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The potential of UAV and very 
high‑resolution satellite imagery 
for yellow and stem rust detection 
and phenotyping in Ethiopia
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Fikrte Yirga Belayineh 3, Yoseph Alemayehu 1, Girma Mamo 2, David P. Hodson 4 & 
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Very high (spatial and temporal) resolution satellite (VHRS) and high‑resolution unmanned aerial 
vehicle (UAV) imagery provides the opportunity to develop new crop disease detection methods at 
early growth stages with utility for early warning systems. The capability of multispectral UAV, SkySat 
and Pleiades imagery as a high throughput phenotyping (HTP) and rapid disease detection tool for 
wheat rusts is assessed. In a randomized trial with and without fungicide control, six bread wheat 
varieties with differing rust resistance were monitored using UAV and VHRS. In total, 18 spectral 
features served as predictors for stem and yellow rust disease progression and associated yield loss. 
Several spectral features demonstrated strong predictive power for the detection of combined wheat 
rust diseases and the estimation of varieties’ response to disease stress and grain yield. Visible spectral 
(VIS) bands (Green, Red) were more useful at booting, shifting to VIS–NIR (near‑infrared) vegetation 
indices (e.g., NDVI, RVI) at heading. The top‑performing spectral features for disease progression 
and grain yield were the Red band and UAV‑derived RVI and NDVI. Our findings provide valuable 
insight into the upscaling capability of multispectral sensors for disease detection, demonstrating the 
possibility of upscaling disease detection from plot to regional scales at early growth stages.

Globally, transboundary pathogens and pests are an increasing threat to crop production and food security. 
Increased trade and travel, coupled with a changing climate, are resulting in increased frequency and severity 
of crop disease  outbreaks1. Of all the diseases that affect wheat, wheat rusts (stem/black rust (SR), stripe/yellow 
rust (YR) and leaf/brown rust (LR)) are among the most damaging, capable of causing epidemics on a vast scale 
with significant economic and production losses if the host plant-pathogen-climate relationship is conducive. 
Recent estimates indicate that global losses from wheat rusts equate to 15 million tonnes per year (2.9 billion 
USD)2. In Ethiopia, a major YR epidemic in 2010 affected an estimated 600,000 ha, resulting in production losses 
of 15–20% and causing economic losses on the order of 250 million  USD3,4, and a severe SR epidemic in 2013/14 
infected ~ 40,000  ha5. SR, which can cause 100% crop loss within  weeks6, is re-emerging as a major concern, 
threatening up to 50 million ha of wheat (~ 25% of the world’s wheat area) in Asia and  Africa7.

To mitigate the rust-related wheat production risk and reduce the spatial scale and frequency of rust epidem-
ics, the cultivation of resistant wheat varieties is the most effective ex ante strategy. The application of fungicides 
is the most effective ex post strategy to reduce yield loss if resistance breaks down due to a new virulent  race4. 
National and global breeding programs have been working over decades to develop and deploy rust-resistant 
wheat varieties, with increasing adoption in countries such as  Ethiopia8. Rapid early-season detection, monitor-
ing, and timely control of wheat rusts are critical to avoid large-scale outbreaks if susceptible varieties are being 
grown, especially in countries where fungicides are scarcely available or too costly for  smallholders9.

Wheat rust infection can appear on any aboveground, living plant part in the form of visible yellow or reddish-
brown pustules containing thousands of uredinio spores. YR caused by Puccinia striiformis f. sp. tritici occurs 
primarily on leaves and head, producing symptoms such as yellowing and necrosis of leaves, while SR caused by 
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Puccinia graminis f. sp. tritici occurs primarily on stems (and to a minor degree on leaves and spikes), damaging 
the xylem tissue of the crop that conveys water and dissolved minerals from the roots to the rest of the plant. 
Subsequently, the reduced water and nutrient flow will weaken other plant parts, leading to necrosis of leaves. 
Thus, the spectral properties of the wheat canopy (e.g., pigmentation, moisture, and biomass) are altered under 
rust disease stress. Therefore, multispectral reflectance bands from optical UAV and satellite sensors and derived 
vegetation indices (VIs) related to crop growth (e.g., plant growth status, vegetation coverage, and pigmentation 
content) can be associated with crop susceptibility to diseases and consequently can be used for remote sensing 
(RS) application in wheat rust detection and  monitoring10–13.

Through recent advances in sensor technology and data processing, unmanned aerial vehicles (UAVs) and 
very high-resolution satellite (VHRS; < 1 m spatial resolution) RS of plant canopies have been found to offer 
high potential for nonintrusive, extensive, rapid, and flexible measurements of plant biophysical (e.g., leaf area 
index; LAI) and biochemical (e.g., chlorophyll, carotenoids) properties at very high spatial and temporal scales.

To support wheat improvement breeding, UAV-based high-throughput phenotyping (HTP) has been recently 
investigated to assess plant growth  development14,15, canopy  architecture16–18,  physiology19,20, reaction to abiotic 
 stress21–23, crop disease and insect pest  response24–26, and wheat  yield14,27,28. Spectral and thermal measurements 
at the plant and canopy levels allow for monitoring the interactions between plant germplasm and environmental 
(abiotic and biotic)  factors29. Recent literature  reviews30–34 have described in detail UAV-HTP sensing systems, 
as well as their application potential, including specific phenotyping traits (e.g., VIs, LAI, biomass, and canopy 
height), advantages, and existing challenges.

Although satellite imagery was historically too coarse in terms of spatial and temporal resolution for pheno-
typing applications and crop trial  monitoring35, novel multispectral VHRS systems and multi-satellite constella-
tions (e.g., Pleiades, SkySat, WorldView series) can provide real-time to near-real-time coverage from sub-daily 
up to every 4 days with sub-meter to 2 m spatial resolution. Despite cloud cover issues, such VHRS imagery 
can serve as an effective and useful phenotyping tool, enabling automatic recording of isolated field trials across 
large geographical  areas36. Recent research on wheat, maize and dry bean demonstrated strong and significant 
correlations between VIs extracted from UAV and VHRS imagery, confirming the feasibility of VHRS-HTP 
targeting biomass and  yield37–39; however, such satellite applications for plant breeding programs are still scarce.

Compared to SR, YR symptoms are clearer to observe at the canopy level. Thus, the wheat rust research com-
munity has focused mainly on YR detection and monitoring through UAVs and satellites, testing a wide range of 
multispectral and hyperspectral sensing systems and techniques, including machine  learning40,41. To the best of 
our knowledge, research on field phenotyping, monitoring or detecting SR in wheat using proximal or remotely 
sensed data has not been conducted thus far.

Satellite-focused studies have shown mono-temporal approaches based on one-stage spectral features suit-
able for YR mapping from field to regional  scales42–45 but with the need that the single-phase RS dataset contains 
highly contrasting and distinct crop damage features at one specific crop growth  stage40. For example, for several 
wheat diseases, such as powdery mildew, Fusarium head blight, and YR, the grain filling stage was identified as 
the appropriate timing for disease detection through RS data due to visible disease symptoms present on plant 
 parts12,42–49. Using VHRS, the high potential of VIs such as NDVI and GNDVI derived from Quickbird imagery 
for quantifying wheat YR severity was  demonstrated42. Moreover, WorldView imagery allowed for differentiat-
ing between wheat powdery mildew and YR diseases using both spectral bands and  VIs43. For discriminating 
between healthy and YR-infected wheat at the regional scale, the spectral REDSI disease index applied to Senti-
nel-2 imagery showed an overall accuracy of 85.2% superior to nine commonly used VIs (< 81.5%)44. However, 
one-stage spectral features only reflect static host conditions at a single growth stage, displaying the crop disease 
situation as a snapshot at a certain point. The grain filling stage for wheat is relatively late in the cropping season, 
which in most cases is already too late for undertaking control measures and allows only for damage assess-
ment. Although detection of rusts at an early stage is desirable, rust symptoms tend to be mild in early stages 
of infection and thus difficult to detect even with high-spatial-resolution and high-spectral-resolution images.

To address both strategies, the capability of multispectral high-resolution UAV and VHRS imagery as an 
HTP and rapid disease detection tool is assessed by analyzing the interaction between wheat varieties and rust 
diseases (here: YR and SR) in terms of early-stage detection and host plant response to rust and associated yield. 
The objectives were to (i) characterize the progressive development of YR and SR and associated grain yield loss 
using traditional visual disease estimations; (ii) assess the level of agreement of remotely sensed multispectral 
spectral features with visual disease scores of rust symptoms and their prediction capability to estimate visual 
disease scores at earlier growth stages (booting and heading), general disease progression, and grain yield; and 
finally, (iii) evaluate the potential to upscale UAV-based detection and phenotyping to very high-resolution 
spaceborne systems such as Pleiades and SkySat.

Materials and methods
Study site
During the main cropping season in 2020, the field experiment was conducted at the EIAR Kulumsa Agricultural 
Research Center (KARC; 39° 10’ E/08° 02’ N; 2200 m above sea level), located in the Arsi zone (Tiyo district) of 
the Oromia Region, Central Ethiopia (Fig. 1). The mean annual rainfall is 820 mm with a unimodal distribution 
pattern, and the average air temperature ranges between 10.5 and 22.8 °C, allowing a growing period of 120–135 
 days50. The main cropping season is closely linked to the long rainy season (Meher; from June to September), 
with crops harvested between September and November. The predominant soil type is clayey soils (e.g., haplic 
vertisols, haplic luvisols)51. The climatic conditions are favorable for YR occurrence, and wheat fields located in 
the KARC area are prone to natural YR infection during the Meher season.
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Plant material
Six improved bread wheat varieties with varying resistance and reaction levels to SR and YR were selected for 
the experiment (Table 1). All varieties had been investigated for their agronomic performance and resistance 
to YR and/or SR in multiple locations in  Ethiopia8,54,55. From the pool of available seed material, wheat varie-
ties were chosen for each anticipated plant (host) reaction to current prevailing races of SR and YR: resistant, 

Figure 1.  Location of the study site and experimental setup (experiment site: UAV false color composite using 
near infrared, red and green bands from 2020-10-29; heading stage / DAS 80; study site: Pleiades satellite scene 
from 2020-10-16). UAV imagery processed using  Pix4Dmapper52 and figure prepared using QGIS version 
3.14.16-PI53.

Table 1.  Characteristics of selected wheat varieties. *Disease and pest resistance rating by  farmers54.

Variety Origin Release date SR reaction YR reaction Farmers’ rating*

Danda’a EIAR-CIMMYT 2010 Moderately resistant Moderately resistant Very good to excellent

Digelu EIAR-CIMMYT 2005 Susceptible Susceptible Very poor

Hidassie EIAR-CIMMYT 2012 Susceptible Moderately susceptible Poor to good

Kingbird EIAR-CIMMYT 2014 Moderately resistant Moderately susceptible Good to very good

Liben EIAR-ICARDA 2015 Resistant Moderately susceptible Na

Shorima EIAR-ICARDA 2011 Resistant Susceptible Excellent
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moderately resistant/susceptible, and susceptible. The plant material used in this experiment was procured from 
EIAR-KARC’s national wheat breeding program and plant pathology research division, complying with institu-
tional and national guidelines and legislation.

Experimental design
The selected wheat varieties were planted on August 10, 2020, in two side-by-side blocks using a modified 
randomized complete block design (RCBD) with large plot sizes (5 m × 5 m), each with three randomized rep-
licates, resulting in 36 plots (2 blocks × 6 varieties × 3 replicates). Due to heavy rains in July 2020, planting was 
delayed, which increased the probability of water scarcity towards the end of the main season. Before planting, 
the experimental area (0.15 ha) was leveled to obtain uniform and flat land.

The two blocks differed in their treatment with fungicides. One block was almost rust-free (disease controlled 
by fungicide applications, herein referred to as treated), representing the control group. The other block was 
rust-infected (without fungicide control, herein referred to as non-treated). To prevent fungicide drift between 
the two blocks, a strip of 4 m land was left unplanted. For each block, the experimental design consisted of three 
rows 2 m apart from each other, and each row had six plots 1.5 m apart from each other. Within each plot, the 
spacing between planted rows was 20 cm (Fig. 1).

Plots were fertilized with N-P-S at 121 kg/ha and UREA at 150 kg/ha following the recommended rates of 
the standard wheat crop nursery management at KARC. From the flowering stage to the maturity stage, irriga-
tion was applied every afternoon for four hours. In the treated block, rust was controlled using the fungicide 
 Rex® Duo 497 SC (Epoxiconazole + Thiophanate-methyl; BASF, Ludwigshafen, Germany) at a rate of 0.5 l/ha, 
applied with handheld sprayers on September 25, 2020, and October 10, 2020. After the second application, 
fungicides were not further applied because the disease pressure was not favored by the climatic conditions. For 
yield measurements, a 4  m2 area per plot was harvested, and grain yield was measured in grams, with the grain 
moisture adjusted to 12% and converted to tonnes per hectare (t/ha).

For YR and SR disease increase, single spreader rows of bulk susceptible varieties were planted per plot using 
a mixture of varieties of varying degrees of SR and YR susceptibility: for SR PBW-343 and Hidassie and for YR 
Kubsa, Digelu, and Morocco. SR was inoculated with a bulk SR inoculum on September 25, 2020, with a ULV 
(Ultra Low Volume) sprayer and the injection method using a syringe on October 2, 2020, to ensure homoge-
neous infection development within the 5  m2 plots. A natural YR infection occurred across the experimental 
site because plots were planted late and surrounding earlier-planted farmer fields had already been naturally 
infected by YR.

Disease scoring
Disease scoring was carried out three times throughout the experimental duration. The disease scoring was 
started when YR pressure was at 5% severity and SR pressure at 2% severity per plot. Subsequent scoring 
dates were chosen according to the disease development in the plots. Following standardized rust scoring 
 guidelines56–59, five visual sub-scores were taken per plot, one in each corner and one in the center, capturing 
rust severity and the host plant response to each rust disease. For severity estimation, the Modified Cobb  Scale57 
was used, and the host plant response to infection was visually assessed according to disease  symptoms59.

To obtain a representative rust scoring value per plot, the rust severity and host response data were combined 
by first calculating the coefficient of infection (CI) for each sub-score per scoring date and then averaging the 
resulting CI values across the plot per scoring date (ACI). The CI is calculated by multiplying the intensity of 
severity in percent with a host response constant, corresponding to a specific host response  class57, using Eq. (1):

where CI is the coefficient of infection in percent, D is the severity in percent, and HR is the host response con-
stant according to specific host response  class57.

In classical plant pathology studies, individual rust diseases are scored and treated separately. From an RS 
perspective, however, both YR and SR affect the plant canopy reflectance as a whole. Thus, for RS-based crop 
health measurements at the canopy level, an overall disease index (DI) needs to be computed to reflect the com-
bined impact of both diseases on the canopy cover. Therefore, a DI was created to describe the severity and the 
host plant response to both rust diseases by merging the ACI of YR with the ACI of SR. From the literature, no 
specific method is recommended on how to merge multiple diseases into one DI, so the following two scenarios 
were tested (Eqs. 2 and 3):

Scenario X: a simple sum of YR and SR was calculated for each scoring date, whereby the weight coefficients 
for both diseases were set to 1 to represent an equal disease impact on the canopy cover.

where DIX is the non-weighted disease index in percent and ACI is the averaged coefficient of infection per plot 
in percent for each YR and SR scoring date. This equation is applied to each disease scoring date equally.

Scenario W: a weighted sum of YR and SR was calculated with a reduced weight coefficient for SR according 
to the rust impact on plant parts relevant to photosynthesis. The rationale behind this is that the SR impact on rel-
evant plant parts is delayed and consequently does not directly or indirectly affect green tissue by its first appear-
ance. Thus, when SR appeared for the first time (in this study: DAS 80), its weight coefficient was reduced in the 
DI calculation, testing stepwise values from 0 (no SR impact) to 0.9, while it would increase to 1 at later stages.

(1)CI = D ×HR

(2)DIX = 1× ACIYR + 1× ACISR

(3)DIW = 1× ACIYR + wc × ACISR
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where DIW is the weighted disease index in percent, ACI is the averaged coefficient of infection per plot in percent 
for each YR and SR scoring date, and wc is the weight coefficient for SR.

By calculating the DIX and DIW for each disease scoring date, DI time series were computed for both scenarios. 
To ensure that each scoring variable contributes equally to the time series and that DI time series would exhibit 
the same range of disease infection (e.g., not exceeding 100%), the DI values were normalized to the maximum 
and minimum observed DI across the entire time series following a min–max normalization approach. This data 
normalization was applied to both DI scenarios, resulting in DI scoring dates having normalized DI  (DInorm) 
values expressed between 0 and 1.

Remote sensing—UAV and satellite
To analyze the potential of UAV and VHRS-based multispectral sensors, very high spatial and temporal reso-
lutions were needed, considering the plot size of the experiment and the dense cloud cover during the Meher 
season. Table 2 shows the characteristics of the tested RS sensors.

UAV data acquisition was carried out at the canopy level using the quadcopter UAV platform Parrot Blue-
grass Fields equipped with the on-board multispectral Parrot Sequoia sensor weighing < 2 kg (Parrot Drones 
S.A.S, Paris, France). The nominal radio link range of the platform was 2 km with a maximum flight time of 
25 min. The Sequoia sensor provided spectral images, covering the electromagnetic spectrum from green to 
near-infrared (Table 2). Targeting the booting and heading wheat growth stages, the UAV was flown twice 60 m 
above ground within the temporal window of solar noon ± 2 h in clear sky conditions, covering an area of ~ 1 ha 
with the experimental site in its center (Fig. 2). Images were acquired with 80% front and 80% side overlap, result-
ing in a spatial ground resolution of 5.6 cm. Before each flight, radiometric sensor calibrations and corrections 
were performed using the standard reflectance calibration panel provided by the manufacturer. In addition, the 
built-in sunshine sensor measured the sun irradiance during each flight, enabling radiometric correction of 
images taken under distinct light conditions. Photogrammetric postprocessing was applied to the multispectral 
images using Pix4Dmapper software (v4.6.4; Pix4D, Lausanne, Switzerland). Following the standard processing 
pipeline (e.g., image alignment, tie point extraction, bundle block adjustment, point cloud densification), the 
images were converted into georeferenced, geometrically corrected and radiometrically calibrated reflectance 
maps and resampled to 5 cm ground resolution.

To address the spatial and temporal resolution needed for this study, two state-of-the-art VHRS constellations 
were selected: the SkySat (Planet Labs, San Francisco, CA, United States) and Pleiades (French Space Agency, 
Paris, France) satellite systems. Due to their sensor specifications (Table 2), both enable the acquisition of high 
probability cloud-free imagery at the sub-meter pixel level over a very frequently cloudy region.

Based on the CubeSat/nano-satellite concept, the SkySat constellation includes 21 high-resolution earth 
imaging satellites capable of sub-daily (up to 6–7 times per day on worldwide average) recordings of panchro-
matic and multispectral images at spatial resolutions of 0.57–0.86 m and 0.75–1.0, respectively, depending on 
the satellite generation. The panchromatic image is a single-band grayscale image covering the spectral range of 
450–900 nm. The multispectral image consists of four multispectral bands (B, G, R, and NIR). Through ESA’s 
Third Party Missions program, three orthorectified, radiometrically calibrated and georeferenced SkySat scenes 
were obtained (Fig. 2). The satellite data were delivered as a 4-band multispectral SkySat Ortho Analytic Sur-
face Reflectance product, already pan-sharpened to 0.5 m and corrected to bottom-of-atmosphere reflectance. 

Table 2.  Characteristics of RS sensors. a B: Blue; G: Green; R: Red; RE: Red-Edge; NIR: near-infrared; PAN: 
panchromatic. b MS: multispectral.

Platform Sensor Spectral wavelengths (Bands)  [nm]a Spatial resolution  [m]b

UAV Sequoia 530–570 (G) 640–680 (R) 730–740 (RE) 770–810 (NIR) 0.05

VHRS
Pleiades 430–550 (B) 500–620 (G) 590–710 (R) 740–940 (NIR) 470–830 (PAN) 0.5 (PAN) 2 (MS)

SkySat 450–515 (B) 515–595 (G) 605–695 (R) 740–900 (NIR) 450–900 (PAN) 0.57–0.86 (PAN) 0.75–1.0 (MS)

Figure 2.  Overview of the data collection timeline (red dashed line: temporal focus window; light red box: 
sampling date; In. SR: inoculation of SR; F: fungicide application; DAS: day after sowing; YR: yellow rust; SR: 
stem rust; PL: Pleiades; SS: SkySat; UAV: unmanned aerial vehicle; int: interpolated).
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Pan-sharpening refers to the fusion of a higher spatial resolution panchromatic image with a lower spatial 
resolution multispectral  image60,61.

The Pleiades High-Resolution Optical Imaging Constellation provides optical high-resolution panchromatic 
and multispectral satellite imagery with daily coverage due to the identical Pleiades satellite twins (Pleiades 
1A and Pleiades 1B). The panchromatic data present a spatial resolution of 0.50 m, and the spectral range is 
470–830 nm, while multispectral data present a spatial resolution of 2.00 m and include four multispectral bands 
(B, G, R, and NIR). Three orthorectified (Ortho Level 3), radiometrically corrected, and georeferenced Pleiades 
scenes were acquired from Airbus Defence and Space Intelligence (Toulouse, France) (Fig. 2). These scenes were 
delivered as panchromatic-multispectral ortho products, corrected from atmospheric systematic contributions 
(static effects), resulting in top-of-atmosphere reflectance. The top-of-atmosphere reflectance values can be 
directly assimilated to bottom-of-atmosphere reflectance if imagery was taken in clear sky  conditions62, which 
was our case. To enhance the spatial resolution of the multispectral information, all Pleiades datasets were pan-
sharpened using the Gram-Schmidt pan-sharpening  method63 with Pleiades-specific multispectral band weights.

Subsequently, all UAV and VHRS datasets were manually co-registered to six ground control points (GCPs) 
installed at the experimental site (one GCP at each corner and two GCPs in the gap between the two treatment 
blocks) using ArcGIS Desktop 10.8.1 (ESRI Inc., Redlands, CA, United States). The spectral G, R, and NIR bands 
that all three sensors have in common were selected to derive wheat disease and crop health-related VIs for each 
RS dataset. Those spectral bands can be considered YR-sensitive  bands10,42,44,45, while the NIR band is able to 
increase the spectral response of YR by reducing possible noise (e.g., atmospheric effects)42. In total, 15 different 
VIs were computed. Table 3 depicts all 18 spectral features used in this study.

Data analysis
UAV and VHRS datasets were acquired over the experimental site, and ground truthing in the form of visual 
disease scoring was carried out. Figure 2 shows the data collection timeline, revealing data gaps for both RS and 
in situ data, i.e., missing RS data on scoring dates or vice versa. Due to unexpected factors (e.g., COVID-19 travel 
restrictions, weather conditions), data could not be collected in equal time steps.

To overcome this challenge, a twenty-day temporal focus window from days after sowing (DAS) 60 until 
DAS 80 (2020-10-09 until 2020-10-29) with four specific sampling dates was established by using the first and 
last UAV flights. The temporal window covers wheat development during the booting and heading stages. Lin-
ear interpolation was applied to postprocessed scoring, UAV and VHRS spectral feature datasets to harmonize 

Table 3.  Overview of the spectral bands and VIs used. R: measured reflectance at the original wavelength or 
wavebands specified by the subscript (G: Green; R: Red; NIR: near-infrared).

Index Formula Traits Relevant studies

Spectral bands

Green (G) RG Disease (YR) 10,42,44,45

Red (R) RR Disease (YR) 10,42,44,45

Near-infrared (NIR) RNIR
42

VIs

Chlorophyll index—green (CIG)
(

RNIR
RG

)

− 1 Chlorophyll 64

Chlorophyll vegetation index (CVI) (RNIR∗RR)

RG
2

Chlorophyll 64

Green normalized difference vegetation index 
(GNDVI)

(RNIR−RG )
(RNIR+RG )

Disease (YR), chlorophyll, LAI, nitrogen, water 
content

10,42,43,45

Modified soil adjusted vegetation index 
(MSAVI) 0.5[2RNIR + 1−

√

(2RNIR + 1)2 − 8(RNIR − RR)] Disease (YR) 45

Modified simple ratio (MSR)
(
RNIR
RR

−1)
√

(
RNIR
RR

)+1
Disease 46

Normalized difference vegetation index (NDVI) (RNIR−RR)
(RNIR+RR)

Disease (YR), chlorophyll, LAI, biomass, yield 10,42–45

Normalized green red difference index 
(NGRDI)

(RG−RR)
(RG+RR)

Chlorophyll, biomass, water content 64

Optimized soil-adjusted vegetation index 
(OSAVI)

(RNIR−RR)
(RNIR+RR+0.16)

Disease 46

Ratio index Red/Green (RGR) RR
RG

Disease (YR) 10,43,44

Ratio vegetation index (RVI) RR
RNIR

Re-normalized difference vegetation index 
(RDVI)

(RNIR−RR)√
(RNIR+RR)

Disease (YR) 10

Soil adjusted vegetation index (SAVI) (1+L)∗(RNIR−RR)

(RNIR+RR+L)
L = 0.5 Disease (YR) 10,43,45

Simple ratio (SR) RNIR
RR

Disease, biomass, water content, nitrogen 46

Triangular vegetation index (TVI) 0.5[120(RNIR − RG)− 200(RR − RG)] Disease (YR), green LAI, chlorophyll, canopy 42,43,45

Visible atmospherically resistant index  (VARIG) (RG−RR)
(RG+RR)

Disease (YR) 10,43,44
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sampling dates (DAS 60, DAS 64, DAS 68, and DAS 80), enabling extraction of both real measured and inter-
polated values from each data source.

Subsequently, disease data were analyzed using the area under the disease progress curve (AUDPC) with the 
trapezoidal method, i.e., Riemann’s  integrals65. RS-derived spectral features from both UAV and VHRS sensors 
were extracted as the mean per plot (1 m buffer to avoid mixed pixels from spreader rows and paths), and the 
area under the curve (AUC) was computed for the individual wavelengths and VIs using Riemann’s integrals. 
These calculations allow for integrating the temporal information from disease scores and all three RS datasets 
into single variables (AUDPC and AUC). Using Pearson correlation analysis, the relationship between disease 
scoring  (DInorm) and spectral features per sampling date was investigated to evaluate the early detection potential 
of specific RS sensors. The data from AUDPC and AUCs were assessed in terms of their individual association 
with each other and with grain yield also through Pearson correlation analysis. Spectral features and AUCs having 
at least a highly significant correlation (r > 0.8; r < − 0.8; p ≤ 0.05) with  DInorm, AUDPC, and yield, respectively, 
were selected to assess the prediction potential of RS derivates based on a linear regression model, expressed 
through the adjusted coefficient of determination  (R2

adj) as corrected goodness-of-fit and the root mean square 
error (RMSE) as model quality measures. The data processing and analyses were implemented in the statistical 
software R, version 4.1.366.

Results
Temporal development of rusts
The visual disease scoring results revealed that early natural YR infection took place, and SR inoculation was 
effective (Table 4). YR was present in the plots on all scoring dates, and SR was present only on the last scoring 
date. The first YR scoring (DAS 46) shows that YR infected all varieties, even in the treated block. This resulted 
from a delay in fungicide application, as the first fungicide application was carried out at DAS 47. The data con-
firm the effectiveness of the fungicide application, as observed in the considerable YR infection drop in the treated 
block recorded on DAS 64. Overall, the YR scorings underpin the expected YR variety responses according to 
their known susceptibility to YR; e.g., Digelu reacted quickly and strongly to YR, as it is the most susceptible 
variety. The late appearance of SR around heading and grain filling is  typical57. Of all varieties, Hidassie was 
highly susceptible to SR, as expected. The high susceptibility of Digelu to early YR infections (50–70 S at DAS 
64) meant that plants were largely dead before SR developed.

Figure 3 shows the interpolated disease progression curves for the different disease index  (DInorm) merging 
scenarios—Scenario X (simple sum) and Scenario W (weighted sum) (here: using Scenario  W0.7 based on the 
weight coefficient 0.7 as example). Focusing on the non-treated block, both scenarios reveal similar patterns of 
variety response to disease presence, confirming the high YR susceptibility of Digelu and high SR susceptibility 
of Hidassie, respectively, followed by moderate YR susceptibility of Liben and Shorima and relatively high YR 
and SR resistance of Kingbird and Danda’a. The main difference between both scenarios was observed in the SR 
response of Hidassie. When SR was scored in the plots for the first time (DAS 80), Scenario X revealed a stronger 
response to SR with a high increment (DAS 64 to DAS 80) of 0.57 (0.15 to 0.72) compared to Scenario  W0.7 with 
an increment of 0.42 (0.16 to 0.58).

Effect of rusts on yield
Overall, a statistically significant (p < 0.001) difference in yield production was found between the treated and 
non-treated blocks (mean: 4.2 t/ha vs. 2.6 t/ha). Plot yield records show a relatively low variation across varieties 
for the treated block, while for the non-treated block, higher variation exists (variance: 0.7 t/ha vs.1 t/ha), with 
minimum yield for more susceptible varieties such as Digelu (0.8 t/ha) and Hidassie (2.4 t/ha) and maximum 
yield for more resistant varieties such as Danda’a (3.6 t/ha) and Kingbird (3.3 t/ha) (Fig. 4).

Comparing the yield performance of individual varieties between the two treatments (fungicide vs. non-
fungicide) showed that the yield of all varieties was decreased by rusts within the non-treated plots. Yield loss can 
be associated with the degree of rust resistance/susceptibility of each variety. The highest yield loss was observed 
in the most susceptible varieties (Digelu: 78%; Hidassie: 50%), while the lowest yield loss was observed in the 
most resistant variety (Danda’a: 14%) (Table 5).

For Scenario X and Scenario W (using the example of Scenario  W0.7), Fig. 5 shows the correlation analysis of 
yield with the AUDPC, revealing a very high negative and significant (p ≤ 0.001) relationship for non-treated plots 
(Scenario X: r = − 0.99; Scenario  W0.7: r = − 1). This result clearly illustrates the anticipated variety reaction to SR 
and YR, already considered during the variety selection process. As expected, the correlation between AUDPC 
and yield in the treated block was negligible (Scenario X: r = 0.15; Scenario  W0.7: r = 0.05).

Remote sensing
To investigate the potential of UAV and VHRS for rust disease detection and phenotyping, Scenario W was used 
as an example. The results belonging to Scenario X are presented in the Supplementary Data.

Rust detection
To assess the capability of multispectral UAV and VHRS sensors for rust detection at the variety level, the 
relationships between the visual disease scoring  (DInorm) and spectral features derived from UAV and VHRS 
across all different varieties were statistically evaluated in the non-treated block for each sampling date. Using 
Pearson correlation analysis, Tables 6 and 7 summarize the relationships at DAS 60 (booting stage) and at DAS 
80 (heading stage), respectively.

Across all three sensors, the Pearson coefficient revealed that the visible G and R bands were very highly 
significantly positively correlated with the  DInorm at DAS 60 (r ≥ 0.9; p ≤ 0.05) (Table 6). To a minor degree, the 
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NIR bands derived from UAV (r = 0.85) and Pleiades (r = 0.83) as well as the chlorophyll-related CIG derived 
from UAV (r = − 0.83) showed a highly significant correlation. The positive correlation of the G and R bands with 
 DInorm suggests that the higher the spectral reflectance is, the higher the disease pressure in the corresponding 
variety. At DAS 60, only YR was present in the plots with low  DInorm values of 0.04–0.14, except for the highly 
susceptible Digelu with a  DInorm of 0.48.

For Scenario W at DAS 80, Fig. 6 provides an overview of the impact of tested weight coefficients on the 
relationships between  DInorm and spectral features. Focusing on strong and significant correlations (r > 0.81; 
r < − 0.81; p ≤ 0.05), the correlation strength varied slightly (± 0.01) for multiple spectral features from UAV 
using the weight coefficient 0.9, 0.8, and 0.7, SkySat using 0.5 to 0.1, and Pleiades using 0.9 to 0.5. Across all 
sensors, weight coefficients 0.7, 0.6, and 0.5 yielded more often strongest correlations. Subsequently, Scenario 
 W0.7 based on the weight coefficient 0.7 was used as an example to demonstrate the RS rust detection and HTP 
capabilities in more detail.

For Scenario  W0.7 at DAS 80, highly significant positive and negative relationships (r ≥ 0.9; r ≤ − 0.9) were 
found, yielding the best significant correlations with NDVI, OSAVI, RVI, RDVI, and MSR for the UAV-based 
sensor (p  ≤ 0.01); MSAVI2, RVI, NDVI, RDVI, OSAVI, and SAVI for SkySat (p ≤ 0.001); and NDVI, OSAVI, MSR, 
MSAVI2, RVI, SAVI, and SR for Pleiades (p ≤ 0.001) (Table 7). Moreover, a general decrease in the relevance of 
visible G and R bands was observed, whereby for the G band only low to moderate non-significant correlation 

Table 4.  Visual disease scoring results as plot averages. a T: TREATED, fungicide treatment block; NT: NON-
TREATED, non-fungicide treatment block. b S: susceptible; MSS: moderately susceptible to susceptible; MS: 
moderately susceptible; MR: moderately resistant; t: trace level of  severity59.

ID Variety Blocka

Visual scores for  YRb Visual scores for  SRb

DAS 46 DAS 64 DAS 80 DAS 46 DAS 64 DAS 80

1 HIDASSIE

T

5MS 5MR 5MR 0 0 10S

2 DIGELU 30S 15S 15S 0 0 5S

3 DANDA’A 5MS tMR tMR 0 0 5MS

4 KINGBIRD 15S 5MR 5MR 0 0 5MS

5 LIBEN 15S tMR tMR 0 0 tMS

6 SHORIMA 5MS 5MR 5MR 0 0 tMS

7 DANDA’A

NT

5MS 5MR 10MS 0 0 5MS

8 HIDASSIE 5MS 20S 30S 0 0 40S

9 DIGELU 30S 60S 90S 0 0 5S

10 SHORIMA 5MS 10S 60S 0 0 5S

11 LIBEN 15S 15MS 40S 0 0 5MSS

12 KINGBIRD 15S 10MSS 20SMS 0 0 5MS

13 SHORIMA 5MS 10MS 30SMS 0 0 tMS

14 DANDA’A 5MS 5MS tMS 0 0 5MS

15 KINGBIRD 10MS 5MS 5MS 0 0 5MS

16 LIBEN 15S tMS 30SMS 0 0 5MS

17 HIDASSIE 5MS 10S 10MSS 0 0 40S

18 DIGELU 30S 50S 80S 0 0 tS

19 DIGELU

T

30S tMR tMR 0 0 5S

20 DANDA’A 5MS tMR tMR 0 0 5S

21 HIDASSIE 5MS 5MR 5MR 0 0 15S

22 SHORIMA 10MS tMR tMR 0 0 tS

23 LIBEN 5MS 0 0 0 0 tS

24 KINGBIRD 10MS tMR tMR 0 0 tS

26 HIDASSIE 5MS 10MR 10MR 0 0 10S

27 LIBEN 10MS tMR tMR 0 0 tS

28 KINGBIRD tMS tMR tMR 0 0 5S

29 DIGELU 20S tMR tMR 0 0 5S

30 SHORIMA 5MS 5MR 5MR 0 0 tS

31 DANDA’A

NT

5MS 5MS tMS 0 0 tS

32 HIDASSIE 5MS 10S 30S 0 0 50S

33 SHORIMA 5MS 10MSS 20SMS 0 0 tS

34 DIGELU 30S 70S 90S 0 0 5S

35 KINGBIRD 10MS 10S 5MS 0 0 5MSS

36 LIBEN 10MS 20S 40S 0 0 5S



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16768  | https://doi.org/10.1038/s41598-023-43770-y

www.nature.com/scientificreports/

(r: 0.44–0.59) and for R bands still high (partly significant) correlations (r: 0.73–0.82) were identified. At DAS 
80, both YR and SR rust diseases were scored in the plots with low  DInorm values of 0.06 and 0.13 for Danda’a 
and Kingbird, moderate  DInorm values of 0.38 and 0.40 for Shorima and Liben, and relatively high  DInorm values 
of 0.58 and 0.95 for Hidassie and Digelu.

The regression analysis of spectral features highly correlated (r > 0.8; r < − 0.8; p ≤ 0.05) with visual disease 
scoring indicated that remotely sensed data from all three sensors are highly suitable to estimate disease scoring 
in the field at early crop growth stages (Tables 6 and 7). For the booting stage (DAS 60), the single G bands fol-
lowed by the R bands derived from UAV  (R2

adj = 0.86;  R2
adj = 0.78), SkySat  (R2

adj = 0.75;  R2
adj = 0.77), and Pleiades 

 (R2
adj = 0.79;  R2

adj = 0.76) imagery were identified as the best (significant) predictor variables for  DInorm, and to 
a moderate degree, the NIR bands from UAV  (R2

adj = 0.65) and Pleiades  (R2
adj = 0.61) as well as CIG from UAV 

Figure 3.  Disease progression per wheat variety and treatment block for disease merging scenarios—(a) 
Scenario X (simple sum) and (b) Scenario  W0.7 (weighted sum).

Figure 4.  Box plot showing recorded yield per variety and treatment block.

Table 5.  Grain yield per variety and yield loss caused by rust disease calculated as the percentage difference 
in grain yield (t/ha) between fungicide and non-fungicide treatments. Due to the delay in fungicide treatment, 
incomplete control for YR was obtained in treated plots, meaning that yield losses between treatments would 
likely have been higher under complete control. a AUDPCX: AUDPC for Scenario X. b AUDPCW: AUDPC for 
Scenario  W0.7.

Variety

Non-treated Treated

Yield loss [%]AUDPCX
a AUDPCW

b Yield [t/ha] AUDPCX
a AUDPCW

b Yield [t/ha]

Danda’a 1.02 0.93 3.55 0.70 0.55 4.14 14

Digelu 15.49 15.64 0.84 1.96 1.83 3.81 78

Hidassie 8.62 7.31 2.38 2.00 1.60 4.77 50

Kingbird 2.20 2.09 3.27 0.62 0.53 4.30 24

Liben 5.34 5.32 2.64 0.30 0.26 3.98 34

Shorima 4.88 4.92 2.69 0.50 0.49 4.47 40



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16768  | https://doi.org/10.1038/s41598-023-43770-y

www.nature.com/scientificreports/

 (R2
adj = 0.61). For the heading stage (DAS 80), a wide range of VIs were identified with high  (R2

adj ≥ 0.7) to very 
high  (R2

adj ≥ 0.9) explanatory power for  DInorm. For UAV imagery, RVI  (R2
adj = 0.84), NDVI  (R2

adj = 0.83), and 
OSAVI  (R2

adj = 0.83) were the top 3 performing significant predictors (p ≤ 0.01), while for VHRS imagery, the 
five VIs MSAVI2, RVI, NDVI, OSAVI, and SAVI, (SkySat:  R2

adj ≥ 0.95; Pleiades:  R2
adj = 0.97) as well as for only 

SkySat RDVI  (R2
adj = 0.96) and for only Pleiades MSR and SR  (R2

adj = 0.97) performed very highly at the highest 
significance level (p ≤ 0.001). At a lower significance level (p ≤ 0.01), other very high performing VIs were MSR 
and SR  (R2

adj = 0.93;  R2
adj = 0.91) for SkySat or NGRDI, RGR, and VARIg  (R2

adj = 0.9) for Pleiades. From the single 
bands, only the R band from SkySat showed moderate explanatory power  (R2

adj = 0.59). Figures 7 and 8 depict 
the relationships between  DInorm and the top-performing spectral features for each RS sensor at the booting 
and heading stages, respectively. It is clearly shown that the predictive power at DAS 60 depends on the highly 
susceptible Digelu variety.

High‑throughput phenotyping
Analysis of the relationships of the AUCs of individual bands and VIs with the  AUDPCW (Scenario  W0.7) and 
yield across early crop growth stages (from booting to heading) revealed that a wide range of spectral features 
derived from UAV imagery had high to very high significant correlations. However, only one spectral feature 
from SkySat imagery was highly significantly correlated with disease development  (AUDPCW) and yield under 

Figure 5.  Correlation between grain yield and AUDPC—(a) Scenario X (simple sum) and (b) Scenario  W0.7 
(weighted sum)  (AUDPCX: AUDPC for Scenario X;  AUDPCW: AUDPC for Scenario  W0.7).

Table 6.  Pearson correlation and linear regression analysis between  DInorm and spectral features at DAS 
60 (non-fungicide treatment block) (note: the results are the same for both scenarios). *p-value < 0.05; 
**p-value < 0.01; and ***p-value < 0.001.

UAV SkySat Pleiades

r R2
adj RMSE r R2

adj RMSE r R2
adj RMSE

G 0.94** 0.86** 0.05 0.90* 0.75* 0.06 0.91* 0.79* 0.06

R 0.91* 0.78* 0.06 0.90* 0.77* 0.06 0.90* 0.76* 0.06

NIR 0.85* 0.65* 0.08 0.80 0.83* 0.61* 0.08

NGRDI 0.26 0.39 − 0.32

NDVI − 0.46 − 0.51 − 0.01

GNDVI − 0.78 − 0.76 0.17

TVI 0.66 0.44 0.69

CVI − 0.71 − 0.70 0.49

CIG − 0.83* 0.61* 0.08 − 0.73 0.18

RGR − 0.27 − 0.36 0.32

RDVI 0.30 0.06 0.56

VARIg 0.26 0.39 − 0.32

OSAVI 0.03 − 0.51 − 0.01

MSR − 0.5 − 0.45 0

MSAVI2 0.41 − 0.53 − 0.01

RVI 0.44 0.53 0.01

SAVI 0.38 − 0.51 − 0.01

SR − 0.52 − 0.42 0
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the non-fungicide treatment (r > 0.8; r < − 0.8; p ≤ 0.05) (Tables 8 and 9). Under the non-fungicide treatment (non-
treated block), the Pearson coefficient (r) of the interactions between the single spectral bands and  AUDPCW was 
0.81 and 0.91 for UAV G and R bands as well as 0.83 for SkySat R band. The correlations of VIs and  AUDPCW 
were -0.85 to -0.92 (MSR, GNDVI, CIG, and NDVI) and 0.94 (RVI) for UAV, while VHRS-derived VIs were 
not significantly correlated to  AUDPCW (Table 8). From all individual bands, the Pearson coefficient revealed a 
significant relationship with yields of -0.92 and -0.84 (p ≤ 0.05) only for the AUCs from the UAV and SkySat R 
bands, respectively, under non-fungicide treatment. Moreover, only five VIs derived from UAV imagery showed 
a significant (p ≤ 0.05) correlation with yield (r: 0.82–0.91; GNDVI, CIG, MSR, and NDVI; r = − 0.93 RVI), while 
VI-AUCs from VHRS were not significant (p > 0.05) (Table 9). The data suggest that the varieties with higher 
G-AUCs, R-AUCs, and/or RVI-AUCs also had higher disease pressure in terms of AUDPC (positive correlation) 
and lower yields (negative correlation), while varieties with higher NDVI-AUCs, GNDVI-AUCs, CIG-AUCs, 
and/or MSR-AUCs had lower disease pressure in terms of AUDPC (negative correlation) but higher yields 
(positive correlations) (Table 5).

While the relationships for various spectral bands and VIs with yield were noticeably stronger under the 
non-fungicide treatment, these relationships were—as expected—not significant under the fungicide treatment, 
except for the SkySat R band (r = − 0.84; p ≤ 0.05). This is explained by the almost complete absence of the disease, 
i.e., photosynthesis, and thus yield, were unaffected in non-diseased plants. However, as a natural YR infection 
occurred before the first fungicide application, all varieties showed slight disease symptoms  (DInorm: 0.03–0.10) 
on DAS 46, except Digelu  (DInorm: 0.29). After two fungicide applications on DAS 47 and DAS 61, the  DInorm 
dropped to ≤ 0.03 for all varieties and to 0.06 for Digelu, as recorded on DAS 64. Thus, the data revealed that 
single NIR bands and several VIs from VHRS (SkySat: TVI and RDVI; Pleiades: GNDVI, TVI, CIG, RDVI) 
showed significant (p ≤ 0.05) strong positive correlations of ≥ 0.9 and ≥ 0.83, respectively, with  AUDPCW but 
were not shown for UAV data.

To assess the prediction potential of remotely sensed spectral features to estimate varieties’ response to disease 
stress and grain yield, only AUCs having at least a high significant correlation (r > 0.8; r < − 0.8; p ≤ 0.05) with 
 AUDPCW or yield were explored using linear regression analysis (Tables 8 and 9). From all individual bands, the 
results revealed that R-AUC is the best (significant) predictor variable for  AUDPCW and grain yield across UAV 
 (AUDPCW:  R2

adj = 0.8; yield:  R2
adj = 0.8) and SkySat  (AUDPCW:  R2

adj = 0.62; yield:  R2
adj = 0.64) sensors. Only the 

UAV-derived VI-AUCs RVI and NDVI were found to have high explanatory power for  AUDPCW  (R2
adj = 0.85 and 

 R2
adj = 0.81, respectively) and yield  (R2

adj = 0.83 and  R2
adj = 0.79, respectively), whereas CIG, MSR, and GNDVI 

showed moderate power for  AUDPCW  (R2
adj: 0.65–0.66) and yield  (R2

adj: 0.6–0.63). VI-AUCs derived from VHRS 
were not significant. Figures 9 and 10 depict the relationships of  AUDPCW and grain yield (respectively) with 
top-performing spectral features for each RS sensor.

Discussion
To the best of the authors’ knowledge, the present study is the first to explore RS capabilities from both UAV and 
satellite platforms for phenotyping and detecting multiple wheat rust diseases in the same plot.

Table 7.  Scenario  W0.7 – Pearson correlation and linear regression analysis between  DInorm and spectral 
features at DAS 80 (non-fungicide treatment block) (results for Scenario X are presented in Supplementary 
Data S Table 1). *p-value < 0.05; **p-value < 0.01; and ***p-value < 0.001.

UAV SkySat Pleiades

r R2
adj RMSE r R2

adj RMSE r R2
adj RMSE

G 0.51 0.59 0.44

R 0.77 0.82* 0.59* 0.17 0.73

NIR − 0.61 − 0.27 − 0.19

NGRDI − 0.84* 0.63* 0.16 − 0.79 − 0.96** 0.90** 0.08

NDVI − 0.93** 0.83** 0.11 − 0.98*** 0.95*** 0.06 − 0.99*** 0.97*** 0.05

GNDVI − 0.86* 0.68* 0.15 − 0.85* 0.66* 0.16 − 0.92** 0.81** 0.12

TVI − 0.89* 0.75* 0.13 − 0.92** 0.81** 0.12 − 0.83* 0.62* 0.16

CVI − 0.43 − 0.36 0.08

CIG − 0.86* 0.68* 0.15 − 0.83* 0.61* 0.17 − 0.93** 0.82** 0.11

RGR 0.85* 0.65* 0.16 0.79 0.96** 0.90** 0.09

RDVI − 0.92** 0.81** 0.12 − 0.98*** 0.96*** 0.05 − 0.91* 0.79* 0.12

VARIg − 0.84* 0.63* 0.16 − 0.79 − 0.96** 0.90** 0.08

OSAVI − 0.93** 0.83** 0.11 − 0.98*** 0.95*** 0.06 − 0.99*** 0.97*** 0.05

MSR − 0.92** 0.81** 0.12 − 0.97** 0.93** 0.07 − 0.99*** 0.97*** 0.05

MSAVI2 − 0.90* 0.77* 0.13 − 0.99*** 0.96*** 0.05 − 0.99*** 0.97*** 0.05

RVI 0.93** 0.84** 0.11 0.99*** 0.96*** 0.05 0.99*** 0.97*** 0.05

SAVI − 0.91* 0.79* 0.12 − 0.98*** 0.95*** 0.06 − 0.99*** 0.97*** 0.05

SR − 0.91* 0.79* 0.12 − 0.96** 0.91** 0.08 − 0.99*** 0.97*** 0.05
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A specific method for integrating multiple rust diseases has not yet been suggested in the existing literature. 
Commonly, literature exploring RS for wheat rust disease detection, monitoring, and forecasting focuses on 
identifying a specific disease (binary classification; e.g., disease vs. healthy)10,42,44,45, differentiating among mul-
tiple diseases or a specific disease from other stresses such as pest or abiotic stress (multicategory classification; 
e.g., disease1 vs. disease2 vs. healthy, disease vs. pest vs. healthy; disease vs. abiotic stress vs. healthy)43, and 
retrieving discrete or continuous infection/severity levels of a specific disease (quantification/regression; e.g., 
severe, moderate, slight disease vs. healthy)44. To obtain a representative ground observation that describes the 
disease impact on the canopy cover as a whole, two scenarios for merging different visual disease scores from 
multiple rust diseases in wheat were proposed according to rust pathology expert knowledge: Scenario X (a 
simple sum) and Scenario W (a weighted sum). Scenario X represents an equal impact of both diseases, while 
for Scenario W, weight coefficients for SR from 0 (no SR impact) to 0.9 were stepwise tested, considering the 
disease-specific temporal processes leading to a direct or indirect alternation of photosynthesis-relevant plant 
parts and consequently canopy cover. Results indicate that optimal weight coefficients depend on spectral sen-
sor resolution and vary for different spectral features. For disease detection, coefficients 0.7, 0.6, and 0.5 yielded 

Figure 6.  Scenario W with tested weight coefficients – Pearson correlation between  DInorm and spectral features 
derived from (a) UAV, (b) SkySat, and (c) Pleiades at DAS 80 (non-fungicide treatment block) (note: Scenario 
 W1.0 with the weight coefficient of 1.0 is the same as Scenario X; Scenario  W0 with the weight coefficient of 0 
excludes the SR impact).
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stronger correlations across all sensors more often. Subsequently, Scenario  W0.7 based on the weight coefficient 
0.7 was used. YR infections occur primarily on leaves and head, producing symptoms such as yellowing and 
necrosis of leaves as soon as infection takes place. In contrast, primary SR infections are typically on the stem 
with no or little impact on the canopy. As SR infection progresses, the disease starts damaging the xylem tissue 
of the plant that translocate water and dissolved minerals from the roots to the rest of the plant, leading to a 
reduction of nutrient flow to the leaves and weakening of the  stem67. This process eventually leads to a reduction 
in photosynthesis and finally leaf death (i.e., canopy effects), revealing a temporal delay of observable canopy 
impact from infection to occurrence. The scenario approach reported here represents a first step to address-
ing multiple disease pressures. The weighted coefficient for SR is an attempt to align the biological process of 
pathogen infection and impacts on canopy level parameters relevant for the remote sensing in a rapid and easily 
applicable way. Detailed experiments measuring canopy photosynthetic changes solely with SR infections may 
result in more refined coefficient in the future. However, for RS applications such as crop disease detection and 
monitoring, more research on how to address the simultaneous occurrence of multiple diseases in the same 
plot is needed, as this is the most likely situation in farmer fields. In particular, the question of how to integrate 
different disease scoring results associated with different diseases into one representative ground observation, 
considering the different rates of disease development, needs to be addressed to enable the overall crop health 
condition at the canopy level related to biotic stresses to be determined.

In terms of rust progression, both scenarios revealed realistic overall scoring results. For example, the impact 
of the later-appearing SR disease on the SR-susceptible variety Hidassie showed an increase of 57% (Scenario 
X) and 42% (Scenario  W0.7) within 16 days from no to first SR appearance, which is found within the range of 
reported rates of SR development (e.g., up to 80% within 2–3 weeks)6. The reduced values for Hidassie of Scenario 
 W0.7 reflect the delayed reaction on photosynthesis-relevant plant parts during SR infection.

Our results suggest that potential yield losses from rust disease in improved bread wheat may be as high as 
78% in susceptible varieties under strong disease pressure. This number seems to be realistic, as up to 100% yield 
loss for both  YR68 and  SR69 diseases had been reported. The very strong correlation of  AUDPCW or  AUDPCX 
with grain yield (r ≥ − 0.99) confirms the overall impact that wheat rusts can exert on wheat production following 

Figure 7.  Predicted versus measured  DInorm values at DAS 60 based on the regression equation of the linear 
model using (a) G derived from UAV, (b) R derived from SkySat, and (c) G derived from Pleiades data (black 
line: one-to-one line) (note: the results are the same for both scenarios).

Figure 8.  Scenario  W0.7—Predicted versus measured  DInorm values at DAS 80 based on the regression equation 
of the linear model using (a) RVI derived from UAV, (b) RVI derived from SkySat, and (c) RVI derived from 
Pleiades data (black line: one-to-one line) (results for Scenario X are presented in Supplementary Data S Fig. 1).



14

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16768  | https://doi.org/10.1038/s41598-023-43770-y

www.nature.com/scientificreports/

a severe epidemic in susceptible wheat varieties, i.e., historic YR epidemics in Ethiopia (1977–1990) resulted in 
yield losses from 30 to 96% at various spatial  scales70–72.

The application of multispectral and hyperspectral proximal and satellite RS for disease resistance phenotyp-
ing and disease monitoring has been extensively discussed in the literature for a wide range of  crops25,36,40,41,73–77. 
A recent review focusing on YR and LR detection and monitoring in  wheat41 reported moderate to very high 
accuracies when using field spectrometers (71–97%), UAV/aircraft-based multispectral and hyperspectral imag-
ing systems (> 60–91%), and multispectral satellite imagery (57–90%).

Table 8.  Scenario  W0.7 – Pearson correlation and linear regression analysis between  AUDPCW and the AUC of 
spectral features (non-fungicide treatment block) (results for Scenario X are presented in Supplementary Data 
S Table 2). *p-value < 0.05; **p-value < 0.01; and ***p-value < 0.001.

UAV SkySat Pleiades

r R2
adj RMSE r R2

adj RMSE r R2
adj RMSE

G-AUC 0.81* 0.57* 2.79 0.73 0.72

R-AUC 0.91* 0.80* 1.93 0.83* 0.62* 2.64 0.79

NIR-AUC 0.54 0.58 0.59

NGRDI-AUC − 0.19 − 0.01 − 0.78

NDVI-AUC − 0.92** 0.81** 1.85 − 0.71 − 0.59

GNDVI-AUC − 0.85* 0.65* 2.52 − 0.68 − 0.30

TVI-AUC 0.01 − 0.01 0.30

CVI-AUC − 0.58 − 0.49 0.43

CIG-AUC − 0.85* 0.66* 2.50 − 0.64 − 0.29

RGR-AUC 0.26 0.05 0.80

RDVI-AUC − 0.58 − 0.38 0.09

VARIg-AUC − 0.19 − 0.01 − 0.78

OSAVI-AUC − 0.77 − 0.71 − 0.59

MSR-AUC − 0.85* 0.65* 2.54 − 0.63 − 0.55

MSAVI2-AUC − 0.39 − 0.73 − 0.61

RVI-AUC 0.94** 0.85** 1.63 0.73 0.61

SAVI-AUC − 0.49 − 0.71 − 0.59

SR-AUC − 0.80 − 0.60 − 0.53

Table 9.  Pearson correlation and linear regression analysis between grain yield and the AUC of spectral 
features (non-fungicide treatment block). *p-value < 0.05; **p-value < 0.01; and ***p-value < 0.001.

UAV SkySat Pleiades

r R2
adj RMSE r R2

adj RMSE r R2
adj RMSE

G-AUC − 0.80 − 0.73 − 0.72

R-AUC − 0.92* 0.80* 0.35 − 0.84* 0.64* 0.47 − 0.79

NIR-AUC − 0.55 − 0.58 − 0.60

NGRDI-AUC 0.22 0.04 0.78

NDVI-AUC 0.91* 0.79* 0.35 0.71 0.58

GNDVI-AUC 0.82* 0.60* 0.49 0.67 0.28

TVI-AUC − 0.02 0.01 − 0.31

CVI-AUC 0.55 0.46 − 0.47

CIG-AUC 0.83* 0.61* 0.48 0.62 0.27

RGR-AUC − 0.29 − 0.08 − 0.81

RDVI-AUC 0.57 0.37 − 0.10

VARIg-AUC 0.22 0.04 0.78

OSAVI-AUC 0.76 0.71 0.58

MSR-AUC 0.84* 0.63* 0.47 0.64 0.54

MSAVI2-AUC 0.37 0.73 0.60

RVI-AUC − 0.93** 0.83** 0.32 − 0.73 − 0.60

SAVI-AUC 0.47 0.71 0.58

SR-AUC 0.80 0.60 0.52
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Our results underpin the potential use of UAV and VHRS multispectral imaging for rapid wheat rust disease 
detection and phenotyping, both less time-consuming and less prone to human error than traditional disease 
scoring and field surveys as well as less expensive than hyperspectral imaging systems. VHRS RS is able to bridge 
the gap from plot scale to regional scale applications, whereby VHRS is advantageous over UAV by not requiring 
large initial investments for purchasing the RS systems and trained specialists for data acquisition and processing, 
and it has fewer technical  challenges29,78.

For various multispectral satellite sensors (e.g., GeoEye, Ikonos-2, Quickbird, RapidEye, SPOT-5 and -6, 
WorldView-2, and Sentinel-2), several previous studies on wheat YR mapping demonstrated—by using RS 
imagery and in situ data around the grain filling stage (post flowering/anthesis)—that the most spectrally sen-
sitive and highly significant reflectance bands can be found mainly in the red region of the electromagnetic 
spectrum, followed by the green and near-infrared  regions10,42–45. Moreover, the authors found crop growth-
related VIs such as NDVI, TVI, GNDVI, SAVI, RGR, VARIg, and EVI to be significantly sensitive to wheat rusts, 
applying them successfully for identifying  YR10,44,45, differentiating between YR and powdery mildew  diseases43, 
and determining YR infection/severity  levels44.

Figure 9.  Scenario  W0.7—Predicted versus measured  AUDPCW values based on the regression equation of the 
linear model using (a) RVI-AUC derived from UAV and (b) R-AUC derived from SkySat data (black line: one-
to-one line) (results for Scenario X are presented in Supplementary Data S Fig. 2).

Figure 10.  Predicted versus measured grain yield values based on the regression equation of the linear model 
using (a) RVI-AUC derived from UAV and (b) R-AUC derived from SkySat data (black line: one-to-one line).
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In contrast, our study focused on the late vegetative stage of the wheat life cycle, in particular the booting and 
heading stages, which are the predecessors of the flowering (anthesis) and grain filling stages. A focus on earlier 
wheat growth stages is highly desirable to improve the prevention of disease outbreaks and epidemics. The earlier 
the crop stage at which rust infection starts, the more damage will occur. However, earlier crop growth stages 
have not been considered in satellite-based rust-detection and monitoring studies before.

For both combined disease score scenarios, our study revealed that depending on the time of sensing, the 
G band was correlated best among all tested 18 spectral features and slightly better than the R band (except for 
SkySat) at the booting stage, while for the heading stage, the correlation power of G and R bands was reduced, 
being non-significant for the G and R bands, except for the SkySat R band of Scenario  W0.7. As YR alters plant 
leaf color from green to yellow, the G band was highly sensitive to detect YR at the booting stage (Fig. 7). The 
results confirmed the critical need for including highly susceptible varieties in on-station field experiments and 
disease screening nurseries as reference points for control checks regarding disease occurrence and develop-
ment. As disease pressure increased in the non-treated plots over time, a clear shift in the spectral sensitivity to 
wheat rust was observed from solely visible G and R spectral bands at the booting stage to multispectral ratio 
VIs at the heading stage, taking advantage of the NIR band in combination mostly with the R band (e.g., RVI, 
NDVI, MSR, OSAVI, RDVI, MSAVI2, SAVI, and SR) and to a lesser extent with the G band (e.g., GNDVI and 
CIG). This observation algins with identified significant spectral ranges between YR-infected and non-infected 
wheat at both leaf and canopy  levels77.

Our results identified a large set of VIs significantly sensitive to wheat rusts and consequently suitable for early 
detection and monitoring, supporting the findings of previous  studies10,43–45. Thus, the very highly correlated 
spectral features identified in our study (Tables 6 and 7; S1) exhibited for all three sensors a high  (R2

adj ≥ 0.7) to 
very high  (R22

adj ≥ 0.9) explanatory power to estimate disease scoring values at earlier growth stages using linear 
regression models. The most relevant predictive spectral features at the booting stage were the G band (UAV, 
Pleiades) and R band (SkySat), and those at the heading stage were RVI, NDVI, OSAVI, MSR, RDVI (UAV) and 
NDVI, OSAVI, MSAVI2, RVI, SAVI (SySat, Pleiades), RDVI (SkySat), SR (Pleiades). In contrast to Yuan et al.42, 
a higher coefficient of determination was found in our study for NDVI and GNDVI.

For phenotyping applications, our study showed that several spectral features derived or calculated from 
UAV and VHRS multispectral imagery were highly correlated (r > 0.8; r < − 0.8; p ≤ 0.05) with disease progres-
sion and/or grain yield under non-fungicide treatments (Tables 8 and 9; S3). The strongest relationships with 
grain yield were found for UAV with RVI, R band, and NDVI and for SkySat with the R band. Strong relation-
ships between AUDPC and R bands (UAV and SkySat) and RVI and NDVI (UAV) indicate the potential usage 
of these spectral features as an auxiliary tool for disease phenotyping and are potentially suitable for forecasting 
yield losses caused by wheat rusts. It must be noted that both VHRS sensors were weaker predictors than UAV 
due to the lack of sensitivity of VHRS multispectral instruments in terms of spectral resolution (broad spectral 
bands) and spatial resolution.

This study was designed as a proof of concept to demonstrate UAV and VHRS remote sensing capabilities for 
assessing the variety response to disease stress. To satisfy the need of a representative sample of spectral satellite 
information per plot (pixels per plot), a compromise between large field plots and many field plots had to be 
made due to limited available land and resources. Fewer larger field plots than commonly used in agricultural 
trials were used, resulting in a minimum set of 18 data points, aggregated to 6 at the variety level. Whilst meeting 
the absolute minimum for statistical tests used, this relatively small number has limitations in terms of interpret-
ability. Although further research is needed, the methodology presented in this study is a starting point tackling 
the initial capital investment constraint faced by research stations when it comes to HTP techniques for disease 
resistant genotypes selection, which also allows for multi-location genotype trials.

Conclusion
The current study identifies several spectral features from UAV and VHRS multispectral imagery that have 
strong assessment power for the detection of combined wheat rust diseases at early crop growth stages. Novel 
approaches to account for the simultaneous occurrence of multiple rust diseases were tested. Visible spectral 
(VIS) bands (G, R) were more useful at early stages (booting), shifting to VIS–NIR VIs at later stages (heading). 
This study provides valuable insight into the upscaling capability of multispectral sensors for disease detection 
from UAV imagery at 5 cm per pixel to pan-sharpened satellite imagery at 50 cm per pixel, demonstrating a first 
step towards upscaling disease detection from plot to regional scales. Further work will expand and improve 
current methodology to examine the VHRS detection capability towards machine and deep learning techniques 
(e.g., convolutional neural network) to allow for continuous monitoring systems, focusing on both single and 
mixed rust diseases under different treatments (e.g., variable fungicide rates, irrigation rates).

Data availability
Remote sensing data from SkySat were provided through the European Space Agency Third Party Mission scheme 
(ESA TPM) and Pleiades by the Université Catholique de Louvain. All other data that support the findings of 
this study are available from the corresponding author upon reasonable request.
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