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Nonnegative/Binary matrix 
factorization for image 
classification using quantum 
annealing
Hinako Asaoka 1* & Kazue Kudo 1,2

Classical computing has borne witness to the development of machine learning. The integration 
of quantum technology into this mix will lead to unimaginable benefits and be regarded as a giant 
leap forward in mankind’s ability to compute. Demonstrating the benefits of this integration now 
becomes essential. With the advance of quantum computing, several machine-learning techniques 
have been proposed that use quantum annealing. In this study, we implement a matrix factorization 
method using quantum annealing for image classification and compare the performance with 
traditional machine-learning methods. Nonnegative/binary matrix factorization (NBMF) was 
originally introduced as a generative model, and we propose a multiclass classification model as an 
application. We extract the features of handwritten digit images using NBMF and apply them to solve 
the classification problem. Our findings show that when the amount of data, features, and epochs 
is small, the accuracy of models trained by NBMF is superior to classical machine-learning methods, 
such as neural networks. Moreover, we found that training models using a quantum annealing solver 
significantly reduces computation time. Under certain conditions, there is a benefit to using quantum 
annealing technology with machine learning.

Quantum computing progresses each year, expanding the scale of problems that quantum computers can solve 
and improving the accuracy of their solutions. The next stage of development will be to verify the practicality 
of these advances. To ensure the future spread of quantum technology, it is critical to demonstrate examples in 
which quantum computers outperform conventional classical computers.

Here, we focus on a machine-learning method that uses a quantum annealing machine. Numerous attempts 
have been made to apply quantum annealing technology to machine learning, as confirmed by several  studies1–8. 
These studies demonstrate that quantum annealing effectively reduces data size and learning time, indicating its 
potential for solving problems that are too challenging for classical machine-learning computation.

Our study concentrates on a method called nonnegative/binary matrix factorization (NBMF). Initially pro-
posed as a generative model trained using a quantum annealing machine, NBMF is an algorithm that extracts 
features from data and optimizes the combination of features required to reproduce the original data. Previous 
studies have solved the task of decomposing facial images into feature  matrices9,10. They demonstrated that opti-
mization using D-Wave11–13, a quantum-annealing machine, requires less time than classical optimization solvers. 
However, as a machine-learning method, NBMF is less accurate than its classical counterpart, nonnegative matrix 
factorization (NMF)14. Furthermore, no comparisons were made with other machine-learning methods. Clas-
sical machine-learning algorithms, such as deep learning, have already been used because of their  precision15. 
To recommend the use of NBMF, it is essential to demonstrate the superiority over classical machine-learning 
algorithms. Previous studies demonstrated data reconstruction using features obtained by NBMF. However, these 
previous studies did not demonstrate the effectiveness of the features obtained beyond data reconstruction nor 
did they evaluate the performance of the method for other machine-learning tasks.

In this study, we propose NBMF as a multiclass image classification model. Image classification is one of the 
most prominent problems in machine learning with practical applications such as image diagnosis and good 
classification. We executed the multiclass image classification method using NBMF by decomposing the matrix 
containing the image data and its class information. Our results demonstrate the application of quantum anneal-
ing to image classification tasks. Additionally, we solved classification tasks under the same conditions as classical 
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machine-learning methods, such as neural networks, and compared the results. We identify the aspects of image 
classification by NBMF that are superior or inferior to classical methods and confirm the advantage of quantum 
technology over conventional machine-learning methods.

Models and algorithms
NBMF9 extracts features by decomposing data into basis and coefficient matrices. The dataset was converted 
into a positive matrix to prepare the input for the NBMF method. If the dataset contains n-dimensional m data, 
then the input is an n×m matrix V. The input matrix is decomposed into a base matrix W of n× k , represent-
ing the dataset features, and a coefficient matrix H of k ×m , representing the combination of features selected 
to reconstruct the original matrix. Then,

where W and H are positive and binary matrices, respectively. The column number k of W corresponds to the 
number of features extracted from the data and can be set to any value. To minimize the difference between the 
left and right sides of Eq. (1), W and H are updated alternately as

where � · �F denotes the Frobenius norm. The components of W and H are initially given randomly. The hyper-
parameter α is a positive real value that prevents overfitting and is set to α = 1.0× 10−4.

In previous studies, the Projected Gradient Method (PGM) was used to update Eq. (2)16. The loss function 
that updates Eq. (2) is defined as

where xT and vT are the row vectors of W and V, respectively. The gradient of Eq. (4) is expressed as

The PGM minimizes the loss functions in Eq. (4) by updating x:

where γt is the learning rate and

where xmax is the upper bound and is set to xmax = 1 . Eq. (7) is a projection that keeps the components of x 
nonnegative.

However, because H is a binary matrix, Eq. (3) can be regarded as a combinatorial optimization problem 
that can be minimized by using an annealing method. To solve Eq. (3) using a D-Wave machine, a quantum 
annealing computer, we formulated the loss function as a quadratic unconstrained binary optimization model:

where q and v are the column vectors of H and V, respectively.
After the alternate updating method converges, we obtain W and H which minimize the difference between 

the left and right sides of Eq. (1). W consists of representative features extracted from the input data, and H 
represents the combination of features in W using binary values to reconstruct V. Therefore, V can be approxi-
mated as the product of W and H.

Previous studies used NBMF to extract features from facial  images9. When the number of annealing steps 
is small, the computation time is shorter than a classical combinatorial optimization solver. However, using the 
D-Wave machine is disadvantageous in that the computing time increases linearly with the number of annealings, 
whereas the classical solver does not significantly change the computing time. The results were compared with 
 NMF14. Unlike NBMF, matrix H in NMF is positive and not binary. While the matrix H produced by NBMF was 
sparser than NMF, the difference between V and WH of NBMF was approximately 2.17 times larger than NMF. 
Although NBMF can have a shorter data processing time than the classical method, it is inferior to NMF as a 
machine-learning method in accuracy. Moreover, because previous studies did not demonstrate tasks beyond 
data reconstruction, the usefulness of NBMF as a machine-learning model is uncertain.

In this study, we propose the application of NBMF to a multiclass classification model. Inspired by the struc-
ture of a fully connected neural network (FCNN), we define an image classification model using NBMF. In an 
FCNN, image data are fed into the network as input, as shown in Fig. 1, and the predicted classes are obtained 
as the output of the network through the hidden layers.

(1)V ≈ WH ,

(2)W := arg min
X∈R+n×k

� V − XH �F +α � X �F ,

(3)H := arg min
X∈{0,1}k×m

� V −WX �F ,

(4)fW (x) =� v −HTx �2 +α � x �2,

(5)∇fW = −H(v −HTx)+ αx.

(6)xt+1 = P
[

xt − γt∇fW (xt)
]

,

(7)P[xi] =

{

0 (xi ≤ 0),
xi (0 < xi < xmax),
xmax (xmax ≤ xi),

(8)fH (q) =
∑

i
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r
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To perform fully connected network learning using NBMF, we interpret the structure shown in Fig. 1 as 
a single-matrix decomposition. When the input and output layers of the FCNN are combined into one input 
layer, the network becomes a two-layer network with the same structure as NBMF. As the input to the training 
network by NBMF, we used a matrix consisting of image data and the corresponding class information. Class 
information is represented by a one-hot vector multiplied by an arbitrary real number g. The image data and class 
information vectors are combined row-wise and eventually transformed into an input matrix V. We use NBMF to 
decompose V to obtain the basis matrix W and the coefficient matrix H, as shown in Fig. 2. The column vectors 
in H correspond to the nodes in the hidden layer of the FCNN network, and the components of W correspond 
to the weights of the edges. The number of feature dimensions k in the NBMF corresponds to the number of 
nodes in the hidden layer of the FCNN.

To obtain H, we minimize Eq. (8) by using an annealing solver, as in a previous study. However, to obtain 
W by minimizing Eq. (4), we propose using the projected Root Mean Square Propagation (RMSProp) method 
instead of the PGM used in a previous study. RMSProp is a gradient descent method that adjusts the learning 
and decay rates to help the solution escape local  minima17. RMSProp updates the vector h , whose components 
are denoted by hi as

where β is the decay rate, g = ∇fW , and vector x is

(9)ht+1
i = βhti + (1− β)g2i ,

Figure 1.  An overview of a fully-connected neural network.

Figure 2.  An overview of training by NBMF.
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where η is the learning rate, and ǫ is a small value that prevents computational errors. After updating x using 
Eq. (10), we apply the projections described in Eq. (7), to ensure that the solution does not exceed the bounds. 
We propose this method as a projected RMSProp.

In Fig. 3, we demonstrated the information contained in W. Because the row vectors of W correspond to 
those of V, W consists of W1 corresponding to the image data information, and W2 corresponding to the class 
information. We plotted four column vectors selected from W trained with MNIST handwritten digit images 
under the conditions m = 300 and k = 40 , as shown in Fig. 3. The images in Fig. 3 show the column vectors 
of W1 . The blue histograms show the frequencies at which the column vectors were selected to reconstruct the 
training data images with each label. The orange bar graphs show the component values of the corresponding 
column vectors of W2 . For example, the image in Fig. 3a resembles Number 0. From the histogram next to the 
image, we understand that the image is often used to reconstruct the training data labeled as 0. In the bar graph 
on the right, the corresponding column vector of W2 has the largest component value at an index of 0. This 
indicates that the column vector corresponding to the image has a feature of Number 0. Similarly, the image 
in Fig. 3b has a label of 9. However, the image in Fig. 3c appears to have curved features. From the histogram 
and bar graph next to the image, it appears that the image is often used to represent labels 2 and 3. This result is 
consistent with the fact that both numbers have a curve, which explains why the column vector of W1 was used 
in the reconstruction of images with labels 2 and 3. The image in Fig. 3d has the shape of a straight line, and the 
corresponding histogram shows that the image is mainly used to express label 1 and is also frequently used to 
express label 6. Because Number 6 has a straight-line part, the result is reasonable.

In our multiclass classification model using NBMF, we used the trained matrices W1 and W2 to classify the 
test data in the workflow shown in Fig. 4.

First, we decompose the test data matrix Vtest to obtain Htest by using W1 . Here, M represents the amount of 
test data, which corresponds to the number of column vectors of Vtest . We use Eq. (3) for decomposition. Each 
column vector of Htest represents the features selected from the trained W1 to approximate the corresponding 

(10)xt+1 = xt − η
1

√

ht + ǫ
∇fW ,

Figure 3.  The figure shows four sets of images, (a), (b), (c), and (d), corresponding to column vectors selected 
from W. Each set contains an image, a histogram, and a bar graph. The image represents a column vector of W1 , 
and the histogram shows how often the column vector was selected to reconstruct the training data images with 
each label. The orange bar graph plots the component values of the corresponding column vector of W2.

Figure 4.  An overview of testing by NBMF.
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column vector of Vtest . Second, we multiply W2 by Htest to obtain Utest , which expresses the prediction of the class 
vector corresponding to each column vector in Vtest . Finally, we applied the softmax function to the components 
of Utest and considered the index with the largest component value in each column vector to be the predicted class.

Results
High performance for a small number of training data.
We varied the amount of training data m within an arbitrary range and compared the performance of the three 
machine-learning methods, NBMF, FCNN, and NMF. All methods were tested with only the number of train-
ing data varying. Features were fixed at k = 40 , and epochs were limited to ten so that experimental conditions 
were consistent. In Fig. 5a, we plot the average accuracy rate as a function of the number of training data and 
compare the results of the three methods. Our findings reveal that NBMF achieves the highest level of accuracy 
of classification. Although FCNN and NMF tend to increase in accuracy as the amount of data increases, NBMF 
can attain a high degree of accuracy even with a small amount of data. In Fig. 5b, NBMF yields the smallest 
cross-entropy loss compared with the other methods, even when the amount of training data is small. While the 
loss of NMF is unstable, NBMF achieves learning stability.

High performance for small feature dimensions.
We varied the number of features, k within an arbitrary range, and compared the classification performance of 
the model at an early stage. The number of training data was fixed at m = 150 . As in the previous experiment, 
we compared the three machine-learning methods under common conditions. In Fig. 6a, one significant differ-
ence between NBMF and other methods was that NBMF’s results were stable even when the number of features 
was small. While the accuracy of FCNN increases as the number of features increases, and the accuracy of NMF 
decreases as the number of features increases, NBMF has a stable accuracy rate for the number of features larger 
than approximately 40. Moreover, in Fig. 6b, NBMF exhibits the smallest and most stable cross-entropy loss 
among each of the three methods.

Speeding up using quantum annealing.
We performed NBMF using three different optimization solvers. However, as shown in Figs. 5 and 6, the clas-
sification performance did not depend significantly on the solvers. From another perspective, we compare the 

Figure 5.  The average test accuracy (a) and cross-entropy loss (b) of classification as functions of the amount 
of training data for each method. Averages are taken over three experiments. Training methods are NBMF with 
D-Wave (blue solid), NBMF with Fixstars Amplify annealing engine (AE) (blue dashed), NBMF with simulated 
annealing (SA) (blue dotted), FCNN (red), and NMF (purple). Parameters other than the amount of training 
data are common in all results.

Figure 6.  The average test accuracy (a) and cross-entropy loss (b) of classification as functions of the number of 
feature dimensions for each method. Averages are taken over three experiments. Training methods are NBMF 
with D-Wave (blue solid), NBMF with Fixstars Amplify AE (blue dashed), NBMF with SA (blue dotted), FCNN 
(red), and NMF (purple). Parameters other than the number of feature dimensions are common in all results.
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computation time of each solver in Table 1. The total execution time is the shortest for the SA solver because the 
SA runs locally and does not include communication or queuing times. However, when comparing the annealing 
times, the D-Wave machine is the fastest, taking only 1.0 ms. If the communication and queuing times are not 
considered, the quantum annealing machine exhibits the best optimization speed.

Discussion
We performed image classification using machine learning with NBMF and scored a higher classification accu-
racy and faster loss reduction than other methods when the amount of training data and number of features 
were small. However, we found that FCNN outperformed NBMF when trained until there was sufficient conver-
gence. Figure 7 illustrates the rate of accuracy and cross-entropy loss as functions of the number of epochs for 
the different learning methods. The number of training images and features were fixed at m = 300 and k = 40 , 
respectively. The results of the NBMF showed that the accuracy rate and loss value were stable from the early 
stage of approximately ten epochs and did not change significantly afterward. In contrast, the accuracy of FCNN 
increased as the number of epochs increased, and the results were stable at 100 or more epochs, with the clas-
sification accuracy after convergence being higher than NBMF.

The accuracy of NBMF increases rapidly and at an earlier stage than neural networks, although the per-
formance of NBMF is relatively lower than neural networks at a later stage. In conventional machine-learning 
methods, the accuracy rate usually increases as the amount of training data, features, and epochs increase, as 
shown in Figs. 5a, 6a, and 7a. However, for NBMF, the accuracy rate and error remained stable and showed no 
significant change, even when the numbers increased. This tendency is because of the difference in the learning 
approach between NBMF and the other methods. NBMF utilizes a binary combinatorial optimization procedure 
in the learning process. Previous studies have shown that retaining only essential information using quantum 
optimization can lead to a higher level of accuracy even when the amount of data is  reduced18–20.

We aimed to understand the reason for the poor classification performance of NMF. Figures 5b, 6b, and 7b 
illustrate that the cross-entropy loss of NMF increases instead of decreasing as the amount of training data, fea-
tures, and epochs increases, in contrast to NBMF and FCNN. This trend suggests that NMF may be overfitting 
the training data and may not generalize well to new data. In Fig. 8, we see that the root mean squared error 
(RMSE) during training is the lowest among the three methods, indicating that NMF can reproduce the training 
data well. The poor classification accuracy of NMF suggests that it was too focused on reproducing the training 
data, causing overfitting.

Table 1.  Comparison of computing time (ms) for three solvers. We perform NBMF on a matrix with 10 or 
100 columns and measure the average computing time per column. Total execution time is measured from 
when a problem is handed to solvers until when a solution is returned, including communication and queuing 
time when using cloud services. To evaluate pure calculation time, we also obtain annealing time when using 
a D-Wave machine and the Fixstars Amplify AE. Annealing time is included in the total execution time and 
represents the time that solvers spent on annealing only.

Solver Usage Type

Average time (ms) per vector

m = 10 m = 100

D-Wave Cloud
Annealing time 1.0 1.0

Total execution time 12.0× 10
3

8.6× 10
3

AE Cloud
Annealing time 9.9× 10

3
9.9× 10

3

Total execution time 11.3× 10
3

10.8× 10
3

SA Local Total execution time 0.3× 10
3

4.2× 10
3

Figure 7.  Average test accuracy (a) and cross-entropy loss (b) of classification as functions of number of 
training epochs for each method. Averages are taken over three experiments. The training methods are NBMF 
with D-Wave (blue solid), NBMF with Fixstars Amplify AE (blue dashed), NBMF with SA (blue dotted), FCNN 
(red), and NMF (purple). Parameters other than the number of training epochs are common in all results.
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Table 1 shows the calculation time for optimizing each column in the coefficient matrix H using the different 
optimization solvers. We observed that using a D-Wave machine—a quantum annealing computer— significantly 
reduced the annealing time. Reduction in the annealing time will eventually lead to faster machine learning. 
The three solvers showed no significant difference in learning performance. However, the D-Wave machine was 
significantly faster in terms of annealing time. We demonstrated the advantage of using a real quantum anneal-
ing machine rather than a simulator, which suggests that using a real quantum annealing machine can provide 
faster computation.

In this study, we propose applying NBMF, initially presented as a generative model, to a classification model. 
Previous studies have shown the advantages of using NBMF, such as data compression and high-speed computa-
tion, but its usefulness as an applicable machine-learning technique has not been demonstrated.

We solved an image classification task and compared its performance with classical machine-learning meth-
ods. Our results demonstrate that learning as a combinatorial optimization problem can achieve higher accuracy 
than conventional methods at an early stage, even with a small amount of data and few features. We have also 
shown that a quantum annealing machine can significantly accelerate computational speed.

Improving the versatility of the classification model is a future direction of this study. While classical machine-
learning methods have achieved close to 100% accuracy in the MNIST digit classification task, deep learning for 
image recognition is now addressing more challenging and realistic problems, such as automatic driving and 
medical image  diagnosis21–23. Our classification method achieved a maximum accuracy of approximately 70% 
for MNIST, which is insufficient for solving such problems. One reason for this limited performance is overfit-
ting, as NBMF currently focuses on accurately reproducing the training data. We aim to improve the algorithm 
to learn more versatile and flexible models that can capture the features of more complex images.

Note the limitations imposed on our experiments are based on the specifications of the quantum computer. 
Owing to the limited number of qubits available in the current D-Wavemachine, we imposed some limitations 
on the experiment, such as using a simple grayscale dataset and a limited number of feature dimensions. Because 
only Noisy Intermediate-Scale Quantum(NISQ) devices are currently available as practical quantum-computing 
 platforms24, these limitations are unavoidable. Larger-scale problems will be solved more effectively in the post-
NISQ era. To examine the actual performance of machine learning using quantum computers, it is advisable to 
revisit our experiments after the NISQ era, aligning the experimental conditions with those employed in major 
deep learning experiments.

Another issue is the communication time with a quantum computer. We highlighted the computing time as 
an advantage of using a quantum annealing machine for learning. However, communication latency remains 
a concern. In practice, D-Wave takes the longest time to return a solution among all solvers. Although this is 
an unavoidable issue with cloud-based machines, the communication time can be shortened depending on the 
location and network conditions.

We observed that NBMF outperformed classical methods in multiclass classification under certain condi-
tions, for example, when there is a small amount of data or there is a short training time. These results reveal that 
machine learning by quantum annealing has advantages over classical machine learning methods. We expect that 
the findings of this study will serve as evidence when practical machine-learning applications using quantum 
annealing come under consideration.

Methods
Classical machine-learning algorithms for comparison
To evaluate the performance of NBMF, we compared it with two classical machine-learning methods (FCNN 
and NMF) by solving the same classification task. For a fair comparison, we used the same sets of training and 
test data, and the same value for the feature dimension k.

FCNN is a network composed of neurons that connect before and after each layer, as shown in Fig. 1. The 
network learns the features by propagating information from the input layer to the output layer. In the FCNN 

Figure 8.  Average RMSE of training data as functions of the number of training epochs for each method. 
Averages are taken over three experiments. The training methods are NBMF with D-Wave (blue solid), NBMF 
with Fixstars Amplify AE (blue dashed), FCNN (red), and NMF (purple). Parameters other than the number of 
training epochs are common in all results.
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experiment, image data were used as inputs. During the network learning procedure, the input data are trans-
formed into a hidden layer, which is then activated using the ReLU function. The FCNN performs a random 20% 
dropout to prevent overfitting, and the hidden layer is finally converted to the output layer, which is activated by 
the softmax function, similar to the NBMF. The objective function is a multiclass cross-entropy loss of the output 
layer and the true class information. We aimed to obtain a model with high classification accuracy by minimizing 
the objective function by updating the parameters, and we used  Adam25 as a parameter optimization algorithm. 
By minimizing the difference between the output of FCNN network and the ground-truth class information, the 
network can effectively acquire discriminative features that are conducive to image classification.

NMF performs matrix  factorization26,27 similar to NBMF, but ensures that all components are nonnegative. 
However, unlike NBMF, NMF does not impose binary constraints on the coefficient matrix. In other words, the 
components of matrix H are positive real values rather than binary values. The objective function to be minimized 
for both methods is the difference between matrices V and WH. While NBMF uses combinatorial optimization 
for updating, NMF uses a multiplicative method and incorporates the coordinate descent method, which only 
computes the locations that significantly affect the components of the updated matrix.

Experimental settings for evaluating the performance of multiclass classification.
To evaluate the performance of NBMF, we trained a classification model using common image data and com-
pared it with conventional classical machine-learning algorithms. We used the MNIST dataset, which comprises 
grayscale handwritten digit images. We chose the MNIST dataset for this experiment because of the constraints 
imposed by the limited number of qubits in the D-Wave machine. If we use RGB images, the data volume 
would surpass that of grayscale images, resulting in a highly complicated classification task. This would require 
a substantial increase in feature dimensions to achieve precise classification results. Nonetheless, the quantum 
annealing solver in the D-Wave 2000Q machine permitted a maximum of k = 64 feature dimensions. However, 
stability issues arise when k exceeds 40. Thus, we plan to work on RGB datasets as an advanced task in the future. 
The MNIST dataset contains 10 classes and 60,000 images. For our experiment, we randomly selected the training 
and test image sets from this dataset. The number of test data images was fixed at M = 500 , and the number of 
training data images, m, was in an arbitrary range. The image size of MNIST is 28× 28 , and we concatenate the 
10-dimensional class information with the image to create an input matrix V of size 794×m . The coefficient of 
the one-hot vector is fixed at g = 9 . The parameters in the projected RMSProp are fixed at β = 0.99 , η = 0.01 , 
and ǫ = 1.0× 10−7.

In NBMF, the number of training epochs corresponds to the sequential updates of the matrices and is fixed 
at ten. As NBMF converges quickly, we set a small number of epochs to shorten the learning  time28. For com-
parison, the number of epochs for the other machine-learning methods was fixed at ten. However, in classical 
machine learning, the number of epochs is usually set as large as possible to achieve full convergence. Therefore, 
the learning performance of classical machine-learning methods may not be fully demonstrated under only ten 
epochs. In Fig. 7, we compare the learning performances of classical machine-learning methods and NBMF 
when a large number of epochs are used.

We performed three sets of ten epochs for each model. Each set begins training with random initial compo-
nent values. We recorded the highest accuracy for each set, and plotted the average of the three sets as the clas-
sification performance of the model, as shown in Figs. 5a, 6a, and 7a. Additionally, we calculated the multiclass 
cross-entropy loss at the final epoch of each set and plotted the average loss of the three sets as the classification 
performance of the model, as shown in Figs. 5b and 6b. The average losses of the three sets are plotted in Fig. 7b.

Annealing methods for comparison.
The coefficient matrix H in NBMF is optimized using an annealing solver for combinatorial optimization. During 
training, we used three different solvers.

The first solver, the D-Wave machine (DW_2000Q_VFYC_6), is a quantum annealing machine equipped with 
qubits that uses quantum fluctuations for optimization. Our method used a D-Wave solver to update the variables 
in Eq.  (8). To minimize the loss function using quantum annealing via the D-Wave solver, the variables in vector 
q are embedded into the qubits in the machine. It is necessary to embed these variables in a complete graph of 
qubits. An automated function implemented in the D-Wave software development kit was used for embedding. 
The parameters in Eq.  (8) are the coefficients of variables qi representing the strength of the local magnetic 
field, and the coefficients of variables qiqj represent the interaction parameters between the two variables. The 
D-Wave solver received these parameters in a cloud environment and performed quantum annealing. We set 
the number of readouts of the annealing results to 50 because there was no improvement in the performance 
for larger readouts. The solution from the D-Wave solver is a binary combination of the components in vector 
q , which corresponds to the lowest energy of the objective function among the 50 annealings.

The second solver, Fixstars Amplify Annealing Engine (AE), is an annealing machine that performs SA in par-
allel with GPU architecture. Because AE is also a cloud-based solver, the procedure to minimize Eq.  (8) obtained 
by SA using the AE solver was mostly the same as that obtained by quantum annealing using the D-Wave solver. 
The difference between simulated and quantum annealing is that the former uses thermal fluctuations instead 
of quantum fluctuations. Thermal fluctuation is controlled by a parameter corresponding to the temperature. 
In our experiment, the solver automatically determined the annealing schedule and temperature values, and 
the duration for reading out annealing results was set to 1000 ms. The AE solver can handle a larger number of 
variables simultaneously than the D-Wave solver.

Finally, for the third solver, SA, we used a package called  PyQubo29,30. The number of reading out annealing 
results was set to 50, which was the same as in the D-Wave experiment. The annealing schedule and temperature 
were adjusted automatically by using the SA solver.
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During the test classification of NBMF, we used only SA because communication and queuing times can 
occur when using the D-Wave machine or AE to optimize the 500 test data. Therefore, we used only the local 
environment during testing to avoid waiting times.

Experimental settings for measuring optimization time.
The computing speeds of the solvers were compared by minimizing the difference between the left and right sides 
of Eq. (1). We generated V from the product of the randomly assigned W and H matrices, where the dimensions 
of W and H were fixed at n = 794 and k = 40 , respectively, similar to the MNIST classification experiment. The 
number of column vectors in V and H was fixed at ten and 100, respectively. We optimized H by minimizing 
Eq. (8) and measured the average time required to optimize each column. When using the D-Wave machine and 
AE, communication and queuing with cloud-based machines occurred. We measured both the total execution 
time of the program and the annealing time, which is the original computing time for the cloud-based anneal-
ing solvers.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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