and species part of the Proteobacteria phylum (e.g. Kin-
gella, Haemophilus, Neisseria) and the Bacilli class (e.g. Granulicatella) were enriched. Two Haemophilus spe-
cies were enriched in participants from this group. Our data were also in line with frequent bacterial genera 
described in COPD patients, for example the Haemophilus, Streptococcus and Neisseria genera associated here 
to participants with impaired lung  function9,13,14,50. Similarly, increased levels of Carnobacteriaceae have been 
associated with respiratory infections in a pneumonia mouse  model51. Granulicatella elegans, which belongs to 
this bacterial family, was increased (p-value < 0.01) in our bronchial obstruction group and while part of the 
normal flora, this bacteria has been shown to induce mediators of  inflammation52. Notably, the latter was also 
found to be increased by mOTUs2, a feature associated with bronchial obstruction in our logistic regression 
machine learning model. Haemophilus spp. and Neisseria spp. were also part of the main features of our machine 
learning model with the best score.

A number of biochemical pathways related to vitamin metabolism were enriched in the analysis of the OP 
microbiome of the control group (menaquinone, biotin and the pantothenate containing coenzyme A). The 
vitamin biosynthetic pathways are in general depleted across groups with various chronic diseases in compari-
son to healthy  controls53. Menaquinone (vitamin K2) is proposed to play a distinct role in the prevention of 
multiple diseases, while biotin is linked to microbial and host metabolism as well as to  inflammation54. Reduced 
inflammation mediated by bariatric surgery was associated with increased bacterial  biotin55. Coenzyme A is 
an enzymatic co-factor involved in a plethora of metabolic reactions and the increase of one of those enzymes 
involved in butyrate metabolism is linked to asthma  protection56. Fermentation pathways (ANAEROFRUCAT-
PWY, P461-PWY) were also increased in our healthy controls, with the possibility of producing short chain 
fatty acids that are linked to anti-inflammatory  effects54. In the bronchial obstruction group, we detected distinct 
enriched pathways that are involved in long chain fatty acid biosynthesis and in complex sugar catabolism that 
could impact negatively on lung  function57, increasing the risk of respiratory  diseases58.

In summary, taking advantage of a large survey of respiratory health, we have carried out a detailed OP 
microbiome analysis of the Inuit population of Nunavik. We found that the Inuit OP microbiome was distinct 
in comparison to other populations. In the context of respiratory health, we also found differences in bacterial 
taxonomic groups between healthy controls and the group with mild to moderate bronchial obstruction. Through 
two different algorithms and further supported by a machine learning strategy, we found that Veillonella and 
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other Firmicutes were more abundant in healthy controls, while Proteobacteria and Graniculatella were enriched 
in the bronchial obstruction group. These associations, which are consistent with other studies in completely 
different populations, suggest potential microbiological ecological strategies for improving respiratory health.

Methods
Ethic statement and sampling
This study was approved by the Research Ethical Committee of Laval University Hospital center, Québec, with 
project number MP-20-2019-4110 pertaining to the 2017 Qanuilirpitaa? survey. All methods were performed in 
accordance with the relevant guidelines and regulations. This survey was a broad health survey which include a 
comprehensive respiratory part into it. Participants were enrolled and sampled in the period between August 19, 
2017 and October 5, 2017 in 14 villages from three regions of Nunavik—Hudson Bay, Ungava Bay and Hudson 
strait. All participants were recruited with informed consent for the use of their anonymized data in research. 
OP samples were obtained by research staff that rubbed a sterile flocked swab at the back of the subject’s throat in 
accordance with the guidelines from the medical microbiology laboratory of the Centre Hospitalier Universitaire 
de Québec. The swabs were put in Universal Transport Medium immediately upon sampling and kept at 4 °C for 
no longer than 30 min prior to be stored at − 80 °C. Swabs were then kept frozen at − 80 °C until further process-
ing. Also, spirometry was performed by experienced respiratory therapists using an EasyOneTM Spirometer 
(New Diagnostic Design, Andover, MA, USA), and following the protocol from the CanCOLD  study59. Two 
lung volumes were measured: forced vital capacity (FVC) and forced expiratory volume in one second  (FEV1). 
All spirometric tracings were reviewed for validity by a respirologist. All participants with at least three accept-
able spirometry curves were included in the  analysis60. Bronchial obstruction was defined by a  FEV1/FVC ratio 
below 0.7, a standard value used to compare the lung function of many ethnic groups in different  countries24.

Extraction and sequencing
Throat swabs were thawed on ice and vortexed for 10 s. DNA extraction from the swabs was performed using 
the QIAamp DNA Microbiome kit (QIAGEN) according to the manufacturer’s instructions. We used a Mini-
Beadbeater-24 (BioSpec Products) for mechanical lysis, applying 3500 oscillations per minute 3 times for 2 min 
with an iced-storage 5-min interval. Lysates were incubated at 56 °C for 30 min. For elution, we used 50 µl of 
buffer AVE which was eluted twice per column. The extracted DNAs were quantified using a Quantus™ Fluo-
rometer (Promega) and stored at − 20 °C. Next generation sequencing libraries were made using the Nextera 
DNA Flex Library Prep kit (Illumina) following the manufacturer’s instructions. Libraries were quantified using 
a Quantus™ Fluorometer, and quality was checked with an Agilent 2100 Bioanalyzer with High Sensitivity DNA 
chips (Agilent). As a control we used mocked swabs and Universal Transport Medium spiked with  105 CFU of 
Pseudomonas aeruginosa (ATCC 27853) and Acinetobacter baumanii (ATTC 19606) that were processed similarly 
as above. Sequencing of the libraries was done with an Illumina NovaSeq 6000 system, generating approximately 
100-million paired-end reads of 150 nucleotides per sample. Sequencing of the mocked library revealed only the 
spiked bacteria, suggesting that contamination was marginal.

Bioinformatics
Trimming of paired-end sequencing reads was done using Trimmomatic. To quantify the percentage of human 
DNA contamination in our sample, we aligned the reads to the Genome Reference Consortium Human Build 38 
patch release 13 (https:// www. ncbi. nlm. nih. gov/ assem bly/ GCF_ 00000 1405. 39/) using  Bowtie261. For taxonomic 
profiling, sequence reads from each sample were mapped against the MetaPhlAn3 clade-specific marker gene 
database mpa_v30_CHOCOPhlAn_20190 using  MetaPhlAn330. For metabolic profiling, we used the HUMAnN3 
(v3.0.0.α.1)30 and the databases uniref90 and  mpa_v30_CHOCOPhlAn_20190130. All pathways assigned as 
“unclassified”, “unintegrated” or “unidentified” were excluded from subsequent analyses. Taxonomic profiles were 
also generated using the mOTUs2 profiler version 2.0.062 at the species, genus, family, and class taxonomic levels 
using default parameters. For comparison between Inuit and US/German populations, reads were taken from 
three databases: 1. Sequence Read Archive—SRA (ncbi.nlm.nih.gov/sra); 2. European Nucleotide Archive—ENA 
(ebi.ac.uk/ena); 3. Human Microbiome Project (hmpdacc.org). Criteria selection were shotgun sequencing and 
OP swabs from participants over 16 years of age. These were analyzed using the same MetaPhlAn3 pipeline as for 
the Inuit samples. Given that we observed a correlation between the number of reads per sample and the number 
of genera identified, samples with less than 5 genera and with ≥ 90% of unassigned reads were excluded from 
downstream analyses, to avoid possible biases coming from low sequencing coverage. The correlation between 
low read counts and the number of genera was no longer observed upon sample exclusion. A total of 327 US/
German samples were kept for analysis. All Inuit samples satisfied the exclusion criteria.

Statistical analysis
Species relative abundances obtained from MetaPhlAn3 were imported into R v4.0.4 and α-diversity analyses 
were performed with the vegan 2.5-7 (Shannon and Simpson), fossil 0.4.0 (ACE) and breakaway 4.7.3 (Chao1) 
 packages63–65. We assessed statistical differences of these four measures between more than two groups by Analy-
sis of Variance (ANOVA) and by student’s t-test for two-group comparisons. Post-hoc pairwise group compari-
sons for more than two groups were performed with Tukey-HSD (Honest Significant Differences) tests. For 
β-diversity, Bray–Curtis dissimilarity and Jaccard index were calculated using the vegan package and PCoA plots 
were drawn using the ggplot 2 3.3.5 package. Analysis of similarities (ANOSIM) and Permutational ANOVA 
(PERMANOVA) was used to compare β-diversity measures. Post-hoc comparisons were made with the SIMPER 
function from the vegan package in  R66. Significant differences between groups, for both taxonomic affiliation 
and metabolic pathways, were depicted by LEfSe analysis using Kruskal–Wallis rank sum and Wilcoxon tests 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
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(α = 0.05) with LDA threshold fixed at  267. For some analysis which required more stringency, the alpha-value was 
fixed at 0.01 or 0.001 and LDA threshold at 3.8. Pearson correlation coefficient was calculated with ggpubr v0.4.0 
package in  R68. The Sparse Correlations for Compositional data  analysis69 was performed using the NetCoMi R 
 package70. For ease of visualization, we focused on the 17 species highlighted by the LEfSe analysis comparing 
the bronchial obstruction and control groups of the Inuit dataset.

Machine learning
We formulated the discrimination between two groups (bronchial obstruction vs control) as a binary clas-
sification task, the obstructive group was regarded as the positive class and the control group as negative. We 
investigated three different microbiome data types, including MetaPhlAn3/mOTUs2 taxa relative abundance 
(species/genus/family levels) and HUMAnN3 pathway relative abundance. Data were normalized by scaling their 
values in the range from 0 to 1. Ten ML algorithms were explored including Logistic regression, Decision tree, 
k-Nearest neighbors, Support vector machines, Linear discriminant analysis, Random forest, Adaptive boost-
ing (AdaBoost), Bagging, Extremely randomized trees and Gradient boosting. Nine feature selection methods 
were evaluated, namely the t-test, the Wilcoxon rank-sum test, the Mann–Whitney U test, the Chi-squared test, 
the F-test, the Mutual information, the Logistic regression, the LASSO (Least Absolute Shrinkage and Selection 
Operator) and the Random forest. For the t-test, the Wilcoxon rank-sum test and the Mann–Whitney U test 
methods, we used a p-value cut-off of 0.05 to select features for the next step. For the Chi-squared test, the F-test 
and the Mutual information methods, top 10, 20 and 30% of highest scoring features were selected. For the 
Logistic Regression and the Random Forest methods, features whose importance is greater or equal to the mean 
of the feature importance were kept. For the LASSO method, the threshold used is  10–5. The feature selection step 
and the learning step were wrapped in a pipeline to prevent data leakage. Hyperparameter tuning was performed 
using grid search. The predictive performance of each model was accessed by leave-one-out cross-validation. 
Machine learning models were implemented using Scikit-learn library (version 1.0.1)71.

Data availability
The next generation sequencing dataset that support the findings of this study were used under copyright agree-
ment and are available upon request. It is stored on the VALERIA data management platform of Université Laval 
(https:// valer ia. scien ce/) under controlled access. In accordance with the First Nations principles of ownership, 
control, access, and possession (OCAP®), the Nunavik Regional Board of Health and Social Services is the owner 
of the data and of the biological samples collected during the Qanuilirpitaa? 2017 health survey on behalf of the 
Inuit population of Nunavik. Any request for data access should be addressed to the Qanuilirpitaa? 2017 Data 
Management Committee (nunavikhealthsurvey@ssss.gouv.qc.ca) that oversees the management of the survey 
data as well as its biological samples and digital data. This management framework is integral to the research 
partnership process and is intended to allow researchers to access and use the data in a manner that is respectful 
of all parties. Additional information on data ownership, management, and access, as well as the Data/Biologi-
cal Samples Request and Analysis Proposal Application Form are available in the Methodological report of the 
Qanuilirpitaa? 2017 (see Appendix ‘Policy on the management of databases and biological samples’, Section 7, 
pages 14–16 (415–417) and Appendix B, pages 23–27 (424–428); https:// nrbhss. ca/ sites/ defau lt/ files/ health_ 
surve ys/ A11991_ RESI_ Rappo rt_ metho dolog ique_ EP4. pdf).
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