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Effects of MRI scanner 
manufacturers in classification 
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Deep learning has become a leading subset of machine learning and has been successfully employed 
in diverse areas, ranging from natural language processing to medical image analysis. In medical 
imaging, researchers have progressively turned towards multi-center neuroimaging studies to address 
complex questions in neuroscience, leveraging larger sample sizes and aiming to enhance the accuracy 
of deep learning models. However, variations in image pixel/voxel characteristics can arise between 
centers due to factors including differences in magnetic resonance imaging scanners. Such variations 
create challenges, particularly inconsistent performance in machine learning-based approaches, 
often referred to as domain shift, where the trained models fail to achieve satisfactory or improved 
results when confronted with dissimilar test data. This study analyzes the performance of multiple 
disease classification tasks using multi-center MRI data obtained from three widely used scanner 
manufacturers (GE, Philips, and Siemens) across several deep learning-based networks. Furthermore, 
we investigate the efficacy of mitigating scanner vendor effects using ComBat-based harmonization 
techniques when applied to multi-center datasets of 3D structural MR images. Our experimental 
results reveal a substantial decline in classification performance when models trained on one type 
of scanner manufacturer are tested with data from different manufacturers. Moreover, despite 
applying ComBat-based harmonization, the harmonized images do not demonstrate any noticeable 
performance enhancement for disease classification tasks.

Machine learning (ML) is a mathematical method based on statistics by which a computer model is created 
to perform specific tasks by learning from existing data and has been applied in clinical applications for many 
years. A prominent ML branch known as deep learning (DL) builds models using layers of interconnected 
neurons to learn critical insights from existing data and to predict the outcome for new data. Unlike traditional 
ML methods, DL networks automate feature extraction and selection, making them user-friendly and more 
prevalent than classical ML techniques. Recent research has demonstrated that DL, particularly convolutional 
neural networks (CNNs), are an effective strategy for classifying, segmenting, and detecting objects of interest 
in medical images1–4.

Magnetic resonance imaging (MRI) is a versatile, non-invasive imaging modality offering exceptional resolu-
tion and contrast for analyzing soft tissue. MR images have useful therapeutic applications, including diagnostics, 
due to the varied appearance of organs, tissues, and pathology. Training a DL model requires sufficient training 
data (e.g., MR images, clinical scores) and/or their corresponding ground truth. The network uses the training 
data to adjust its internal parameters (up to many millions), allowing it to map from the input to the required 
ground truth. The robustness of the model is highly dependent on the inclusion of a large number of relevant 
samples in the training phase. During deployment, the trained model is applied to unseen samples, leveraging 
its learned parameters to formulate predictions. Hence, the practical efficacy of the DL framework depends on 
its successful generalization to unknown datasets.

The aggregation of multi-center large-scale MRI databases in recent brain research initiatives has provided 
crucial findings for comprehending the neurobiological aspects underlying brain functions. However, the con-
siderable variations arising from distinct centers, originating from non-biological sources and introducing vari-
ability into the neuroimaging data, have hindered the coherent interpretation of reported results. While numerous 
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earlier studies have evaluated various CNNs across diverse MRI datasets, the generalization issue of CNNs on 
MR images remains. CNNs, as statistical tools, learn the input data’s statistics under the assumption of identical 
independent distribution (IID). Under this assumption, a trained CNN model is expected to perform consistently 
on samples with similar or identical distributions. In the context of multi-center MRI datasets, MR images are 
prone to statistical shifts due to variations in scanner manufacturers and different image acquisition protocols5.

MRI scanner variations contribute to significant statistical changes, as specific MRI machines provide images 
with unique properties due to vendor-specific proprietary implementations. The majority of the MRI scans 
observed in publicly available large datasets come from three renowned manufacturers: General Electric (GE) 
Healthcare, Philips Medical Systems, and Siemens6. Previous investigations have unveiled the limited generaliza-
tion capability of CNN models across MRI data derived from different manufacturers. Tian et al.7 introduced an 
MRI harmonization technique that addresses various site effects, including factors such as scanner manufacturer, 
scanner type, phase encoding direction, and the number of channels per coil. However, the authors reported that 
the scanner manufacturer factor is the most significant parameter generating the site effects. In another MRI 
radiomics feature-based study8, the authors observed higher sensitivity in the scanner manufacturer parameter 
among the three scanner attributes (manufacturer, magnetic field strength, and slice thickness).

MRI has been widely used for three decades to diagnose diseases such as acute infarct9, multiple sclerosis 
(MS)10, brain tumors11 and so on. In a left ventricle (LV) segmentation task, the authors explored the performance 
variation among three different scanner manufacturers and proposed a manufacturer-adaptation strategy to 
mitigate scanner bias12. Dadar et al.13 assessed the reliability of gray and white matter volume measurements and 
the associated variability within multi-site MRI datasets utilizing different scanners. In another investigation14, 
the authors revealed a variability of 0.15 mm in cortical thickness measurements due to a scanner vendor change 
(GE/Siemens). However, to the best of our knowledge, no reports have been published demonstrating the impact 
on the performance of different disease classification tasks, such as patient vs. control normal (CN), due to vari-
ations in scanner manufacturers.

Harmonization is a technique used to mitigate variations arising from diverse image acquisition proto-
cols. Multi-center MRI data harmonization aims to remove site-specific bias while preserving intrinsic image 
properties15 (e.g., biological factors). A popular harmonization method, “ComBat,” was initially introduced to 
alleviate batch effects in gene expression microarray data and has been proven effective in addressing scanner/site 
effects in multi-site diffusion tensor imaging (DTI) data16. We aim to evaluate the effectiveness of the standard 
ComBat and one of the modified ComBat-based harmonization approaches for structural imaging using four 
large multi-center longitudinal MRI datasets involving three major scanner manufacturers. Existing research 
shows that ComBat is highly successful in neuroimaging data harmonization, focusing on removing scanner 
effects from a set of imaging features such as cortical thickness, surface area, and subcortical volumes17–20. 
Pomponio et al.21 applied a modified ComBat method to 145 anatomical ROI volumes to eliminate location and 
scale effects for each ROI. Another study reported better performance by employing radiomic features from 
lung computed tomography (CT) images with a modified ComBat method22. Nevertheless, the application of a 
ComBat-based strategy to full-size 3D (NIFTI) images, rather than specific ROIs or extracted features, presents 
an ongoing challenge. For extensive high-resolution image datasets, memory allocation constraints may impede 
program execution. Additionally, the ComBat-based strategy requires some demographic data to be available for 
all samples, such as sex, age, and disease status, which we aim to preserve during harmonization. Importantly, 
adding a new sample to an existing dataset imposes another concern: the need to rerun the entire harmoniza-
tion process with the newly added data. Lastly, a recent study23 disclosed that existing statistical harmonization 
methods like ComBat failed to harmonize cortical thickness from multi-scanner MRI data.

This work focuses on the non-biological factors of variability in neuroimaging data due to transformations in 
MRI scanner manufacturers, which pose a barrier to the practical applications of DL algorithms in the medical 
domain. We highlight how the scanner vendor significantly impacts disease classification performance with mul-
tiple DL models. Our investigation delves into the classification of patients with four complex neurodegenerative 
disorders: Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and the inter-
mediate stage of AD known as mild cognitive impairment (MCI). Our analysis demonstrates a drastic drop in 
classification accuracy when DL models are tested with data from a different scanner manufacturer. Subsequently, 
our experiments reveal that employing a ComBat-based harmonization technique could not yield discernible 
enhancements in classification performance when applied to a multi-center dataset of 3D structural MR images.

Methods
Datasets
The Health Research Ethics Board (HREB) at the University of Alberta approved the protocol presented in this 
study. The Alzheimer’s Disease Neuroimaging Initiative (ADNI)24 and the Parkinson Progression Marker Initia-
tive (PPMI)25 represent two prominent and extensively studied publicly available datasets in the field of AD and 
PD detection, respectively. The ADNI protocol received authorization from the committee on human research at 
each participating center, with written informed consent provided by each participant. Additional information is 
accessible at adni.​loni.​usc.​edu. The PPMI study was performed following the Declaration of Helsinki and Good 
Clinical Practice (GCP) policies, in addition to the approval of the local ethics committees of the participating 
centers. At the time of enrollment, each participant provided written informed consent for using their imaging 
and clinical data. More details can be found at http://​www.​ppmi-​info.​org/. The authors attained approval to use 
the ADNI and PPMI data in the present study. The Canadian ALS Neuroimaging Consortium (CALSN​IC)26 
is the only prospective, multi-center and multimodal longitudinal study of ALS using harmonized clinical and 
imaging protocols across its sites. The CALSNIC study was conducted with the approval of each participating 
site’s HREB, and informed consent was obtained from the participants. Our study leverages T1-weighted MR 
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images, commonly used for standard structural imaging, acquired from three distinct MRI manufacturers (GE, 
Philips, and Siemens) across the aforementioned datasets. The acquisition orientation of all the MRI data used 
in our study is sagittal. We employ two versions of ADNI, ADNI1 and ADNI2, consisting of 1638 and 865 MRI 
scans, respectively. Additionally, our study enlists 528 samples from PPMI and 545 samples from the CALSNIC2 
datasets. CALSNIC1 data were excluded from our experiments due to its comparably limited sample size as 
well as variations in MRI acquisition orientation. An insightful depiction of the demographic composition of 
our utilized datasets is presented in Table 1. Furthermore, Table 2 meticulously outlines the divergent scanning 
protocols linked to different scanner manufacturers.

Preprocessing
A straightforward, rapid, and commonly employed preprocessing pipeline is implemented to prepare the original 
3D T1-weighted brain MRI data for disease classification tasks. The process begins with a standard operation 
known as skull stripping, aimed at eliminating the unnecessary skull region. This task is achieved using the 

Table 1.   Demographic details of the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets.

Dataset Group

MRI scanner manufacturer

GE Siemens Philips

Sex Age Sex Age Sex Age

(M/F) (Mean±Std)  (M/F) (Mean±Std) (M/F) (Mean±Std)

ADNI1

AD 80/80 75.5  ±  7.7 80/80 75.0 ± 7.2 60/49 75.7 ± 7.0

CN 80/80 75.1 ± 5.7 80/80 75.9 ± 5.9 109/67 75.4 ± 5.2

MCI 150/100 75.3 ± 7.6 150/100 76.1 ± 7.0 150/63 75.9 ± 7.5

ADNI2
AD 62/41 75.0 ± 8.5 100/57 75.1 ± 7.8 48/58 74.5 ± 7.3

CN 80/82 74.3 ± 5.9 100/57 74.0 ± 6.4 80/100 75.6 ± 6.4

PPMI
PD 83/40 61.6 ± 9.7 78/46 63.0 ± 9.8 70/37 61.6 ± 9.9

CN 17/17 59.6 ± 13.3 72/35 59.6 ± 10.5 20/13 59.7 ± 11.2

CALSNIC2
ALS 14/4 54.0 ± 11.8 124/65 60.1 ± 10.2 29/20 62.4 ± 8.2

CN 18/13 60.1 ± 8.8 120/101 54.9 ± 10.5 12/25 61.7 ± 10.8

Table 2.   Scanning protocol details of the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets.

Dataset Scanning protocol

MRI scanner manufacturer

GE Siemens Philips

ADNI1

Model
Genesis Signa, Signa Excite, Symphony, Sonata, Trio, Achieva, Intera Achieva,

Signa HDx TrioTim, Avanto, Allegra Intera, Gyroscan Intera

Field strength 1.5 T / 3.0 T 1.5 T / 3.0 T 1.5 T / 3.0 T

Flip angle 8 ° 8 °/ 9 ° 8 °

Spatial resolution
1.0× 1.0× 1.2 mm

3 / 1.0× 1.0× 1.2 mm
3 / 1.0× 1.0× 1.2 mm

3 /

0.94× 0.94× 1.2 mm
3

1.25× 1.25× 1.2 mm
3

0.94× 0.94× 1.2 mm
3

ADNI2

Model
Signa HDxt, Signa Excite, Symphony, Skyra, Verio, Achieva dStream, Achieva,

Signa HDx, Discovery MR750 TrioTim, Avanto Intera, Ingenia, Ingenuity

Field strength 3.0 T 3.0 T 3.0 T

Flip angle 11 ° 9 ° 9 °

Spatial resolution 1.05× 1.05× 1.2 mm
3

1.05× 1.05× 1.2 mm
3

1.05× 1.05× 1.2 mm
3

PPMI

Model

Signa HDxt, Signa Excite, Symphony, Skyra, Verio, Achieva dStream, Intera,

Discovery MR750w, Genesis Signa TrioTim, Prisma, Espree, Achieva, Gyroscan NT

Signa Architect, Discovery MR750 Prisma Fit

Field strength 1.5 T / 3.0 T 1.5 T / 3.0 T 1.5 T / 3.0 T

Flip angle 8 °/ 11 °/ 13 °/ 15 ° 8 °/ 9 °/ 15 ° 8 °/ 9 °

Spatial resolution

1.0× 1.0× 1.0 mm
3 / 1.0× 1.0× 1.0 mm

3 / 1.0× 1.0× 1.0 mm
3 /

0.94× 0.94× 1.2 mm
3/ 1.25× 1.25× 1.3 mm

3/ 0.94× 0.94× 1.2 mm
3/

0.94× 0.94× 0.7 mm
3

0.49× 0.49× 2.0 mm
3

1.0× 1.0× 1.2 mm
3

CALSNIC2

Model Discovery MR750 Prisma, Prisma Fit, TrioTim Achieva

Field strength 3.0 T 3.0 T 3.0 T

Flip angle 16 ° 10 ° 10 °

Spatial resolution 1.0× 1.0× 1.0 mm
3

1.0× 1.0× 1.0 mm
3

1.0× 1.0× 1.0 mm
3
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FreeSurfer program27 (Command: mri_synthstrip -i input_image -o stripped_image)3. 
Subsequently, we perform N4 bias field correction using the SimpleITK library’s N4BiasFieldCorrec-
tionImageFilter class to rectify low-frequency intensity non-uniformity in the MRI data28. The Symmetric 
normalization (SyN) registration technique, implemented through ANTsPy29, is then employed to align each scan 
with the MNI-152 standard space, utilizing lanczosWindowedSinc interpolation for transformation. Lastly, 
we apply WhiteStripe intensity normalization using the Python intensity-normalization package30. 
Upon completing the preprocessing of the original images, their dimensions are transformed to 182× 218× 182 , 
and the voxel size is converted to 1× 1× 1 mm3 . This preprocessing procedure typically takes around 5 minutes 
per scan, with computations performed on an eight-core CPU platform utilizing parallel processing.

DL models
To assess the performance of various classification tasks across datasets with distinct scanner vendors, we employ 
both 2D and 3D DL architectures. Firstly, we utilize three widely recognized and successful networks: ResNet31, 
ShuffleNetV232, and MobileNetV233. Subsequently, we employ two customized models designed explicitly for 
AD classification. The Residual Network (ResNet), a prominent and influential DL model, was introduced by He 
et al.31. A pivotal contribution of ResNet is the introduction of “identity shortcut connections,” creating alternate 
pathways for gradient flow and addressing the vanishing gradient problem in deep CNNs. The fundamental 
building block of MobileNet33 is depthwise separable convolution, which comprises depthwise convolution and 
pointwise convolution. Depthwise convolution applies distinct kernels to each input channel, while pointwise 
convolution employs 1× 1 convolution kernels. ShuffleNet32, designed to accommodate mobile device computing 
limitations, relies on pointwise group convolution and channel shuffling to maintain accuracy while significantly 
reducing computational load. Qiu et al.1 introduced a 3D customized Fully Convolutional Network (FCN) 
consisting of six convolutional blocks and then integrated both neuroimaging and clinical data using Multilayer 
Perceptron (MLP) networks. However, our study only employs their FCN model to handle neuroimaging data. 
Meanwhile, ADDFormer4, inspired by the vision transformer (ViT) architecture34, combines frequency and 
spatial domain features in an innovative manner. ADDFormer employs selected coronal 2D slices, and leverages 
transfer learning by pre-training the network on ImageNet35. Figure 1 illustrates the processing pipeline for both 
2D and 3D frameworks. In the case of 3D networks, after preprocessing, DL models analyze the entire 3D brain 
MRI data to extract features for the final class prediction. Conversely, for 2D networks, we assess 15 coronal 
slices from the central position for feature extraction. The final classification decision is determined by majority 
voting of class predictions from these coronal slices of a subject, similar to the approach used in ADDFormer.

Results
Experimental setup
The DL frameworks employed in our analysis are implemented using PyTorch36 and executed on a server 
equipped with 4 NVIDIA RTX A6000 GPUs. The coding of 3D CNN models is based on publicly available 
implementations, accessible at https://​github.​com/​xmuyzz/​3D-​CNN-​PyTor​ch. To enhance training robustness, 
we employ data augmentation methodologies, including random rotations, flipping, and the mixture of Gauss-
ian noise, to prepare a robust training batch. The optimization process employs the Adam optimizer with an 
initial learning rate of 0.00005 and a decay rate of 10−1 after every 100 iterations. For the ADDFormer model, 
a patch size of 16× 16 is used, and the training spans a total of 300 epochs with a batch size of 16. The final 
accuracy reported in this study represents the average results from five experiments, each employing distinct 
training, validation, and test data combinations. The data split ratio is maintained at 70% for training, 15% for 
validation, and 15% for testing in each experimental setup. The training time of the CNN-based procedures 
takes approximately 6 hours on a single GPU with 48GB of memory. The classification performance is evaluated 
using standard statistical metrics, specifically Accuracy (Acc) and F1-score. They are characterized in terms of 
four key values: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). The Acc 
metric represents the fraction of accurately identified subjects to the total number of samples in a given dataset, 
defined as Acc = TP+TN

TP+TN+FP+FN  . The F1-score harmonically combines precision and recall, and is mathemati-
cally measured as F1-score = 2×

precision×recall
precision+recall . The recall is the ability to identify individuals with a specific 

condition correctly and is computed as recall = TP
TP+FN  . The precision reflects the number of relevant items and 

can be expressed as precision = TP
TP+FP.

Figure 1.   The processing pipeline used in our study to carry out different disease classification tasks with 
different DL networks.

https://github.com/xmuyzz/3D-CNN-PyTorch
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Scanner manufacturer effects
This section presents the results of a series of experiments highlighting the distinctive characteristics of different 
scanner manufacturers. Initially, we employ three 3D DL-based classification networks (ResNet31, MobileNetV233, 
ShuffleNetV232) using MRI data to classify three distinct scanner manufacturers (GE, Philips, and Siemens). 
These well-established CNN-based networks demonstrate exceptional accuracy in classifying the scanner 
manufacturers. For the ADNI1, ADNI2, and CALSNIC2 datasets, the average classification accuracy exceeds 
98%, while the accuracy for the PPMI database ranges between 93% and 96% across all the aforementioned 
frameworks. The classification outcomes, presented as confusion matrices derived from the ResNet architecture 
for different datasets, are depicted in Fig. 2. The corresponding confusion matrices for the ShuffleNetV2 and 
MobileNetV2 models can be found in Supplementary Figs. S1 and S2, respectively. Subsequently, we employ 
t-SNE (t-distributed Stochastic Neighbor Embedding)37 and UMAP (Uniform Manifold Approximation and 
Projection)38 techniques to visualize the data in a 2D space, using features generated by MRQy39. These visuali-
zations are presented in Fig. 3 and Supplementary Fig. S3. Both t-SNE and UMAP are non-linear, graph-based 
dimension reduction methods that project the high-dimensional feature space into a lower-dimensional space 
while preserving the distribution characteristics. The visualization of the t-SNE and UMAP plots reveals that the 
proximity of grouped data primarily corresponds to the scanner manufacturer. Additionally, we observe further 
clustering within the same vendor, which can be attributed to variations in scanner models from the same manu-
facturer. Minor contributions to data clustering arise from variations in magnetic field strength and flip angles, 
as depicted by different bounding boxes in Fig. 3. The 3D views of the t-SNE and UMAP plots are available on 
our GitHub project page at https://​github.​com/​rkush​ol/​Effec​ts-​of-​MRI-​scann​er-​manuf​actur​er.

Gender classification
The task of gender classification (Male vs. Female) from MRI data is comparatively less intricate than the chal-
lenge of classifying different neurodegenerative diseases. In this context, we evaluate gender classification across 
the four previously mentioned datasets to assess performance variations among different scanner manufactur-
ers. The outcomes of gender classification, achieved through distinct 3D CNN-based deep models (ResNet31, 
MobileNetV233, ShuffleNetV232), are presented in Table 3. For the ADNI1, ADNI2, and CALSNIC2 datasets, 
the aforementioned CNN methods achieve an average accuracy and F1-score of over 90%. Notably, in the PPMI 
dataset, using data from Siemens and GE also yields an average accuracy of around 90%, while using Philips data 
results in an approximate classification accuracy of 85%. Overall, there is no significant difference in performance 
among the scanner manufacturers in this classification task.

Disease classification
Classifying patients with neurodegenerative diseases such as AD, PD, or ALS from healthy controls using limited 
MRI data poses significant challenges due to the subtle structural changes present in the images. To enhance the 
reliability of our findings while maintaining balanced sample sizes across different scanner manufacturers, we 
leverage longitudinal data. However, a notable exception arises in the CALSNIC2 dataset, where the volume of 
data from GE and Philips scanners is comparatively smaller compared to that of the Siemens vendor. Moreover, 
we ensure that our data-splitting strategy avoids data leakage issues. This involves meticulously dividing the 
data based on individual subjects, preventing mixing the same participant’s images in both training and test-
ing processes, as illustrated in Fig. 4. In the context of 2D frameworks, we extend this practice to ensure the 
integrity of slices within subjects across the test and training sets. Indeed, a recent study40 discovered that many 
prior disease classification approaches did not follow a proper distribution of slices or subjects in their training 
or testing data. As a result, their reported outcomes present inaccurate and excessively optimistic classification 
accuracies. Our analysis reveals that the ResNet (3D) and FCN (3D) models outperform other 3D frameworks 
across various disease classification tasks. Similarly, in the case of 2D networks, the ResNet (2D) and ADDFormer 
(2D) models achieve better results compared to other 2D DL methods. Table 4 summarizes the classification 
results from these top-performing models. The classification outcomes of the remaining four DL techniques are 
also provided in Supplementary Table S1.

Figure 2.   MRI scanner manufacturer classification results for the ADNI1, ADNI2, PPMI, and CALSNIC2 
datasets generated by ResNet model. The classification accuracy is approximately 99% for the (a) ADNI1, (b) 
ADNI2, and (d) CALSNIC2 datasets whereas the accuracy is around 95% for the (c) PPMI dataset.

https://github.com/rkushol/Effects-of-MRI-scanner-manufacturer
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Figure 3.   t-SNE plots for the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets using the features generated by 
MRQy evaluation metrics. Different clusters are primarily formed based on the scanner manufacturer. In panels 
(a) and (b), bounding boxes are delineated, incorporating information about the scanner model, field strength, 
and flip angle. These annotations visually highlight their role in inducing domain shift within a dataset.

Table 3.   Gender classification results for the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets.

Scanner manufacturer DL  models

ADNI1 ADNI2 PPMI CALSNIC2

Acc F1-score Acc F1-score Acc F1-score Acc F1-score

GE

ResNet 0.92 0.93 0.93 0.94 0.93 0.92 0.92 0.92

ShuffleNetV2 0.95 0.94 0.92 0.93 0.89 0.90 0.96 0.96

MobileNetV2 0.92 0.93 0.91 0.90 0.88 0.89 0.92 0.92

Siemens

ResNet 0.94 0.94 0.92 0.91 0.90 0.90 0.91 0.90

ShuffleNetV2 0.94 0.93 0.97 0.95 0.94 0.92 0.92 0.92

MobileNetV2 0.90 0.89 0.91 0.90 0.88 0.88 0.90 0.91

Philips

ResNet 0.92 0.91 0.90 0.90 0.86 0.87 0.95 0.94

ShuffleNetV2 0.93 0.93 0.90 0.88 0.85 0.84 0.94 0.94

MobileNetV2 0.90 0.89 0.92 0.93 0.84 0.83 0.93 0.92
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ADNI1
Firstly, the independent evaluation of AD classification performance across the three manufacturers yields very 
close accuracy results. The classification accuracy of the top-performing model falls within the range of 85%-88%. 
Secondly, comparable accuracy is achieved when combining data from all manufacturers, resulting in a sample 
size approximately three times larger than that of each individual vendor. However, when equalizing the total 
sample size to that of a single manufacturer (approximately one-third of the total samples), a noticeable decline 
in performance is observed. Thirdly, among the 3D frameworks, the customized FCN model achieves the high-
est score, while the ADDFormer model outperforms all others in terms of classification accuracy. On the other 
hand, a similar conclusion is depicted for the intermediate stage of AD, known as the MCI vs. CN classification 
task, except that the overall accuracy decreases from all angles.

Figure 4.   Patient-level split process for longitudinal data to train different DL models.

Table 4.   Different disease classification results based on scanner manufacturers with the ADNI1, ADNI2, 
PPMI, and CALSNIC2 datasets.

Scanner manufacturer DL models

AD vs. CN MCI vs. CN PD vs. CN ALS vs. CN

ADNI1 ADNI2 ADNI1 PPMI CALSNIC2

Acc F1-score Acc F1-score Acc F1-score Acc F1-score Acc F1-score

GE

ResNet (3D) 0.76 0.76 0.79 0.79 0.70 0.68 0.80 0.80 0.70 0.70

FCN1 (3D) 0.84 0.83 0.84 0.83 0.74 0.74 0.84 0.83 0.75 0.74

ResNet (2D) 0.81 0.79 0.81 0.81 0.71 0.70 0.79 0.79 0.71 0.70

ADDFormer4 (2D) 0.86 0.85 0.89 0.88 0.75 0.73 0.88 0.87 0.82 0.79

Siemens

ResNet (3D) 0.77 0.78 0.80 0.82 0.71 0.71 0.66 0.66 0.71 0.72

FCN1 (3D) 0.84 0.84 0.82 0.82 0.73 0.73 0.70 0.71 0.75 0.76

ResNet (2D) 0.78 0.76 0.76 0.74 0.71 0.70 0.66 0.66 0.71 0.69

ADDFormer4 (2D) 0.88 0.88 0.86 0.85 0.71 0.72 0.72 0.71 0.78 0.79

Philips

ResNet (3D) 0.75 0.73 0.83 0.82 0.66 0.66 0.77 0.76 0.70 0.69

FCN1 (3D) 0.84 0.83 0.86 0.85 0.71 0.70 0.80 0.80 0.73 0.72

ResNet (2D) 0.74 0.73 0.79 0.78 0.67 0.66 0.74 0.73 0.70 0.67

ADDFormer4 (2D) 0.85 0.85 0.91 0.90 0.71 0.71 0.82 0.82 0.79 0.79

All samples
(GE +
Siemens +
Philips)

ResNet (3D) 0.76 0.78 0.79 0.80 0.71 0.69 0.76 0.77 0.72 0.72

FCN1 (3D) 0.84 0.85 0.85 0.84 0.77 0.75 0.78 0.78 0.74 0.75

ResNet (2D) 0.77 0.76 0.78 0.78 0.72 0.71 0.73 0.72 0.72 0.70

ADDFormer4 (2D) 0.88 0.88 0.89 0.89 0.76 0.75 0.80 0.79 0.81 0.81

One-third samples
(GE +
Siemens +
Philips)

ResNet (3D) 0.72 0.70 0.78 0.77 0.66 0.68 0.73 0.74 0.67 0.67

FCN1 (3D) 0.80 0.80 0.80 0.81 0.70 0.68 0.74 0.74 0.71 0.70

ResNet (2D) 0.74 0.72 0.75 0.75 0.66 0.65 0.70 0.70 0.67 0.68

ADDFormer4 (2D) 0.79 0.80 0.80 0.79 0.68 0.68 0.75 0.74 0.74 0.75



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16791  | https://doi.org/10.1038/s41598-023-43715-5

www.nature.com/scientificreports/

ADNI2
The classification accuracy of ADNI2 slightly surpasses that of ADNI1. Among the three manufacturers, utilizing 
data from Philips scanners yields slightly better performance compared to data from GE or Siemens. The range of 
the best model’s classification accuracy falls between 86% and 91%. Upon merging data from all manufacturers, 
which increases the sample size to approximately three times that of individual vendors, the achieved accuracy 
remains consistent. However, performance experiences a noticeable decline when the sample size is reduced 
to that of a single manufacturer, accounting for roughly one-third of the total samples. Once again, among the 
3D frameworks of DL models, both the ResNet and the custom-made FCN model achieve better results. In 
contrast, within the group of 2D methods, the ADDFormer model stands out for achieving the highest clas-
sification accuracy.

PPMI
In the PD vs. CN classification task, we initially added a few control samples from the ADNI2 dataset to ensure 
balanced sample sizes of patients and healthy controls across all three manufacturer groups, thus mitigating 
severe class imbalance issues. Notably, the FCN and ADDFormer custom-made models also demonstrate strong 
performance when compared to other fundamental CNN-based methods. The ShuffleNet achieves better out-
comes in certain cases within the group of 3D frameworks. The range of the best model’s classification accuracy 
spans from 72% to 88%. Comparable classification results are observed whether the data originates from GE or 
Philips scanners. However, the outcomes using data from Siemens scanners are comparatively poor. This dis-
crepancy could be due to sharing a small number of healthy control samples from the ADNI2 dataset, whereas 
the GE or Philips group shares a large number of control samples from the ADNI2. Likewise, employing a total 
sample size equivalent to that of an individual manufacturer (approximately one-third of the total samples) leads 
to a noticeable decline in performance.

CALSNIC2
The classification task involving ALS patients versus healthy controls within the CALSNIC2 database presents an 
even greater challenge compared to AD classification. All three manufacturers exhibit similar average classifica-
tion accuracy. However, the performance of data originating from Siemens scanners is notably more reliable due 
to the inclusion of large samples from multiple centers. The range of the best model’s classification accuracy falls 
between 78% and 82%. The accuracy remains consistent when the data from all manufacturers are combined. 
Conversely, the performance experiences a noticeable decline when the sample size from the Siemens manufac-
turer is reduced to one-third. The number of scans from GE and Philips scanners remains unchanged, as their 
original sizes are already limited. Among the DL models in both 3D and 2D frameworks, the ADDFormer model 
once again stands out for its highest classification accuracy.

Cross‑validation
This section examines the consequences of introducing a change in the test set data by employing a different 
manufacturer. The left panel of Table 5 illustrates the classification results for this cross-domain validation using 
the four top-performing DL models described earlier. In this experimental setup, data originating from a specific 

Table 5.   The cross-domain intra-study disease classification accuracy before and after voxel-wise ComBat 
harmonization for the ADNI1, ADNI2, PPMI, and CALSNIC2 datasets.

Dataset Training data Testing data

Classification Acc with different DL models

Results before harmonization Results after harmonization

ResNet FCN ResNet ADDFormer ResNet FCN ResNet ADDFormer

(3D) (3D) (2D) (2D) (3D) (3D) (2D) (2D)

ADNI1
AD vs. CN

GE Philips+Siemens 0.75 0.80 0.75 0.86 0.75 0.78 0.74 0.76

Philips GE+Siemens 0.69 0.74 0.68 0.71 0.70 0.72 0.69 0.73

Siemens GE+Philips 0.72 0.77 0.74 0.79 0.71 0.71 0.70 0.68

ADNI2
AD vs. CN

GE Philips+Siemens 0.71 0.76 0.72 0.80 0.69 0.71 0.69 0.68

Philips GE+Siemens 0.71 0.74 0.71 0.75 0.63 0.65 0.66 0.63

Siemens GE+Philips 0.75 0.77 0.77 0.83 0.68 0.70 0.67 0.69

ADNI1
MCI vs. CN

GE Philips+Siemens 0.66 0.71 0.66 0.71 0.64 0.67 0.68 0.70

Philips GE+Siemens 0.60 0.67 0.62 0.64 0.61 0.62 0.59 0.64

Siemens GE+Philips 0.65 0.67 0.64 0.66 0.65 0.64 0.63 0.65

PPMI
PD vs. CN

GE Philips+Siemens 0.62 0.63 0.60 0.63 0.60 0.62 0.59 0.56

Philips GE+Siemens 0.65 0.66 0.63 0.67 0.60 0.65 0.59 0.59

Siemens GE+Philips 0.56 0.61 0.60 0.60 0.59 0.63 0.62 0.67

CALSNIC2
ALS vs. CN

GE Philips+Siemens 0.57 0.56 0.56 0.61 0.57 0.57 0.55 0.55

Philips GE+Siemens 0.59 0.59 0.60 0.62 0.56 0.58 0.61 0.62

Siemens GE+Philips 0.61 0.63 0.65 0.68 0.59 0.65 0.65 0.71
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manufacturer is utilized as the training domain, while the remaining two serve as the test domains. When com-
paring these findings with the results presented in Table 4, it becomes evident that a significant drop in accuracy 
is observed across all datasets in Table 5. These outcomes further confirm the presence of a substantial domain 
shift inherent within the MRI data acquired from different manufacturers.

ComBat harmonization effects
Initially, we evaluate the outcomes of a modified ComBat-based method known as ComBat-generalized addi-
tive model (ComBat-GAM), specifically designed to address site effects in multi-site neuroimaging datasets21. 
ComBat-GAM is the only publicly available package that directly handles 3D NIFTI images as input, accessible 
at https://​github.​com/​rpomp​onio/​neuro​Harmo​nize. This technique successfully estimated age-related volume 
differences within a large-scale multi-center dataset, segmenting each MR image into 145 ROIs. However, our 
analysis does not yield promising outcomes when harmonizing entire 3D MRI data, as opposed to limited fea-
tures extracted from MR images. Supplementary Fig. S4 provides an example of a 2D axial brain slice before and 
after harmonization using the ComBat-GAM method from the CALSNIC2 dataset. The output image exhibits 
undesirable artifacts and blurriness, with distinct brain tissue sections showing abnormal patterns of intensity 
shift compared to the input image. This disrupts the structural integrity of gray and white matter. As a result, we 
abstain from performing classification tasks using these undesirable resultant images generated by the ComBat-
GAM approach. Subsequently, we apply the standard ComBat method to our multi-center datasets, utilizing the 
official implementation available at https://​github.​com/​Jfort​in1/​ComBa​tHarm​oniza​tion. A minor adjustment is 
made to the original implementation to enable voxel-level harmonization instead of feature-level harmonization, 
treating each scanner manufacturer as an individual site. From a visual perspective, the outcomes produced 
by the standard ComBat method closely resemble the original images, with minor changes evident in corti-
cal regions, as depicted in Fig. 5. Thus, we harmonize our datasets using the standard ComBat and utilize the 
harmonized images for the cross-domain classification context. The classification results following the ComBat 
harmonization are presented in the right panel of Table 5. Unfortunately, the harmonized images generated by the 
standard ComBat method fail to enhance the classification accuracy in most cases (exceptions are shown in bold 
in Table 5). The potential reason behind these failures could be that ComBat-based harmonization techniques 
are inappropriate for image/voxel-level harmonization. Successful ComBat-based applications reported in prior 
studies have predominantly focused on limited feature-level harmonization. Moreover, during the execution 
of both ComBat-based strategies, we incorporate age and sex as covariates to ensure the preservation of this 
biological information throughout the harmonization process.

Quality evaluation of scanner manufacturers data
Alongside manual inspection, we utilize the quality control tool MRQy39 to verify the quality of each MR image. 
The MRQy tool offers a comprehensive array of quality-related metrics, including peak signal-to-noise ratio 
(PSNR), contrast-to-noise ratio (CNR), coefficient of variation of the foreground patch (CVP) to address shading 
artifacts, coefficient of joint variation (CJV) to quantify aliasing and inhomogeneity artifacts between foreground 
and background, and entropy focus criterion (EFC) to detect motion artifacts. The user-friendly interface of 

Figure 5.   Minor changes in voxel-wise ComBat harmonization using structural MRI. (A) One 2D axial slice 
of preprocessed 3D T1-weighted MR image of CALSNIC2 dataset before harmonization, (B) corresponding 
slice after harmonization. The red, yellow, and blue arrows point to the regions with manipulated structures, 
including the disappearance of minor details resulting from the ComBat harmonization.

https://github.com/rpomponio/neuroHarmonize
https://github.com/Jfortin1/ComBatHarmonization
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MRQy greatly simplifies the process of identifying outliers or inconsistencies within a dataset. Table 6 presents 
an illustrative comparison of the diverse quality metrics obtained by averaging all samples for each scanner 
manufacturer.

Discussion
The reproducibility of MRI research continues to be challenging, particularly when data is influenced by scan-
ner effects, a type of non-biological variation originating from various image acquisition protocols. After dem-
onstrating significant distinguishable imaging characteristics present in data derived from multiple scanner 
manufacturers, we explore its consequences for different disease classification tasks using several prominent 
2D and 3D DL models.

The primary challenge of this study was collecting an adequate number of MRI samples from three major 
scanner manufacturers (GE, Philips, and Siemens). The ADNI has satisfied our initial criterion, which offers the 
most extensive collection of publicly accessible research data resources, including imaging, clinical, and genomic 
data. In the ADNI1 and ADNI2 databases, the volume of data originating from Siemens and GE scanners was 
higher compared to that from Philips scanners. Therefore, we deliberately chose a comparable quantity of data 
from Siemens and GE vendors to match the data offered by Philips manufacturer. As we utilized longitudinal 
data, we prioritized including more unique subjects in this random selection scenario. In the context of the PPMI 
dataset, the data volume was more substantial for the Siemens scanners. Similarly, we limited the data from the 
Siemens manufacturer in a manner analogous to the sample size of GE and Philips scanners. The number of 
samples used in training an ML-based methodology, especially in DL models, plays a significant role in achieving 
satisfactory outcomes. Cohesive and consistent data enhance the performance in analysis, while the presence 
of heterogeneous characteristics in imaging data presents challenges in obtaining reliable and uniform results.

The preprocessing steps applied to our original T1-weighted MR images involve state-of-the-art algorithms 
and can be easily replicated using open-source tools. After experimenting with a straightforward classification 
task of differentiating sex (male vs. female) using the original MRI data, we move on to more sophisticated 
neurodegenerative disease classification tasks. Based on the results obtained from our applied DL models, the 
most challenging classification task is distinguishing between MCI and CN groups. This finding aligns with prior 
studies, which have also reported lower accuracy in this specific classification41. Notably, some investigations 
have further subdivided MCI into progressive (pMCI) and stable (sMCI) subgroups, achieving improved results 
through such stratification42. The next challenging task is the classification of PD vs. CN. One critical factor that 
makes this classification task difficult is the heterogeneous nature of the dataset. The PPMI dataset encompasses 
21 different centers25, a characteristic evident in Fig. 3b. As a result, a decline in performance is anticipated in 
DL models if the test set contains data from a particular center, while the corresponding center’s data is either 
insufficient or entirely missing in the training set. For the same reason, tasks such as scanner vendor and gen-
der classification might yield lower accuracy with the PPMI dataset compared to others. The classification task 

Table 6.   The quality evaluation of MRI data with MRQy for the ADNI1, ADNI2, PPMI, and CALSNIC2 
datasets. Best results are in [bold].

Dataset Quality metrics

MRI scanner manufacturer

GE Siemens Philips

(Mean ± Std) (Mean ± Std) (Mean ± Std)

ADNI1

PSNR ↑ 15.69 ± 2.8 16.89 ± 1.1 18.23 ± 1.6

CNR ↑ 21.18 ± 9.0 19.41 ± 5.0 50.16 ± 18.9

CVP ↓ 0.36 ± 0.1 0.42 ± 0.1 0.41 ± 0.1

CJV ↓ 0.88 ± 0.2 0.85 ± 0.1 1.22 ± 0.3

EFC ↓ 2.49 ± 0.4 2.67 ± 0.2 2.60 ± 0.3

ADNI2

PSNR ↑ 16.96 ± 1.0 15.37 ± 0.9 17.16 ± 1.1

CNR ↑ 17.64 ± 17.3 34.09 ± 6.5 12.31 ± 2.0

CVP ↓ 0.46 ± 0.1 0.41 ± 0.1 0.51 ± 0.1

CJV ↓ 1.59 ± 2.6 0.91 ± 0.1 1.48 ± 0.5

EFC ↓ 1.89 ± 0.1 2.94 ± 0.1 2.17 ± 0.2

PPMI

PSNR ↑ 13.65 ± 1.5 14.42 ± 1.2 17.31 ± 3.6

CNR ↑ 29.29 ± 25.3 34.99 ± 12.99 16.33 ± 5.7

CVP ↓ 0.39 ± 0.1 0.41 ± 0.1 0.47 ± 0.1

CJV ↓ 0.84 ± 0.2 0.84 ± 0.1 0.95 ± 0.3

EFC ↓ 24.02 ± 13.1 4.04 ± 1.8 3.36 ± 1.5

CALSNIC2

PSNR ↑ 14.98 ± 0.9 12.59 ± 1.6 11.82 ± 1.0

CNR ↑ 16.45 ± 4.3 70.05 ± 24.8 10.54 ± 2.4

CVP ↓ 0.41 ± 0.1 0.37 ± 0.1 0.46 ± 0.1

CJV ↓ 0.72 ± 0.1 0.84 ± 0.1 0.82 ± 0.1

EFC ↓ 10.1 ± 3.9 8.19 ± 3.0 2.61 ± 0.2
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of distinguishing between ALS patients and healthy controls also presents challenges due to the insignificant 
structural changes in MRI data compared to the control group.

The specialized FCN model consistently outperformed other 3D classification frameworks in most disease 
classification scenarios. A notable advantage of 3D frameworks lies in their ability to process the entire brain 
as input, eliminating the need for prior knowledge in selecting specific slices for feature extraction. However, 
3D DL methods tend to lack the utilization of pre-trained networks through transfer learning. In contrast, 2D 
frameworks necessitate the careful selection of relevant 2D slices based on prior knowledge. Additionally, the 
2D DL models leverage the transfer learning property by utilizing pre-trained models with a massive 2D imag-
ing dataset like ImageNet35. Overall, the ADDFormer network demonstrates the best performance in this study, 
leveraging the power of the ViT architecture by integrating spatial and frequency domain features in a novel 
manner. In fact, the process of capturing MRI scans initially involves representing data in the frequency domain 
before converting it to the spatial domain. Hence, effectively utilizing frequency domain features might be the key 
to achieving enhanced classification performance with MRI data. Furthermore, our study’s 2D models employed 
significant coronal slices related to disease pathology. The degeneration of nerve cells in brain regions such as the 
hippocampus, substantia nigra, and corticospinal tract, which are regarded as identifiable regions of interest in 
the pathogenesis of AD, PD, and ALS, respectively, were captured within the range of selected coronal slices given 
as input to the ADDFormer and other 2D models used in our study. A recent study similar to the ADDFormer 
network also demonstrates outstanding performance in the context of ALS classification43.

Conclusion and future work
The field of neuroscience research requires robust, efficient, and reliable techniques to address the challenges 
posed by non-biological sources of data variation due to the increasing demand and necessity for multi-center 
neuroimaging studies. However, ML-based approaches have demonstrated limitations in producing consistent 
outcomes when confronted with data collected from diverse centers using distinct MRI scanner models and 
scanning protocols. Our experimental evaluation highlights the implications of incorporating MRI data from 
multiple manufacturers for disease classification tasks. Shifting the test domain with data from a different MRI 
vendor drastically drops the classification accuracy. Developing a novel framework for MRI data harmoniza-
tion (adjusting scanner variability) becomes essential to effectively leverage multi-center neuroimaging stud-
ies. Domain adaptation methods have also emerged as a prominent research avenue in recent years, showing 
promising results in addressing domain shift and minimizing scanner-related biases. Exploring these solutions 
could offer valuable insights into refining the harmonization process and improving classification outcomes. 
Another exciting avenue for future work is analyzing the effects of different scanner models within the same 
scanner vendor. Last but not least, similar experiments could be conducted with multi-modal neuroimaging data 
such as FLAIR, functional MRI (fMRI), T2-weighted, and diffusion-weighted images to gain a comprehensive 
understanding of the effects of MRI scanner manufacturers.

Data availability
The neuroimaging data utilized in this study for the ADNI1, ADNI2, and PPMI were accessed through the 
ADNI portal at adni.​loni.​usc.​edu. Acquisition of these datasets was facilitated through a standard application 
procedure. Additionally, the neuroimaging data from the CALSNIC2 database were curated and maintained by 
the Department of Medicine at the University of Alberta. Access to the CALSNIC2 data employed in our analysis 
can be requested by contacting kalra@ualberta.ca. Such requests will also be reviewed against alignment with 
established data-sharing protocols and privacy safeguards.
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