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Pair barracuda swarm optimization 
algorithm: a natural‑inspired 
metaheuristic method for high 
dimensional optimization problems
Jia Guo 1,2, Guoyuan Zhou 3, Ke Yan 4, Yuji Sato 5 & Yi Di 1,2*

High‑dimensional optimization presents a novel challenge within the realm of intelligent computing, 
necessitating innovative approaches. When tackling high‑dimensional spaces, traditional evolutionary 
tools often encounter pitfalls, including dimensional catastrophes and a propensity to become trapped 
in local optima, ultimately compromising result accuracy. To address this issue, we introduce the Pair 
Barracuda Swarm Optimization (PBSO) algorithm in this paper. PBSO employs a unique strategy for 
constructing barracuda pairs, effectively mitigating the challenges posed by high dimensionality. 
Furthermore, we enhance global search capabilities by incorporating a support barracuda alongside 
the leading barracuda pair. To assess the algorithm’s performance, we conduct experiments utilizing 
the CEC2017 standard function and compare PBSO against five state‑of‑the‑art natural‑inspired 
optimizers in the control group. Across 29 test functions, PBSO consistently secures top rankings 
with 9 first‑place, 13 second‑place, 5 third‑place, 1 fourth‑place, and 1 fifth‑place finishes, yielding an 
average rank of 2.0345. These empirical findings affirm that PBSO stands as the superior choice among 
all test algorithms, offering a dependable solution for high‑dimensional optimization challenges.

The Particle Swarm Optimization (PSO) algorithm, introduced by Kennedy in  19951, has garnered significant 
attention from researchers since its inception. It has found successful applications in various practical engineer-
ing problems, such as image  segmentation2,3, sound  classification4, power  planning5,6, path  planning7–9, water 
pressure  control10, voltage  regulation11, sensor  networks12, among others. Additionally, numerous enhancements 
have been developed to improve the PSO algorithm. These enhancements typically fall into three main categories: 
modifying the algorithm’s  topology13, enhancing the particle swarm learning  strategy14, and combining PSO 
with other algorithms.

Changing the topology to design update strategies tailored to particles with distinct characteristics can opti-
mize the utilization of information within the particle  swarm15. Liang introduced the APSO-C  algorithm16, which 
incorporates two key strategies. The first strategy involves partitioning the particle swarm using the k-means 
method, resulting in subgroups with varying capabilities. The second strategy aims to balance the local and 
global search aspects of the algorithm. On the other hand, Xu proposed the QLPSO  algorithm17, which integrates 
reinforcement learning into the particle swarm algorithm. In this approach, each particle autonomously selects 
the best topology by referring to a reinforcement learning table that evolves progressively during the iterative 
process. Comparatively, this experiment demonstrates a faster convergence rate when compared to particle 
swarm algorithms based on alternative topologies.

Enhancing the learning strategy of the particle swarm algorithm proves to be an effective means of boosting 
its performance. This improvement can involve adjustments to various learning  parameters18, such as inertia 
 weights19, among others. Tian introduced the MPSO  algorithm20, which employs a unique approach. It initializes 
the particle swarm using a logical map and then selects inertia weights using both linear and nonlinear strategies. 
Furthermore, an auxiliary update mechanism is implemented for global optimal particles, contributing to the 
algorithm’s robustness. Karim, on the other hand, proposed  MPSOEG21, an algorithm that optimizes the learning 
framework by eliminating inertia weights and velocity parameters. Experimental results highlight the algorithm’s 
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efficiency in solving single-objective optimization problems. Wang introduced a novel particle adaptive learning 
strategy for tackling large-scale optimization  problems22.

One effective approach to diversify particle swarm information is by combining particle swarm algorithms 
with other algorithms. Zhu, for instance, integrated the fireworks algorithm with  PSO23. Dadvar, on the other 
hand, combined Differential Evolution (DE), a stochastic optimization algorithm, with  PSO24. This fusion of DE 
and PSO leverages Nash bargaining theory, demonstrating its superiority over other hybrid models in various 
applications. In a similar vein, Wang introduced DFS-CPSO25, a hybrid algorithm that combines the depth-first 
search algorithm with the particle swarm algorithm. By integrating the DFS strategy, this approach enhances the 
diversity of particles and exhibits superior performance, particularly in solving high-dimensional multi-modal 
problems.

In 2003, Kennedy introduced the bare-bone particle swarm algorithm (BBPSO)26, aiming to simplify the PSO 
by removing intricate parameters. BBPSO employs the Gaussian algorithm during its iterative process, making 
it more comprehensible. It has been successfully applied to tackle complex problems, such as the traveling sales-
man problem. Nonetheless, BBPSO is susceptible to getting trapped in local  optima27. Consequently, numerous 
researchers have made extensive efforts to enhance the algorithm’s performance in addressing this issue.

In 2014, Campos introduced SMA-BBPSO28, an algorithm that employs a matrix following the T distribution 
to update particle positions. This approach enhances the balance of particles during the iteration process. In 2018, 
Guo presented  DRBBPSO29, which incorporates a dynamic reconstruction strategy to bolster the algorithm’s 
performance by retaining elite particles. This feature helps prevent the algorithm from becoming ensnared in 
local optima when addressing multi-modal problems. In 2021, Guo proposed  CBBPSO30, which not only keeps a 
record of global worst particles but also enhances its capability to solve high-dimensional problems. Subsequently, 
in 2022, Tian expanded BBPSO by incorporating a transition operator and an orbit merging  operator31. Then, in 
2023, Xiao introduced  TMBBPSO32, which integrates two memory mechanisms into BBPSO, tailored for solving 
nonlinear problems. In 2016, Yong introduced the Dolphin Swarm Optimization Algorithm (DSOA)33, which 
simulates the social and hunting behaviors of barracudas within the search area.

Vafashoar introduced two essential mechanisms into BBPSO in their  work34. Firstly, they employed cellular 
learning automata (CLA) for parallel computation of mathematical simulation models, facilitating particle flight 
and path refinement. Secondly, they reoriented particle directions based on the maximum likelihood principle. 
The combination of these two mechanisms significantly enhances the algorithm’s capability to solve complex 
optimization problems.

Guo’s  FHBBPSO35 introduces both a fission and fusion strategy. Initially, the particle swarm is divided into 
groups using the fission strategy, with each group independently seeking its optimal solution. Subsequently, the 
fusion strategy is employed to identify the optimal group, followed by another round of fission strategy. This 
cyclic process continues until the end of the iteration. The fusion strategy draws inspiration from the competi-
tive processes observed in chimpanzee groups, and the combination of these two strategies demonstrates strong 
performance in solving single-objective optimization problems. Zamani proposed a Quantum-based avian navi-
gation optimizer  algorithm36 in 2021, a Starling murmuration  optimizer37 in 2022 Nadimi-Shahraki38 proposed 
an enhanced Moth-Flame optimization method in 2023.

Variants of PSO algorithms find widespread applications in the field of sensors. Kim introduced a novel PSO 
approach for multi-sensor data  fusion39. Senthil proposed a PSO-based method to enhance the lifespan of wireless 
sensor  networks40. Wang introduced a novel resampling PSO to improve sensor network  performance41. Moreo-
ver, PSO can optimize cooperative working strategies, energy usage strategies, and sensor co-working strategies.

There are also a lot of researcher inspired from natural groups. Mirjalili citeMirjalili2014 proposed the gray 
wolf optimizer (GWO) in 2014.  Heidari201942 proposed the Harris hawks optimization (HHO) in 2021. Emary 
proposed the Abdollahzadeh proposed the african vultures optimization algorithm and artificial gorilla troops 
optimizer in 2021.  Xue43 proposed theDung beetle optimizer (DBO) in 2023 As technology advances, applied 
research, such as sensor deployment and sensor data transmission, becomes increasingly high-dimensional and 
complex. To address this challenge, this paper delves into the characteristics of high-dimensional space and 
introduces a new nature-inspired metaheuristic algorithm: the Pair Barracuda Swarm Optimization Algorithm 
(PBSO).

Barracudas are highly social marine mammals that typically form large groups known as pods. The arrange-
ment of sensors can draw inspiration from the distribution of these pods. The size of barracuda pods varies 
depending on the species and their environment. Common barracuda pods generally consist of a few dozen 
to a few hundred individuals, while king barracuda pods can number over a thousand individuals. These pods 
exhibit a strict social structure, typically led by a male, with females and juveniles comprising the rest. The leader 
of the barracuda pod guides the group’s movements, food search, and other activities. Communication within 
barracuda groups involves various methods, including sounds, body language, and physical contact. Barracu-
das emit high-frequency calls that can travel significant distances, aiding in underwater communication and 
navigation. Barracudas frequently cooperate in activities such as fishing, protecting their young, and defending 
against predators. They also form supersets to hunt large fish and cetaceans collectively. Barracudas display high 
intelligence and learning capabilities, enabling them to use tools for obtaining food, such as fishing with hooks, 
and collaborate with humans in tasks like rescue operations and marine research.

The main contributions of this paper are as follows:

• A novel evolution strategy is proposed in this paper to balance the global and local search ability of the 
algorithm. A Gaussian distribution is used in future position selection of particle units.

• Deep memory mechanism is introduced to enhance the global optimum escaping ability of the barracuda 
swarm.
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• A barracuda pairs evolution model is designed to increase the optimization precision.

The rest of this paper is organized as follows: Section "Materials and methods" introduces details of the proposed 
method; Section "Results" introduces experiments and discussion; Section "Conclusions" presents the conclu-
sion of this work.

Materials and methods
Barracudas swarms in nature
Survival resources within a barracuda population encompass necessities like food, water, and resting places. It 
is essential to distribute these resources effectively to cater to the needs of the entire population. In a barracuda 
swarm, the leader plays a pivotal role. The leader’s responsibilities include guiding the direction of the search 
and allocating resources. In some barracuda groups, the leader determines the group’s movement direction and 
coordinates activities such as food acquisition, thereby facilitating the collective access to survival resources. Typi-
cally, the leader barracuda enjoys priority access to food and resting places, while other group members adhere 
to group-defined allocation rules. In certain instances, barracudas engage in competitive resource allocation. 
This communication and resource allocation behavior in barracudas offers novel insights for sensor deployment 
strategies. For example, when searching for food, swifter or more skilled hunters among the barracudas may 
receive larger portions. In such cases, weaker members of the group may need to rely on cooperation and assis-
tance to secure survival resources. Nonetheless, nature also illustrates instances of cooperative allocation and 
equitable distribution. In their exploration of barracuda population structures, researchers have observed that 
barracudas typically reside in pods. These life patterns can vary depending on the region, species, and season, 
but they often exhibit common patterns.

• barracuda groups: Most barracudas live in groups, usually consisting of dozens to hundreds of barracudas. 
Within these groups, barracudas often collaborate to feed, move and breed.

• barracuda Pairs: During the breeding season, some barracudas form pairs, consisting of a male and a female 
barracuda.

• Solitary barracudas: Some barracudas may also live alone, usually because they have been expelled or sepa-
rated from the group. These solitary barracudas may find a new group or continue to live alone.

In short, barracudas usually live in groups, which can consist of a few to hundreds of barracudas. barracudas 
often have close social bonds with each other and exhibit a variety of life patterns, including groups, families, 
pairs and solitude.

Barracudas swarm optimization algorithm
Inspired by the social structure and team behavior of barracudas, a novel barracudas swarm optimization algo-
rithm (PBSO) is proposed in this work. The minimum evolutionary unit in PBSO is the barracuda pair, which 
contains separate DNA but shared memory.

Roles and behaviors
In PBSO, four different roles builds a stable relationship to explore the global best point. Details of different 
roles are listed below:

• barracuda pair: two barracudas in a pair, the evolutionary process involves the barracuda exchanging infor-
mation with the leader barracuda and acquiring new candidate positions. Then each barracuda pair is given 
two new candidate positions, and the barracuda pair selects the optimal one from the two historical optimal 
positions and the two candidate positions. In PBSO, the barracuda pair is the standard evolutionary unit. 
During the evolutionary process, each barracuda participates in the computation.

• Best barracuda pair: The best two barracudas formed a best barracuda pair.
• Solitary barracuda: One of the best barracudas in history, always following the leader barracuda.
• Leader barracuda: The best barracuda pair and the solitary barracuda. During the evolutionary process, the 

leader barracuda is an aggregation of three barracuda individuals.

In each iteration, every barracuda will try to move toward to the barracuda leader. The candidate position of a 
barracuda is calculated by Eq. (1).

where individuals stands the barracudae pair in the swarm, leader are the best barracuda in the swarm, Gausi(α,β) 
is the Gaussian distribution with a mean α and a standard deviation β.

Deep memory mechanism of the barracuda swarm optimization
To enhance the algorithm’s performance, we employ a deep memory mechanism that mimics the pairing behavior 
of barracudas. This mechanism involves two types of individuals:

(1)
α = (individuals + leaders)/2
β = |individuals − leaders|
d_candi = Gausi(α, β)



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18314  | https://doi.org/10.1038/s41598-023-43748-w

www.nature.com/scientificreports/

• Ordinary individuals: They possess the current position and a single layer of depth memory.
• Leader individuals: They have the current position and a more extensive memory with two layers of depth.

This approach faithfully replicates the social structure of a barracuda school. You can find the detailed specifics 
of this strategy in Eq. (2).

where individuals stands for the normal barracudaes, the leaders stands for the leader of the barracuda swarm. 
Building upon this hierarchical structure, the algorithm simultaneously generates six candidate positions when 
calculating individual barracudae positions using Eq. (1). Subsequently, the algorithm identifies the top two 
positions from this pool for each barracudae individual. Once all barracuda individuals complete their updates, 
the algorithm can then determine the best two positions across the entire evolution. These two positions are 
combined with the best individuals from the previous round, resulting in five standout positions. Finally, the 
algorithm selects the top three positions to designate as the barracudae leader positions for this round.

The process, pseudo‑code and flowchart of barracudas swarm optimization algorithm
The PBSO includes three major process: barracuda pairs evolution, barracuda swarm leader selection and the 
barracuda swarm reallocation. The flowchart of PBSO is shown in Fig. 1. Details of all processes are summarized 
as follows:

• barracuda pairs evolution: Two barracudas entwined in pairs during the evolutionary process. They exchange 
information with the barracuda leader separately and rank themselves according to their fitness after updating 
their position.

• barracuda swarm leader selection: A support barracuda keeps following the leader barracuda pair. The sup-
port barracuda will engage into the evolutionary process, information exchanging, and position selection.

• barracuda swarm reallocation: In each iteration, each barracuda pair will generate six candidate positions 
with the barracuda swarm leader using Eq. (1). Then the top two positions will be selected as the new position 
of the barracuda pair. After all barracuda pairs get new positions, the barracuda swarm leader will update 
their positions with the new swam-best barracuda pair.

• barracuda leader: In each iteration, each barracuda pair will generate six candidate positions with the bar-
racuda swarm leader using Eq. (1). Then the top two positions will be selected as the new position of the 
barracuda pair. After all barracuda pairs get new positions, the barracuda swarm leader will update their 
positions with the new swam-best barracuda pair.

(2)
individuals = (memory1,memory2)
leaders = (leadermemory1, leadermemory2, leadermemory3)
d_candi = Gausi(α, β)

Ini�aliza�on,t=1

Barracuda Swarm Leader Selec�on

Barracuda Pairs Evolu�on

Barracuda Swarm Realloca�on

Begin

t<T

End

No

Yes

t=t+1

Figure 1.  The flow chart of PBSO.
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Results
Experimental methods
To verify the optimization ability of proposed PBSO, the CEC2017 benchmark functions are used in validation 
test. The CEC2017 Benchmark Functions, also known as the IEEE Congress on Evolutionary Computation (CEC) 
2017 Benchmark Functions, are a set of numerical optimization problems used to evaluate and benchmark the 
performance of optimization algorithms, particularly evolutionary algorithms. These benchmark functions were 
introduced as part of the CEC 2017 competition, which aimed to advance the field of optimization by providing 
a standardized set of challenging test problems. CEC2017 benchmark functions contain 4 types test functions:

• Unimodal Functions: fcuntion 1-2;
• Simple Multimodal Functions: fcuntion 3-9;
• Hybrid Functions: fcuntion 10-19;
• Composition Functions: fcuntion 20-29.

In order to validate the ability of PBSO to search in high-dimensional spaces, we used the highest dimensions 
of CEC2017. For the control group, we chose 2 classes of well-known algorithms. The first category is 5 state-of-
the-art natural-inspired methods and the second category is 5 famous particle swarm-based algorithms.

Comparison experiments with state‑of‑the‑art natural‑inspired methods
In this part, 5 state-of-the-art natural-inspired methods, including AVOA,DBO, GTO, GWO, and HHO, are 
tested with the CEC2017 benchmark functions. Experimental results are shown in Tables 1, 2, 3, 4 and 5. The 
mean, standard deviation, best and worst results of the 37 runs are recorded. Also, the Fridman test is imple-
mented. The average rank and experimental parameters are shown in Table 5.

In a total of 29 test functions, PBSO have 9 firsts, 13 seconds, 5 thirds, 1 fourth and 1 fifth. The average rank 
is 2.0345. PBSO performs the best among all tested algorithms and is able to consistently provide high-precision 
solutions to high-dimensional optimization problems. Compared withe other state-of-the-are natural-inspired 
methods, PBSO does not require pre-training of parameters and does not have complex control functions. The 
structure of the population and the adaptive evolutionary strategy provide an excellent local optimal escape 
ability for PBSO. Furthermore, the local organization of the PBSO algorithm enables the population to explore 
information more efficiently in high-dimensional spaces. At the same time, the deep memory mechanism equips 

Table 1.  Simulation results of AVOA, DBO, GTO, GWO, HHO and PBSO, f1 to f5.

Function Data tpye AVOA DBO GTO GWO HHO PBSO

1

Mean 5.264E+03 6.846E+07 3.253E+09 3.051E+10 2.092E+08 1.361E+04

STD 6.224E+03 3.725E+07 1.709E+09 6.571E+09 2.508E+07 2.234E+04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 3 5 6 4 2

2

Mean 1.835E+31 2.131E+139 1.180E+127 1.840E+121 3.903E+73 1.154E+97

STD 1.088E+32 1.296E+140 7.180E+127 8.396E+121 2.374E+74 7.021E+97

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 6 5 4 2 3

3

Mean 1.859E+04 3.140E+05 1.165E+06 1.995E+05 3.299E+04 6.820E+05

STD 6.292E+03 2.447E+04 2.697E+06 2.143E+04 7.427E+03 5.250E+05

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 4 6 3 2 5

4

Mean 2.485E+02 4.353E+02 1.414E+03 2.252E+03 4.665E+02 1.462E+02

STD 4.582E+01 9.396E+01 2.727E+02 7.312E+02 7.282E+01 3.496E+01

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 3 5 6 4 1

5

Mean 7.886E+02 1.091E+03 8.020E+02 5.405E+02 9.202E+02 6.785E+02

STD 7.296E+01 1.581E+02 1.032E+02 6.500E+01 5.499E+01 1.279E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 6 4 1 5 2
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the barracuda swarm with a stronger ability to escape local optima. To demonstrate the convergence capability 
of test algorithms in more detail, convergence diagram (CD) are shown in Figs. 2, 3, 4, 5, 6, 7 and 8.

Comparison experiments with PSO‑based methods
In this part, the standard BBPSO, DLSBBPSO, PBBPSO, TBBPSO, and ETBBPSO are used in control group. 
The mean, standard deviation, best and worst results of the 37 runs are recorded in Tables 6, 7, 8, 9, and 10. In a 
total of 29 test functions, PBSO gets 23 firsts, 2 seconds, 1 thirds, 2 fourths, and 1 sixths, the average rank is 1.52. 
Also, the Fridman test is implemented. The average rank and experimental parameters are shown in Table 10.

Discussion
In both sets of experiments, PBSO consistently outperformed other methods. When compared to nature-inspired 
algorithms, PBSO achieved impressive results with 9 first-place rankings, 13 second-place rankings, 5 third-place 
rankings, 1 fourth-place ranking, and 1 fifth-place ranking. On average, it ranked 2.03, securing the top position 
among all algorithms. However, PBSO’s performance was less satisfactory when applied to single-modal test 
functions. This can be attributed to the fact that PBSO was not originally designed with a specialized evolutionary 
strategy for single-modal functions, which presents an important avenue for future research.

In contrast to PSO-based algorithms, PBSO excelled with 23 first-place rankings, 2 second-place rankings, 1 
third-place ranking, 1 fourth-place ranking, and 1 sixth-place ranking, averaging an impressive 1.52 across all 
rankings and taking the first position among all algorithms. The experimental results suggest that, compared 
to traditional particle swarm algorithms, PBSO offers several advantages, including higher optimization accu-
racy, a simpler structure, and greater ease of understanding. More specifically, the pairwise barracuda structure 

Table 2.  Simulation results of AVOA, DBO, GTO, GWO, HHO and PBSO, f6 to f12.

Function Data tpye AVOA DBO GTO GWO HHO PBSO

6

Mean 4.170E+01 6.806E+01 7.445E+01 2.586E+01 7.577E+01 3.839E+01

STD 4.373E+00 9.030E+00 1.479E+01 4.981E+00 3.419E+00 8.915E+00

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 4 5 1 6 2

7

Mean 2.123E+03 1.521E+03 1.745E+03 1.022E+03 2.730E+03 7.912E+02

STD 1.690E+02 3.473E+02 2.712E+02 1.131E+02 1.220E+02 1.367E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 5 3 4 2 6 1

8

Mean 8.978E+02 1.158E+03 8.368E+02 5.404E+02 1.037E+03 7.330E+02

STD 8.606E+01 1.868E+02 1.680E+02 6.259E+01 7.166E+01 1.527E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 6 3 1 5 2

9

Mean 2.177E+04 3.655E+04 5.218E+04 2.088E+04 2.932E+04 2.887E+04

STD 1.385E+03 1.019E+04 2.116E+04 9.788E+03 3.416E+03 9.101E+03

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 5 6 1 4 3

10

Mean 1.523E+04 1.711E+04 2.656E+04 1.339E+04 1.745E+04 1.641E+04

STD 1.747E+03 2.183E+03 6.264E+03 1.336E+03 1.580E+03 5.769E+03

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 4 6 1 5 3

11

Mean 1.241E+03 1.100E+04 9.393E+04 3.726E+04 1.923E+03 4.984E+02

STD 2.125E+02 1.175E+04 1.453E+05 9.118E+03 2.395E+02 1.800E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 4 6 5 3 1

12

Mean 1.129E+07 4.880E+08 3.921E+08 4.746E+09 2.729E+08 9.332E+06

STD 4.803E+06 2.824E+08 1.840E+08 2.502E+09 6.969E+07 3.408E+06

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 5 4 6 3 1
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significantly enhances interconnections between barracuda individuals, while the deep memory mechanism 
increases their chances of escaping local optima in high-dimensional search spaces. Furthermore, the leadership 
barracuda, equipped with a three-layer memory setting and a focus on balancing search resources, enhances 
the overall search accuracy of the entire barracuda group. In summary, the experiments clearly demonstrate 

Table 3.  Simulation results of AVOA, DBO, GTO, GWO, HHO and PBSO, f13 to f19.

Function Data tpye AVOA DBO GTO GWO HHO PBSO

13

Mean 4.516E+04 6.794E+06 2.840E+04 3.244E+08 3.305E+06 9.243E+03

STD 1.080E+04 8.399E+06 1.145E+04 2.932E+08 1.037E+06 1.123E+04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 5 2 6 4 1

14

Mean 1.967E+05 5.406E+06 7.537E+05 3.318E+06 8.902E+05 2.475E+05

STD 8.369E+04 5.249E+06 4.854E+05 1.865E+06 2.941E+05 1.202E+05

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 6 3 5 4 2

15

Mean 2.298E+04 1.255E+06 6.464E+03 3.429E+07 9.133E+05 8.271E+03

STD 9.763E+03 2.150E+06 3.552E+03 5.476E+07 3.037E+05 1.242E+04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 5 1 6 4 2

16

Mean 4.741E+03 6.090E+03 5.968E+03 3.968E+03 5.462E+03 4.686E+03

STD 7.264E+02 1.021E+03 1.974E+03 5.655E+02 6.696E+02 9.264E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 6 5 1 4 2

17

Mean 4.152E+03 5.112E+03 3.722E+03 2.778E+03 4.439E+03 4.051E+03

STD 7.030E+02 8.359E+02 7.296E+02 4.274E+02 7.151E+02 6.889E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 6 2 1 5 3

18

Mean 3.622E+05 6.755E+06 1.559E+06 3.610E+06 1.940E+06 1.331E+06

STD 1.312E+05 4.544E+06 8.807E+05 4.031E+06 7.811E+05 7.441E+05

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 6 3 5 4 2

19

Mean 1.120E+04 1.784E+06 1.539E+04 8.358E+07 3.840E+06 1.575E+04

STD 8.368E+03 1.703E+06 1.481E+04 8.375E+07 1.451E+06 1.898E+04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 1 4 2 6 5 3
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that PBSO is capable of providing highly precise solutions for high-dimensional single-objective optimization 
problems.

Conclusions
In this study, we introduce a novel metaheuristic approach inspired by nature, known as the Pair Barracuda 
Swarm Optimization algorithm (PBSO). PBSO is designed to emulate the social structure and collective behavior 
observed in barracuda swarms. The Pair Barracuda structure enhances the ability of individual barracudas to 
escape local optima. To enhance the search accuracy in high-dimensional spaces, we have devised an innovative 
iterative strategy. Notably, both the new structure and the iterative strategy have linear complexity, resulting in a 
time complexity of O(n) for PBSO. PBSO is compared to its predecessor, PBSO, and is found to be simpler, more 
user-friendly, and more robust in functional simulations. The experimental results consistently support PBSO’s 
superior performance. To further evaluate PBSO’s capabilities, we conducted high-dimensional simulations using 
the CEC2017 benchmark functions with a test dimension of 100. These experimental results firmly establish 
PBSO as the leading algorithm across all tested scenarios, providing dependable solutions for high-dimensional 
optimization challenges. However, it’s worth noting that PBSO tends to converge towards local optima when 
dealing with combinatorial optimization problems. This issue is attributed to the limited information transfer 
from the barracuda leader and the shallow memory of the barracuda pair. Consequently, future research should 
focus on improving the speed of information transfer from the barracuda leader to the common barracuda 
and enhancing the memory depth of barracudas. Additionally, exploring the application of PBSO in real-world 
scenarios, such as wireless sensor networks, holds promise for future investigations.

Table 4.  Simulation results of AVOA, DBO, GTO, GWO, HHO and PBSO, f20 to f25.

Function Data tpye AVOA DBO GTO GWO HHO PBSO

20

Mean 3.700E+03 3.910E+03 4.468E+03 2.479E+03 3.651E+03 2.938E+03

STD 6.451E+02 5.399E+02 1.196E+03 8.164E+02 4.507E+02 5.002E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 5 6 1 3 2

21

Mean 1.325E+03 1.471E+03 9.730E+02 7.552E+02 1.692E+03 9.391E+02

STD 1.634E+02 1.120E+02 1.926E+02 6.552E+01 1.921E+02 1.214E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 5 3 1 6 2

22

Mean 1.713E+04 1.809E+04 2.724E+04 1.503E+04 2.005E+04 1.832E+04

STD 1.148E+03 2.329E+03 7.070E+03 1.538E+03 1.516E+03 6.461E+03

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 3 6 1 5 4

23

Mean 1.453E+03 1.794E+03 1.494E+03 1.133E+03 2.207E+03 1.218E+03

STD 1.544E+02 1.931E+02 2.519E+02 6.302E+01 1.452E+02 9.126E+01

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 5 4 1 6 2

24

Mean 2.343E+03 2.614E+03 1.996E+03 1.513E+03 3.209E+03 1.730E+03

STD 2.019E+02 2.967E+02 2.445E+02 9.075E+01 3.176E+02 1.642E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 5 3 1 6 2

25

Mean 7.947E+02 1.779E+03 1.775E+03 2.858E+03 1.027E+03 7.646E+02

STD 6.671E+01 2.724E+03 2.549E+02 5.274E+02 7.607E+01 6.212E+01

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 5 4 6 3 1
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Table 5.  Simulation results of AVOA, DBO, GTO, GWO, HHO and PBSO, f26 to f29.

Function Data tpye AVOA DBO GTO GWO HHO PBSO

26

Mean 1.804E+04 1.823E+04 1.559E+04 9.732E+03 2.163E+04 1.283E+04

STD 2.387E+03 3.383E+03 3.643E+03 7.191E+02 1.612E+03 1.541E+03

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 4 5 3 1 6 2

27

Mean 1.266E+03 1.251E+03 1.096E+03 1.146E+03 1.440E+03 5.000E+02

STD 2.335E+02 1.965E+02 1.521E+02 1.168E+02 2.943E+02 3.608E−04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 5 4 2 3 6 1

28

Mean 5.586E+02 1.294E+04 1.900E+03 4.007E+03 7.823E+02 5.000E+02

STD 3.210E+01 7.025E+03 4.383E+02 1.053E+03 4.301E+01 6.068E−04

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 2 6 4 5 3 1

29

Mean 4.859E+03 6.001E+03 6.526E+03 4.320E+03 5.855E+03 4.005E+03

STD 6.071E+02 1.183E+03 1.401E+03 4.799E+02 6.816E+02 7.758E+02

Best 2.622E+00 7.918E+05 6.702E+08 1.511E+10 1.483E+08 1.552E−01

Worst 3.062E+04 1.658E+08 6.911E+09 4.236E+10 2.589E+08 9.351E+04

Rank 3 5 6 2 4 1

Average Rank 2.6552 4.7931 4.069 3.069 4.3793 2.0345

Population Size: 100

Max Iteration times: 10000

Dimension: 100

Search Range: [−100 100]

Independent Runs: 37
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Figure 2.  The CD curve of f1−4 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 3.  The CD curve of f5−8 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 4.  The CD curve of f9−12 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 5.  The CD curve of f13−16 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 6.  The CD curve of f17−20 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 7.  The CD curve of f21−24 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Figure 8.  The CD curve of f25−29 for BBPSO, DLSBBPSO, PBBPSO, TBBPSO, ETBBPSO and PBSO.
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Table 6.  Simulation results of BBPSO, DLSBBPSO, ETBBPSO, PBBPSO, TBBPSO and PBSO, f1 to f6.

Function Data type BBPSO DLSBBPSO ETBBPSO PBBPSO TBBPSO PBSO

1

Mean 1.373E+04 1.240E+04 3.920E+04 1.153E+04 3.420E+04 1.361E+04

STD 1.596E+04 1.518E+04 2.941E+04 1.644E+04 3.368E+04 2.234E+04

Best 6.060E-02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 2 6 1 5 3

2

Mean 6.847E+120 2.275E+123 8.409E+121 1.060E+136 1.196E+127 1.154E+97

STD 4.165E+121 9.873E+123 5.115E+122 6.450E+136 7.277E+127 7.021E+97

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 4 3 6 5 1

3

Mean 3.313E+06 3.755E+06 2.583E+06 3.356E+06 1.852E+06 6.820E+05

STD 3.245E+06 2.255E+06 1.911E+06 2.802E+06 9.388E+05 5.250E+05

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 6 3 5 2 1

4

Mean 1.677E+02 1.628E+02 1.680E+02 1.603E+02 1.697E+02 1.462E+02

STD 6.518E+01 4.412E+01 5.554E+01 4.725E+01 5.709E+01 3.496E+01

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 3 5 2 6 1

5

Mean 9.114E+02 8.541E+02 9.123E+02 9.028E+02 9.573E+02 6.785E+02

STD 1.393E+02 1.704E+02 1.773E+02 1.660E+02 1.589E+02 1.279E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 2 5 3 6 1

6

Mean 4.099E+01 4.166E+01 4.143E+01 3.981E+01 3.569E+01 3.839E+01

STD 8.319E+00 8.126E+00 9.194E+00 7.800E+00 6.829E+00 8.915E+00

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 6 5 3 1 2
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Table 7.  Simulation results of BBPSO, DLSBBPSO, ETBBPSO, PBBPSO, TBBPSO and PBSO, f7 to f13.

Function Data type BBPSO DLSBBPSO ETBBPSO PBBPSO TBBPSO PBSO

7

Mean 9.389E+02 8.513E+02 8.577E+02 8.988E+02 9.100E+02 7.912E+02

STD 1.910E+02 1.493E+02 1.266E+02 1.514E+02 1.313E+02 1.367E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 6 2 3 4 5 1

8

Mean 8.538E+02 7.789E+02 9.109E+02 9.793E+02 9.552E+02 7.330E+02

STD 1.678E+02 1.646E+02 1.674E+02 2.023E+02 1.655E+02 1.527E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 2 4 6 5 1

9

Mean 3.614E+04 3.030E+04 3.635E+04 4.016E+04 3.904E+04 2.887E+04

STD 6.494E+03 1.476E+04 1.451E+04 1.223E+04 1.155E+04 9.101E+03

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 2 4 6 5 1

10

Mean 2.349E+04 3.019E+04 2.166E+04 3.136E+04 2.467E+04 1.641E+04

STD 9.064E+03 5.276E+03 8.357E+03 4.805E+03 5.289E+03 5.769E+03

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 5 2 6 4 1

11

Mean 1.622E+03 6.155E+03 4.106E+03 6.668E+03 4.737E+03 4.984E+02

STD 3.266E+03 7.188E+03 3.390E+03 7.626E+03 5.101E+03 1.800E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 5 3 6 4 1

12

Mean 5.514E+07 6.026E+07 6.148E+07 6.217E+07 4.700E+07 9.332E+06

STD 2.463E+07 3.261E+07 2.723E+07 2.755E+07 2.981E+07 3.408E+06

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 4 5 6 2 1

13

Mean 1.119E+04 1.124E+04 1.062E+04 7.701E+03 1.501E+04 9.243E+03

STD 1.324E+04 1.351E+04 1.586E+04 9.208E+03 1.881E+04 1.123E+04

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 5 3 1 6 2
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Table 8.  Simulation results of BBPSO, DLSBBPSO, ETBBPSO, PBBPSO, TBBPSO and PBSO, f14 to f20.

Function Data type BBPSO DLSBBPSO ETBBPSO PBBPSO TBBPSO PBSO

14

Mean 1.180E+06 1.117E+06 1.199E+06 1.236E+06 1.111E+06 2.475E+05

STD 7.376E+05 5.938E+05 6.039E+05 8.928E+05 6.803E+05 1.202E+05

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 3 5 6 2 1

15

Mean 1.002E+04 5.199E+03 4.683E+03 6.903E+03 8.981E+03 8.271E+03

STD 1.381E+04 6.831E+03 6.419E+03 6.515E+03 1.140E+04 1.242E+04

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 6 2 1 3 5 4

16

Mean 5.538E+03 9.788E+03 6.447E+03 9.839E+03 7.192E+03 4.686E+03

STD 1.689E+03 2.347E+03 2.338E+03 2.297E+03 2.475E+03 9.264E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 5 3 6 4 1

17

Mean 4.682E+03 5.703E+03 4.735E+03 6.240E+03 4.964E+03 4.051E+03

STD 8.287E+02 1.625E+03 1.096E+03 1.598E+03 1.060E+03 6.889E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 5 3 6 4 1

18

Mean 5.431E+06 7.872E+06 6.770E+06 6.622E+06 5.146E+06 1.331E+06

STD 4.000E+06 5.038E+06 4.099E+06 4.992E+06 2.571E+06 7.441E+05

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 6 5 4 2 1

19

Mean 1.312E+04 7.559E+03 1.076E+04 9.473E+03 8.860E+03 1.575E+04

STD 1.757E+04 1.150E+04 1.516E+04 1.190E+04 9.107E+03 1.898E+04

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 5 1 4 3 2 6

20

Mean 3.387E+03 4.615E+03 3.894E+03 5.091E+03 3.779E+03 2.938E+03

STD 7.836E+02 1.434E+03 1.388E+03 1.312E+03 1.114E+03 5.002E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 5 4 6 3 1
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Table 9.  Simulation results of BBPSO, DLSBBPSO, ETBBPSO, PBBPSO, TBBPSO and PBSO, f21 to f27.

Function Data type BBPSO DLSBBPSO ETBBPSO PBBPSO TBBPSO PBSO

21

Mean 1.100E+03 1.053E+03 1.114E+03 1.137E+03 1.101E+03 9.391E+02

STD 1.548E+02 1.363E+02 1.593E+02 1.705E+02 1.750E+02 1.214E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 2 5 6 4 1

22

Mean 2.698E+04 3.144E+04 2.599E+04 3.253E+04 2.575E+04 1.832E+04

STD 8.068E+03 4.658E+03 8.305E+03 3.969E+03 6.335E+03 6.461E+03

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 5 3 6 2 1

23

Mean 1.275E+03 1.224E+03 1.286E+03 1.283E+03 1.308E+03 1.218E+03

STD 1.282E+02 1.031E+02 1.200E+02 1.172E+02 1.376E+02 9.126E+01

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 2 5 4 6 1

24

Mean 1.883E+03 1.795E+03 1.876E+03 1.929E+03 1.904E+03 1.730E+03

STD 1.911E+02 2.116E+02 1.766E+02 2.451E+02 1.565E+02 1.642E+02

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 4 2 3 6 5 1

25

Mean 7.627E+02 7.649E+02 7.713E+02 7.579E+02 7.438E+02 7.646E+02

STD 6.553E+01 6.258E+01 5.340E+01 5.554E+01 7.415E+01 6.212E+01

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 5 6 2 1 4

26

Mean 1.404E+04 1.331E+04 1.458E+04 1.447E+04 1.503E+04 1.283E+04

STD 1.429E+03 1.859E+03 1.929E+03 1.750E+03 1.771E+03 1.541E+03

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 3 2 5 4 6 1

27

Mean 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02

STD 5.429E−04 4.155E−04 4.961E−04 4.310E−04 3.557E−04 3.608E−04

Best 6.060E−02 2.048E+00 6.230E+02 2.932E+01 2.250E+02 1.552E−01

Worst 5.915E+04 5.297E+04 1.256E+05 5.966E+04 1.359E+05 9.351E+04

Rank 2 5 3 6 4 1
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