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An analytical study on nonlinear 
viscoelastic lubrication in journal 
bearings
Ali Abbaspur 1, Mahmood Norouzi 1, Pooria Akbarzadeh 1, Seyyed Amirreza Vaziri 1,  
Melika Mokhtari Sharghi 1, Kyung Chun Kim 2 & Mirae Kim 2,3*

This paper presents a novel analytical solution for journal-bearing viscoelastic lubrication using the 
perturbation method. The nonlinear Giesekus model was used for the constitutive equations to study 
the effects of fluid elasticity, shear-thinning viscometric functions, and strain-hardening elongational 
viscosity of viscoelastic lubrication. The investigation focuses on the impact of characteristic 
parameters such as mobility factor, eccentricity ratio, and Weissenberg number on the fluid film 
pressure distribution, load capacity, and shear stress. Although distinguishing between the normal 
stress differences and extensional viscosity in mixed viscoelastic flows is complicated, we investigated 
the role and contribution of these two factors. By increasing the elasticity of the fluid, the portion 
of both mentioned parameters increases consequently. Furthermore, analyses and comparisons 
show the contributions of the first normal stress and elongational viscosity to the load capacity of 
the bearing through the stress ratio and flow type parameter for the first time. The research findings 
indicate that fluid elasticity enhances the load capacity of the bearing compared to a Newtonian 
lubricant with the same effective viscosity. Moreover, the bearing load capacity is divided into two 
regions. In the linear region, the mobility factor and Weissenberg numbers have minimal effects 
leading to a linear increase in the load distribution, and in the exponential region, the load capacity 
changes are considerable. This research provides valuable insights into the behavior of viscoelastic 
lubrication in journal-bearing systems.

List of symbols

English parameters
D̃  Deformation rate
De  Deborah number
e  Eccentricity
H̃  The thickness of the lubricant layer
N1  First normal stress difference (Pa)
N2  Second normal stress difference (Pa)
p̃  Pressure (Pa)
R̃  Radius of the journal (m)
SR  Stress ratio
Ũ   Surface sliding speed parameter (m/s)
Ṽ   Vector of velocity (m/s)
u, v  Velocities along x and y directions, respectively
W  Load-carrying capacity
Wi  Weissenberg number
x,y  Dimensionless coordinate
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Greek parameters
α  Mobility factor
˜̇γ   Shear rate  (s-1)
δ̃   Radial gap size (m)
ɛ  Relative eccentricity
˜̇ε   Strain rate  (s-1)
η̃0  Viscosity (Pa.s)
η̃E  Extensional viscosity (Pa.s)
θ  Angular position
κ̃   Retardation time (s)
�̃  Relaxation time (s)
ξ  Flow type parameter
ρ̃   Density (kg/m3)
τ̃   Stress tensor (Pa)
∇

τ̃   Upper-convected derivative (Pa)
σ,τ  Dimensionless normal stress components
γ  Dimensionless shear stress
�̃  The coefficient of normal stress difference
ω̃  Angular velocity
�j  Rate of vorticity tensor
−→
∇   Gradient operator

Despite decades of research, finding an exact analytical solution for the Reynolds equation governing journal-
bearing lubrication remains a challenging problem. The primary objectives of lubrication include reducing fric-
tion, preventing heat generation, and minimizing wear on rotating components. To achieve these objectives, a 
thin film of lubricant separates the shaft from the bearing.  Tower1–3 conducted experiments on lubrication with 
meticulous precision inspired by an unexpected accident or mistake. This ultimately led to the development of 
hydrodynamic lubrication, the foundation of modern lubrication theory. He also calculated the pressure distri-
bution of the fluid film and reported the results.

Reynolds4 used the brief forms of Navier–Stokes and continuity equations to obtain a second-order differen-
tial equation for the pressure distribution of lubrication film.  Sommerfeld5 was the first to introduce a series of 
dimensionless numbers relevant to bearings, among which the Sommerfeld number stands out as particularly 
important. Solving the lubrication equation is a complex problem that has captured the interest of numerous 
researchers.  Dowson6 studied the generalized Reynolds equation for the lubricant layer. Raimondi and  Boyd7–9 
used an iterative method to solve the Reynolds equation numerically. And in 1958, they presented three papers 
on the numerical solution of the Reynolds equation for journal bearings. A large volume of data was available 
for designers for the first time.

Using the finite difference method,  Raimondi10 investigated the problem of hydrodynamic lubrication of 
journal bearings for compressible lubricants. The results of Raimondi’s numerical solution were very accurate 
and had an acceptable agreement with the experimental results.  Reddi11 solved the problem of lubrication for 
the incompressible lubricant using the finite element numerical method. He described the advantages of finite 
element methods over other numerical methods. Reddi and  Chu12 then generalized the solutions for the com-
pressible lubricant using the finite element method.

Malik13 used the finite element method to investigate gas-bearing lubrication. He applied a slip condition 
to the surfaces and examined the different parameters of the bearing.  Dinariev14 extended the Reynolds theory 
for the hydrodynamic lubrication problem in the presence of a viscoelastic lubricant. Based on his qualitative 
and numerical analysis, the relaxation time effect expanded the pressure distribution and reduced the bearing 
capacity of a lubricating layer. Urreta et al.15 summarize the work developing hydrodynamic lubricated journal 
bearings with magnetic fluids. Sfyris and  Chasalevris16 obtained an exact solution for the Reynolds equation 
while assuming a Newtonian fluid and considering time dependency. They implemented this solution for a finite 
journal bearing. They used their exact solution results and examined the characteristics of journal bearing while 
assuming a Newtonian  fluid17. Rao et al.18 analytically solved the Reynolds equation for sliding and journal bear-
ings while considering slip boundary conditions. Vignolo et al.19 solved the Reynolds equation for a finite-length 
bearing. They used the perturbation method and regarded the term ε = (L/D)2 as the perturbation parameter. 
Gong et al.20 continued Gustavo’s solution and solved the unsteady Reynolds equation.

Another common subject in bearing studies is misalignment. Jang and  Khonsari21 studied the misaligned 
journal bearing and investigated the effect of the deviation on the static and dynamic characteristics of the bear-
ing. Most studies dealing with bearing lubrication start with the well-known Reynolds equation. This equation 
is known as the classic lubrication theory of fluid film and is based on the Newtonian fluid. However, in many 
applications of lubricants in different industries, the approximation of the Newtonian fluid model cannot be 
used for the lubricants.

Based on the literature, using a few long-chain polymeric additives could improve the lubrication with much 
higher efficiency. In the mid-1950s, converting Newtonian lubricants to non-Newtonian lubricants by adding 
mineral oils became an accepted  method22. A decade of studies has determined the effects of lubricants on 
polymer structures. In most cases, polymeric lubricants perform better than Newtonian  ones23. One of the 
early investigations on finite-width journal bearing using non-Newtonian fluid was done by Tayal et al.24. They 
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used the Prandtl model to study the shear thinning and shear thickening of lubricant in cylindrical coordinates. 
Horowitz and  Steidler25 examined the effect of non-Newtonian oil on finite bearing characteristics by employing a 
logarithmic function for viscosity alternations.  Tanner26 focused on a power-law fluid for a short journal bearing.

Wada and  Hayashi27,28 investigated the necessary parameters of a journal bearing for a pseudo-plastic fluid 
assuming a finite width.  Swamy29 computed the load capacity of non-Newtonian lubricants in limited-length 
journal bearings and showed that using non-Newtonian lubricants increases the load capacity. They examined 
the damping properties of non-Newtonian lubricants in journal bearings besides the effect of non-Newtonian 
lubricants on fluid instability. They reported that non-Newtonian lubricants are more stable than Newtonian 
 ones30. Raghunandana et al.31 employed the non-Newtonian model developed by Dien and Elrod to find the 
stability margin for different support parameters of non-Newtonian lubricants.

Das et al.32,33 examined the performance of a hydrodynamic journal bearing under a micropolar lubricant. 
Abdel-Rahman34 studied the flow of non-Newtonian lubricant through a conical bearing in an external mag-
netic field.  Elsharkawy35 used a finite difference scheme to solve a modified form of the Reynolds equation to 
investigate the effect of geometry, pressure distribution, load carrying capacity, side leakage flow, and friction 
factor. The results demonstrated that additives increase the load-carrying capacity but decrease friction and side 
leakage coefficient. Tian et al.36 simulated the non-Newtonian fluid between eccentric cylinders with the finite 
element method. In their study, the flow in the annular gap between the eccentric rotating cylinders was a shear-
extensional controllable flow. Sakim et al.37 showed that couple stresses improve the load capacity and reduce 
friction, while permeability and deformation of a porous elastic journal bearing have reverse trends. Chetti and 
 Zouggar38 presented a numerical study of the effect of elastic deformation on the static characteristics of a cir-
cular journal bearing operating with non-Newtonian fluids obeying the power law model. Li et al.39 numerically 
solved the generalized Reynolds equation, heat conduction, and energy equations to study variations in bearing 
performance due to misalignment. They also showed that thermal effect and surface roughness considerably 
influence lubrication performance. Gwynllyw and  Phillips40 investigated the effect of relaxation time and gap size 
considering the PTT and the Oldroyd-B constitutive equation. Gertzos et al.41 simulated a bearing with Bingham 
fluid as the lubricant using the commercial software Fluent.  Lin42 examined the non-Newtonian effect of couple 
stresses of short journal bearing. The Study showed that decreasing values of the system parameter for constant 
couple stress parameters can shift sub-critical bifurcation into super-critical bifurcation.  Wierzcholski43 used the 
Rivlin-Ericksen constitutive equation to model and solve the lubrication problem for a micro-bearing. Guem-
madi and  Ouibrahim44 investigated the behavior of the generalized Maxwell viscoelastic fluid for lubrication of 
a journal bearing by applying a finite volume method.

Tichy45 used Maxwell’s convective equation to study the effect of the Deborah number on the pressure dis-
tribution. He solved the problem concerning the perturbation theory, and the Deborah number was considered 
as perturbation parameter. Huang et al.46 calculated the pressure distribution for sliding and journal bearings, 
using a second-order fluid model. By varying the thickness of the fluid film, they discovered that the normal 
stress distribution was strictly dependent on the thickness. When it decreased, the normal stresses for a second-
order fluid increased. Akyildiz and  Bellout47 investigated the pressure distribution of a slider bearing for a PTT 
lubricant. They focused on the effect of the Deborah number on the pressure field. Kumar and  Sharma48 evaluated 
a conical hybrid journal bearing with micro-grooves while considering the shear-thinning and piezo-viscous 
behaviors of the lubricant. Chetti et al.49 presented a theoretical study of the effects of elastic deformation and 
viscosity variation with pressure on the performance characteristics of a circular journal bearing lubricated with 
non-Newtonian fluids, considering the Barus law and the power law model. Mokhtari et al.50 looked into the Deb-
orah number’s impact on the pressure distribution and other characteristics using a FENE-P lubricant. Ahmed 
and  Biancofiore51 proposed a new modeling technique based on lubrication theory, considering the viscoelastic 
effects. As a result, they obtained a modified equation for the pressure, i.e., the viscoelastic Reynolds (VR) equa-
tion. They  also52 extended the VR approach to the non-linear finitely extensible non-linear elastic (FENE) type 
constitutive relations that account for the finite extension of the polymer chains and shear thinning.  Soni53 inves-
tigated the numerical solution to predict the dynamic performance of finite bearing considering the combined 
influence of turbulence regime and non-Newtonian flow. Agrawal and  Sharma54 examined the performance of 
micro-grooved hole-entry hybrid spherical thrust bearing (HSTB), considering the non-Newtonian behavior 
of the lubricant. Hashemabadi and  Mirnajafizadeh55 solved the lubrication problem analytically by considering 
the SPTT model as representing fluid. They investigated the effects of some variables on velocity and pressure 
distribution. They also examined the impacts of changing the slope of the slider bearing.

Li et al.56 considered the upper-convected Maxwell model (UCM) to study the lubrication problem. In addi-
tion to the Deborah number, they also took interest in eccentricity (ε) effects. They showed that the viscoelastic 
property of the fluid causes increase of the lubricant’s pressure distribution and positively affects the lubrication 
procedure. Nessil et al.57 analyzed various aspects of lubrication theory, including heat transfer for a power-law 
fluid, and discussed the hydrodynamic parameters of the bearing. They concluded that the power-law index (n) 
plays a significant role in temperature distribution. Further, they examined the load capacity, pressure distribu-
tion, temperature distribution, and frictional force.  Li58 conducted a study on non-Newtonian lubrication. The 
PTT constitutive equation represented the lubricant fluid, and they considered the Deborah number as the per-
turbation parameter. Soni and  Vakharia59 studied turbulence effects in addition to the non-Newtonian influence 
of lubricants in cylindrical coordinates for a finite journal bearing. Ng and Pan’s linear turbulence model was 
applied in the finite element method to analyze the problem. Abbaspur et al.60 analyzed the viscoelastic lubri-
cation of a thrust bearing using the Giesekus constitutive equation. In their work, Cartesian coordinates were 
employed, while the present investigation necessitated the use of polar coordinates due to the journal bearing 
geometry. They used perturbation theory and considered the mobility factor as the perturbation parameter. From 
the geometry perspective, it is worth mentioning that the current study focused on the journal bearing (with the 
rotational motion of shaft), whereas in the Abbaspur et al.60 the geometry was sliding bearing with reciprocating 
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motion. in the current study for the first time, the role of two parameters for journal bearings: the elongational 
viscosity and the first normal stress difference compared.

Most models used to investigate the lubrication problem for a non-Newtonian fluid were simple and linear 
models. They could not predict the behavior of these fluids precisely. For more reliable results, nonlinear and 
complex models such as the Giesekus, FENE-P61, and Phan-Thein-Tanner (PTT)  model62 are better choices. 
Viscoelasticity is the property of a material to demonstrates both viscous and elastic properties under the same 
conditions when it undergoes deformation. Broadly speaking, viscoelasticity is divided into two major fields: 
linear and nonlinear. Linear viscoelasticity is the field of rheology devoted to the study of viscoelastic materials 
under very small strain or deformation where the displacement gradients are very small, and a linear relation-
ship between stress and rate of strain for linear materials can describe the flow regime. In principle, the strain 
has to be sufficiently small so that the material’s structure remains unperturbed by the flow  history63,64. The 
linear viscoelastic models have several limitations. For example, they cannot describe strain rate dependence 
of viscosity or normal stress difference phenomena since they are nonlinear effects. Due to the restriction to 
infinitesimal deformations, the linear models may be more appropriate for describing viscoelastic solids rather 
than viscoelastic fluids. Despite the limitations of the linear viscoelastic models and despite being of less interest 
to the study of flow where the material is usually subject to large deformation, they are very important in the 
study of viscoelasticity for several  reasons65,66.

1. They are used to characterize the behavior of viscoelastic materials at small deformations.
2. They serve as a motivation and starting point for developing nonlinear models since the latter are generally 

extensions to the linear.
3. They are used for analyzing experimental data obtained in small deformation experiments and for interpret-

ing important viscoelastic phenomena, at least qualitatively.

On the other hand, in reality many of fluids are nonlinear, with large deformations, and with nonlinear 
response in the presence of such deformations. Nonlinear viscoelastic behavior is usually exhibited when the 
deformation is large and most of the time when the material changes its properties under . It is worth mentioning 
that they can describe strain rate dependence of viscosity or normal stress phenomena since these are nonlinear 
effects. For these reasons, nonlinear viscoelastic mathematical models are needed. Among the nonlinear models, 
the Giesekus model obtained the most precise outcome due to its generality for the lubrication problem. The 
Giesekus viscoelastic model is based on a molecular configuration and describes non-linear viscoelastic proper-
ties. Also, this model describes many parameters such as linear regions (power-law) of viscosity, the first and 
second normal stress coefficients, the continuous strain-hardening elongational viscosity with a finite asymptote, 
the complex viscosity, and start-up curves.

This Study presents an analytical solution for hydrodynamic lubrication of a journal bearing with variable 
film thickness using Giesekus fluid for the first time. The equations were solved using the perturbation method, 
and the mobility factor was employed as the perturbation parameter. The effects of the mobility factor, the Weis-
senberg number, eccentricity of pressure distribution, the first and second normal stress differences, and load 
capacity are discussed. In this paper, the contribution of each normal force via stress ratio (SR) analysis (ratio 
of normal stress arising from elongational viscosity to the first normal stress difference) distinguish which can 
be considered the main innovative aspect of the present study. Also the flow type parameter to distinguish the 
flow type from kinematic point of view is used. It is a term that can be used to describe certain characteristics 
or properties related to the flow behavior of fluids, particularly in the field of fluid dynamics and rheology. This 
parameter provides information about how a fluid flows or behaves under different conditions. Depending on 
the context, various flow type parameters may be relevant. It helps determine flow regimes, predict flow patterns, 
and design efficient systems.

The main innovative aspects of the present study can be summarized as follows:

• A new analytical solution for nonlinear viscoelastic lubrication in journal bearings is presented.
• The role and contribution of the first normal stress difference and the elongational viscosity on the load 

capacity are investigated via the stress ratio and flow type parameter.
• The effects of mobility factor, fluid elasticity, and geometrical properties on journal-bearing lubrication via 

viscoelastic fluids are studied in detail.

Governing equations and constitutive equation
The governing equations for incompressible viscoelastic fluids are the continuity and momentum.

equations, given  by67:

where Ṽ  is the velocity vector, ρ̃  is the density,  p̃ is the pressure, and τ̃  is the stress tensor. Here, the superscript 
“ ~ ” is used to characterize the quantities with dimension, and 

−→
∇  is the gradient operator. The Giesekus model 

was used for the constitutive equation to model the stress  field64:

(1)−→
∇ · Ṽ = 0

(2)ρ̃

(

Ṽ ·
−→
∇

)

Ṽ = −
−→
∇ p̃+

−→
∇ · τ̃
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where α is the mobility factor, �̃ is the relaxation time, η̃0 is the viscosity at zero shear rate, and D̃ is the deforma-
tion rate defined as:

The superscript “T” is the transpose operator, and 
∇

τ̃  is the upper convected derivative of the stress tensor:

The Giesekus model is based on molecular concepts and represents many of the characteristics of viscoelastic 
fluids well. In this model, the viscoelastic component of the extra stress tensor is depicted with the parameters 
η̃0 , �̃ , and α . This model has gained prominence because it describes the power-law regions for viscosity and 
normal-stress coefficients and reasonably explains the elongational viscosity and complex  viscosity61. It should 
be noted that the values of �̃ for lubricants used in bearings are in the range of 10−4

− 10−645,56 and physically 
acceptable mobility factor ( α ) values are 0 < α < 0.568.

The geometry of the journal bearing system used in this study is shown in Fig. 1. A journal bearing consists 
of an approximately cylindrical body around a rotating shaft, used either to support a radial load or simply as 
a guide for smooth transmission of torque. It involves a stationary sleeve (or bushing) with a complete 360◦ arc 
or various arrangements of a partial arc or arcs in a housing structure, as shown in Fig. 1a. The inner surface is 
commonly lined with a soft bearing material such as lead or tin babbitt, bearing bronze, or a plastic. When motion 
is initiated, the shaft first rolls up the wall of the sleeve in the direction opposite to rotation due to metal-tometal 
friction between the steel shaft and the bearing bore.With an adequate lubricant supply, a supporting wedge-
shaped film of lubricant is almost immediately formed to lift the journal into its steady-state position. Figure 1b 
shows the components of pressure projected along the line of centers (radial direction R and tangential direction 
perpendicular to the line of centers T). As the figure depicts, the circular shaft rotates with an angular velocity 
ω̃ . The radius of the journal is R̃ which is smaller than the radius of the bearing surrounding it.

The thickness of the lubricant layer varies according to the angular position θ and can be expressed as follows:

where ε is the relative eccentricity, δ̃  is the radial gap size (the difference between the radius of bearing and 
journal), and e is the eccentricity. As the figure depicts, the space between the bearings and the journal is very 
tight and varies between H̃ − δ̃   and H̃ + δ̃ .

As an assumption, the cavitation is not considered in this study, However, it’s important to note that there 
may be concerns about cavitation or other fluid-related issues in some specialized bearing applications, such 
as high-speed or high-load scenarios. In such cases, engineers and lubricant manufacturers may take steps to 
address these concerns, which could include selecting lubricants with specific additives or properties to mitigate 
the risk of cavitation or other issues related to fluid dynamics. Using updated cavitation models for solving the 
governing equation can be a new study, and we will start this issu.

The first step to analyze the lubrication problem in the journal bearing is investigating the fluid flow in a 
Cartesian coordinate system. In order to non-dimensionalize the governing and constitutive equations, the fol-
lowing dimensionless parameters are defined:

where Wi is the Weissenberg number, which expresses the ratio of the elastic force to the viscous force. De called 
the Deborah number and in order to characterize the intrinsic fluidity of a material or how ‘‘fluid-like’’ the mate-
rial is, this number has been introduced. After deriving the governing and constitutive equations by applying the 
appropriate  assumptions60, the following non-dimensionalized equations can be derived:

(3)τ̃ +
α�̃

η̃0
τ̃
2
+ �̃

∇

τ̃= 2η̃0D̃

(4)D̃ =
1

2

(
−→
∇ Ṽ +

−→
∇ Ṽ

T
)

(5)
∇

τ̃=

(

Ṽ ·
−→
∇

)

τ̃ −

{(
−→
∇ Ṽ

)T
· τ̃ + τ̃ ·

(
−→
∇ Ṽ

)}

(6)H̃ = δ̃(1+ εcosθ), ε =
ẽ

δ̃

(7)
ũ

Ũ
= (u.v),Wi =

�Ũ

δ
, De =

�Ũ

R
,

τ̃

η̃0Ũ/δ̃
=

(
σ τ

τ γ

)

, p =
p̃

η̃0ŨR̃/δ̃2
, y =

ỹ

δ̃
, x =

x̃

R̃
, h =

H̃

δ̃
.

(8)ux + vy = 0,

(9)px = τy ,

(10)σ + αWi
(
σ 2

+ τ 2
)
= 2Wiτuy ,

(11)τ + αWi(σ + γ )τ = (1+Wiγ )uy ,
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The dimensionless form of the fluid film thickness can be written as

Perturbation solutions
The implemented method to linearize the equations is the perturbation method. The mobility factor, α , was 
employed as the perturbation parameter because its value is always less than one. Therefore, it is a good choice 
because we can derive solutions that predict high-order nonlinearity without serious convergence problems. For 
α = 0 , the solution is simplified to the UCM lubrication problem, so the high-order terms specify the deviations 
from the quasilinear to the nonlinear response. Hence, the variables in the Eqs. (8) to (12) expanded as follows:

(12)γ + αWi
(
τ 2 + γ 2

)
= 0.

(13)h(θ) = 1+ εcosθ

(14)

p = p0 + αp1 + α2p2 +O
(
α3

)
,

u = u0 + αu1 + α2u2 +O
(
α3

)
,

σ = σ0 + ασ1 + α2σ2 +O
(
α3

)
,

γ = γ0 + αγ1 + α2γ2 +O
(
α3

)
,

τ = τ0 + ατ1 + α2τ2 +O
(
α3

)
.

Figure1.  (a) Journal bearing geometry. (b) Coordinate systems and force components in a journal bearing.
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Reynolds equations
Considering the exhibited geometry, the velocity boundary conditions can be written as

The dimensionless Reynolds equations in a polar coordinate system where x̃ = R̃θ and dx̃ = R̃dθ can be 
obtained from zero to second order as  follows5,69:

Zero-order Reynolds equation:

The first-order Reynolds equation:

The second-order Reynolds equation:

In order to solve Reynolds equations using the change of variables, the following assumptions proposed by 
 Somerfield5,69 are considered:

The pressure boundary conditions for the present problem are written as:

An unwrapped schematic of the film shape is shown in Fig. 2. According to the figure, hmin = (1+ εcosθm), 
and θm represents the circumferential angle at which dp/dθ = 0.

Finally, after solving Reynolds equations, by considering Sommerfeld’s assumption and pressure boundary 
conditions, the final form of Eq. (14) can be expressed as follows:

(15)
At y = 0 : u = 1
At y = h : u = 0

(16)
∂

∂θ

(
dp0

dθ
h3
)

= 6
∂h

∂θ

(17)
∂

∂θ

(
dp1

dθ
h3
)

= −9Wi2
∂

∂θ

[

1

20

(
dp0

dθ

)3

h5 +
dp0

dθ
h

]

(18)

∂

∂θ

(
dp2
dθ

h3
)

=
∂

∂θ

[

−
15

112

(
dp

dθ

)5

Wi4h7 +
3

10

(
dp0
dθ

)3

h5Wi2 + 6

(
dp0
dθ

)3

h3Wi4

−
27

20

(
dp0
dθ

)2 dp1
dθ

h5Wi2 + 6
dp0
dθ

Wi2h

−9
dp1
dθ

Wi2h+
29

h

dp0
dθ

Wi4
]

(19)sinθ =

√
1− ε2sinψ

1− εcosψ
, cosθ =

cosψ − ε

1− εcosψ
, dθ =

√
1− ε2

1− εcosψ
dψ

(20)p(0) = 0, p(2π) = 0,
dp

dθ

)

h=hmin

= 0.

(21)p =

{

6εsinθ(2+ εcosθ)
(
2+ ε2

)
(1+ εcosθ)2

}

+ αp1 + α2p2 +O
(
α3

)

Figure 2.  Film thickness in an unwrapped journal bearing.
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Due to the large size of the solution of pressure distribution, p1(θ) and p2(θ) are presented in the appendix 
in supplementary material.

Load-carrying capacity
Load bearing capacity is the maximum ability of a journal bearing to take loading before failure occurs. Once 
the pressure distribution is determined, the load capacity can be calculated. The radial and tangential nondi-
mensional load capacity obtained by the integration of nondimensional pressure along and perpendicular to the 
line of centers are expressed in Eq. (25):

After integration and simplification, the different orders of load-carrying capacity are written as follows:

Important parameters
The first and second normal stress differences are two important rheological properties of viscoelastic liquids. The 
shear flow of polymeric solutions is not isotropic due to the alignment of polymeric chains along the streamlines, 
and it causes an imbalance between the normal forces:

where N1 and N2 are the first and the second normal stress differences, and �̃1 and �̃2 are their corresponding 
coefficients. In Eqs. (27) and (28), the subscript 1 on τ denotes the shear flow direction, 2 denotes the direction of 
the variation of velocity profile, and 3 denotes the third right-hand direction. The viscosity and the coefficients of 
the first and the second normal stress differences are usually known as the viscometric functions. The viscometric 
functions of the Giesekus model in the simple shear flow can be expressed as  follows64:
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where

where ˜̇γ  is the shear rate, and κ̃  is the retardation time constant of the model.
The viscoelastic liquids exhibit a strain-hardening resistance against elongational deformations. The elon-

gational viscosity of the Giesekus model in the steady uniaxial extensional deformation can be obtained from 
the following relationship:

where ε̇ is the strain rate, and ηE is the extensional viscosity. The combined effects of normal stress differences 
and extensional viscosity in such flows are rather complex. To compare the role of elongational viscosity and the 
first normal stress difference, we defined a parameter that is known as the stress ratio, SR:

where subscripts E and S denote the contribution of elongational and shear effects in a mixed flow, respectively.
The flow type parameter, ξ, is another useful dimensionless factor to identify the contribution of different 

types of deformations in a mixed flow:

where ‖Dj‖ and ‖�j‖ are the magnitudes of the rate of deformation and vorticity tensors:

Unlike the stress ratio, ξ is a kinematic parameter and may vary within the range [− 1, 1], in which ξ = − 1 
characterizes a solid-like rotational flow, ξ = 1 characterizes a pure extensional flow, and ξ = 0 characterizes a 
simple shear flow.

Validation
Upper convective maxwell validation
The work of Liu and  Grecov70 was used to validate the present solution. They employed the UCM model for 
viscoelastic fluid within a journal bearing. The UCM model is a differential generalization of the Maxwell model 
for the case of large deformations based on the upper-convected time derivative. According to the UCM the 
shear viscosity and the first normal stress difference are independent of shear rate and hence the model fails to 
describe the behavior of most viscoelastic fluids. Furthermore, it predicts a steady-state elongational viscosity 
that becomes infinite at a finite elongation rate, which is obviously far from physical reality. A major limitation of 
the UCM is that it do not allow for strain dependency and second normal stress difference. To account for strain 
dependent viscosity and non-zero second normal stress difference among other phenomena, more sophisticated 
models such as Giesekus which introduce additional parameters should be considered. This equation, Giesekus 
model, however, has rarely been used because of the theoretical and experimental complications it introduce.

The model can be written as:

To verify the precision of the perturbation method, a comparison was made with the UCM model’s results. 
There are resemblances between the behaviors of the Giesekus model (Eq. 3) and the UCM model. For α = 0, 
the model is simplified to the isotropic UCM  model71. In the study by Kai Liu and Dana Grecov, two parameters 
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are available for validation along the cylinder: pressure distribution and shear stress. Given the relevance of these 
parameters to the context of journal bearings, the pressure distribution have chosen. This selection is based on the 
crucial role pressure distribution plays in journal bearings, as it directly influences their load-carrying capacity, 
friction reduction, lubrication efficiency, stability, wear and tear, and overall performance.

Figure 3 illustrates the comparison of the pressure distribution between Giesekus and UCM models. The 
results of Liu and  Grecov70 are consistent with a perturbation method. Another point to note is that as the Weis-
senberg number decreases (Fig. 3), the pressure distribution decreases, similar to the work of Liu and  Grecov70. 
However, on closer inspection, it is noticeable that when reducing the Weissenberg number, the validation 
becomes much more accurate. Therefore, the outputs were taken with lower Weissenberg numbers.

Newtonian lubricant validation
The exact solution of the pressure distribution equation for a journal bearing assuming Newtonian lubricant 
( pN )  is69:

The case of α = 0 and �̃ = 0 in Giesekus model (Eq. 3) is the Newtonian lubrication scenario. The results 
of the perturbation solution, such as the load capacity of the bearing, have excellent agreement with the exact 
solution when α and �̃ are equal to zero. Therefore, according to the two validations above, the mobility factor 
can be a good choice as a perturbation parameter for solving the equation using the perturbation method.

Results and discussion
Pressure distribution
Generally, we should consider 0 < α < 0.5 for realistic  properties64. After applying the perturbation theory, con-
sidering α as the perturbation parameter for the fourth order, and comparing the results with some  works40,70, 
it has been found that the best range in which the desired answers are correct is 0 < α < 0.3. Figure 4 displays the 
effects of the eccentricity ratio on the pressure distribution. As the eccentricity ratio increases, the fluid-bearing 
pressure increases. Due to the continuity equation and Bernoulli’s principle, the amount of pressure rises sig-
nificantly to the apex at approximately θ = 180 because the radial gap size, δ̃  , reaches its minimum value in this 
region. After crossing the utmost point, it experiences a decreasing trend until it finally reaches zero. An issue to 
notice is that the pressure distribution is symmetric and possesses positive amounts in the convergence region 
( 0◦ < θ < 180◦ ) of the journal bearing. Then the fluid film flow enters the diverging area 180◦ < θ < 360◦  and 
yields a negative pressure until the value finally reaches zero at θ = 360◦.

Figures 5 and 6 emphasize how the mobility factor and the Weissenberg number alter the pressure distribu-
tion. With the increase of the mobility factor and the Weissenberg number, the pressure value decreases before 
θ = 180◦ , and an upward trend follows. Evidently, increasing the mobility factor decreases the pressure distri-
bution. It is noteworthy that since the mobility factor in the Giesekus model is in the range of 0 < α < 1 , the 
model behaves as a shear-thinning  fluid71. Hence, it is expected that when increasing the value of α , the fluid 
viscosity ( η0 ) decreases, and the pressure distribution simultaneously decreases. Another point is that the pressure 

(37)pN =
6εsinθ(2+ εcosθ)

(
2+ ε2

)
(1+ εcosθ)2

Figure 3.  Comparison of UCM model’s pressure distribution with perturbation solution of Giesekus fluid for α 
= 0 and ε = 0.2.
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distribution behavior for all of the parameters is almost identical, but there is a slight difference; in particular, it 
is obvious that the mobility factor is changing.

Shear stress variations
Figures 7, 8 and 9 show shear stress versus angle variations on the inner cylinder for different parameters. Fig-
ure 7 illustrates the influence of the mobility factor on shear stress. Initially, a decrease in shear stress is seen 
as the angle grows larger until it hits its maximum at 180◦ < θ < 210◦ . At θ ≈ 180◦ , specifically relating to low 
mobility factors, a noticeable difference is identifiable in the range of 180◦ < θ < 210◦ . Beyond this zone, the 
behavior of τ and its values for all the mobility factors are almost the same. Increasing the mobility factor in the 
Giesekus model leads to an increase in shear stress because it enhances the material’s elastic response and its 
ability to resist deformation, store energy, and generate shear stress as a result.

Figure 8 displays the Weissenberg number’s effects on shear stress. As it can be seen, the shear stress profile 
shows roughly symmetric behavior for various Weissenberg numbers. At θ = 120◦ , there is a gradual decrease for 
τ . Next, it falls dramatically until it peaks at 180◦ < θ < 210◦ . In the end, it follows a symmetric distribution. Fur-
thermore, the shear stress profile changes substantially when the Weissenberg number is further increased. The 
material can store deformation energy and release it over time. As the material experiences shear deformation, 

Figure 4.  Dimensionless pressure distribution for different eccentricity ratios assuming Wi = 0.2andα = 0.1.

Figure 5.  Dimensionless pressure distribution for different mobility factors assuming Wi = 0.2andε = 0.3.
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the elastic component of the material resists the change in shape. This resistance to deformation results in the 
generation of shear stress within the material. In materials with a high Weissenberg number, the elastic response 
causes a delay in reaching a steady-state deformation. The material "remembers" the deformation, and the shear 
stress continues to increase until the material fully responds to the applied deformation. The elastic component 
of the material stores energy during deformation, and this stored energy contributes to an increase in shear stress 
until the material reaches equilibrium.

Figure 9 illustrates the shear stress variations concerning the eccentricity ratios. The results for ε < 0.5 are 
interpreted roughly as in Fig. 8. At ε < 0.5 , the shear stress variations are dissimilar to other characteristics. It first 
moves upward, then downward. Additionally, it is intriguing that the maximum and the minimum values occur 
in a tight range of angle change, and there is a considerable shift in shear stress in the range of 170◦ < θ < 190◦ . 
This change causes an asymmetric shear stress distribution at ε < 0.5 . As the eccentricity ratio increases, the 
journal moves away from the central position within the bearing. This means that the lubricating oil film between 
the journal and the bearing surface becomes thinner on one side (in the current study it happen around θ = 180) 
and thicker on the other side due to the offset. When there is a variation in shear rate, it results in increased 
shear stress within the lubricant. In areas where the lubricant film is thinner, the shear rate is higher, leading 
to higher shear stresses. In contrast, where the film is thicker, the shear rate is lower, resulting in lower shear 

Figure 6.  Dimensionless pressure distribution for different Weissenberg numbers assuming α = 0.1andε = 0.2.

Figure 7.  Shear stress variations for different mobility factors assuming Wi = 0.2andε = 0.3.
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stresses. Higher eccentricity ratios can create higher shear stress regions in the bearing, which are essential for 
load-carrying capacity but must be managed to prevent excessive wear and overheating.

Apparent First normal stress difference
One of the most relevant effects of elasticity on a flow is related to the apparent first normal stress difference. In 
a journal bearing, the flow type is mixed (elongation and shear), so the total amount of normal stress difference 
resulting from shear and elongation is considered as the apparent first normal stress difference. Figures 10, 11 
and 12 demonstrate the profiles of the apparent first normal stress difference on the inner cylinder for various 
relaxation times. The apparent first normal stress difference for polymeric fluids is practically always posi-
tive. Generally, this behavior can be noticed in all the apparent first normal stress difference figures. For a first 
approximation, this indicates that polymeric fluids exhibit extra tension in addition to the shear stresses along 
the streamlines in the “1”  direction64.

For all three influential parameters (mobility factor, Weissenberg number, and eccentricity ratio), the apparent 
first normal stress difference first has a descending trend followed by an increasing trend. At first glance, aug-
menting each of the three parameters magnifies the amount of apparent first normal stress difference. Moreover, 

Figure 8.  Shear stress variations for different Weissenberg numbers assuming α = 0.1andε = 0.3.

Figure 9.  Shear stress variations for different eccentricity ratios assuming Wi = 0.2andα = 0.1.
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the apparent first normal stress difference profiles are almost flat for low relaxation times. Changes to the stress 
profiles due to changes in influential parameters are clearly nonlinear and display significant viscoelastic effects.

According to Figs. 10 and 12, the trend of change is similar for different values of the mobility factor and 
Weissenberg number. When increasing these quantities, the distance between extremum points decreases, and 
the highest value of the apparent first normal stress difference also occurs at θ ≈ 180◦ . Figure 12 exhibits that for 
ε ≤ 0.4 , the trend is similar, and no notable difference is seen. However, after passing this value, the variations of 
the apparent first normal stress difference change substantially (especially for 180◦ < θ < 210◦).

Load capacity of bearing
Figures 13 and 14 present the evolution of load capacity on the inner cylinder for various mobility factors and the 
Weissenberg number in terms of the eccentricity ratio. Changes for both parameters are initially linear ( ε ≤ 0.4 ) 
and have predictable trends. However, changes in the mobility factor and the Weissenberg number do not impact 
the bearing capacity distribution in this area. For ε > 0.4 , the trend of changes is exponential, and an effect of 

Figure 10.  Variations of the apparent first normal stress difference for different mobility factors assuming 
Wi = 0.2andε = 0.3.

Figure 11.  Variations of the apparent first normal stress difference for different Weissenberg numbers assuming 
α = 0.1andε = 0.3.
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changes in parameters is observable, especially for the Weissenberg number. The results point out the dominant 
influence of elastic properties with respect to viscosity effects, as mentioned before.

Consequently, this makes the journal bearing work more efficiently and safely since high load capacity 
maintains a minimum thickness of lubricant that is necessary between two relatively moving surfaces. This 
is a beneficial impact of viscoelasticity on journal-bearing performance. An increase in eccentricity enhances 
the load capacity. This is consistent with the experimental observations of higher load capacity load for higher 
 eccentricity10. According to the Fig. 13, as the mobility factor increases, it implies that the fluid can respond 
more quickly to changes in shear deformation. In a journal bearing, where there is relative motion between 
the journal and the bearing surface, the lubricating fluid experiences shear deformation due to this motion. A 
faster response to shear means that the lubricating fluid can build up a thicker lubricating film more quickly 
between the journal and the bearing surface. With a thicker lubricating film and reduced friction, the bearing 
can support higher loads without excessive heat generation or wear. This can lead to an increase in load-carrying 
capacity. Figure 14 shows the elastic effects can enhance the load carrying capacity in certain situations. When 
a viscoelastic fluid is subjected to deformation or shear, the polymer chains in the fluid can stretch and store 

Figure 12.  Variations of the apparent first normal stress difference for different eccentricity ratios assuming 
Wi = 0.1andα = 0.1.

Figure 13.  Effect of the mobility factor on bearing load capacity depending on eccentricity ratio assuming 
Wi = 0.2.
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elastic energy. This elastic energy can help support and distribute the load, increasing the load carrying capacity 
which cannot be seen in Newtonian lubricants.

Stress ratio
As mentioned before, the stress ratio (SR) is defined as the ratio of stress resulting from the elongational viscos-
ity to the first normal stress difference. A diagram of SR along the angular coordinate θ is shown in Figs. 15, 16, 
17 and 18 according to the variation of ε , Wi, α, and De. As the figures illustrate, two areas are very important: 
120◦ < θ < 180◦ and 180◦ < θ < 240◦ . Figure 15 depicts how the stress ratio, SR, changes with the alteration of 
the eccentricity ratios. Decreasing ε leads the fluid flow to a narrowing gap; therefore, the surface areas in the 
zone are under remarkable stress.

According to Fig. 16, increasing the Weissenberg number results in the decrease of SR. Consequently, it 
reaches zero at Wi = 1. The impact of mobility factors and Deborah numbers on SR is shown in Figs. 17 and 18. 
Just under θ = 240◦ . Increasing α and particularly De have significant influences on SR. If the Deborah number 

Figure 14.  Effect of the Weissenberg number on bearing load capacity depending on eccentricity ratio 
assuming α = 0.1.

Figure 15.  Variations of the stress ratio, SR, for different eccentricity ratios assuming Wi = 0.1, α = 0.1 and 
De = 0.01.
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increase, polymer molecules that are distorted by the flow will not have time to relax during the time scale of 
the process or experiment. Therefore, according to Fig. 18, at about θ = 240◦ , increasing the Deborah number 
has resulted in an overwhelming growth in the value of SR. Consequently, in this zone, the contribution of 
normal stress differences and extensional viscosity is higher than in other areas. According to Eq. (34), there is a 
direct correlation between SR and extensional viscosity (ηE) . However, overall, for κ = 0 and α≠0, the following 
asymptotic formula  holds64:

As a result, the magnitude of the elongational viscosity, which characterizes a fluid’s resistance to elongational 
deformation, is higher than the first normal stress difference in the present problem. Moreover, because of their 
long chain molecules, polymers exhibit stiff resistance to any elongational deformation; therefore, the elonga-
tional viscosity of a polymer is generally quite high.

(38)ηE ∼
2η0

α

Figure 16.  Variations of the difference in stress ration, SR, for different Weissenberg numbers assuming α = 0.1, 
ε = 0.3 and De = 0.01.

Figure 17.  Variations of the difference in stress ratio, SR, for different mobility factors assuming Wi = 0.1, ε = 0.3 
and De = 0.01.
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Flow type parameter
Figure 19 presents the impacts of the mobility factor, eccentricity ratio, and Weissenberg number on flow type 
parameters for the Giesekus model at different axial positions. Overall, it is clear that in all contours, the gen-
eral type of flow is simple shear flow (ξ = 0). Nevertheless, there are two symmetrical points around θ = 180◦ 
at which we have pure extensional flow (ξ = 1). To be more precise, regarding Fig. 19a, increasing the mobility 
factor shows no remarkable change in the fluid flow, and approximately, the positions of two points at which we 
have extensional flow are stable at almost θ = 130◦and220◦ . On the other hand, as Fig. 19b depicts, increasing 
the figure of eccentricity ratio leads to the fluid within the journal bearing experiencing a pure extensional flow 
close to θ = 180◦ . Surprisingly, an increase in the Weissenberg number causes a new location to appear around 
θ = 90◦ with another extensional flow area. The flow type parameter, is crucial in determining the lubrication 
regime and, consequently, the performance and reliability of journal bearings. Proper design and lubricant 
selection are essential to ensure that the bearing operates within the desired hydrodynamic regime to minimize 
wear and maximize load-carrying capacity.

Conclusions
The present study looked at the effect of viscoelastic fluid lubrication on the performance of journal bearings by 
employing the Giesekus model. The major variables of the Giesekus fluid flow in a journal bearing were developed 
by applying the perturbation theory.

The main conclusions drawn from the present study are:

• As the eccentricity ratio increases, the pressure distribution of the fluid increases, while with the increase of 
the mobility factor and the Weissenberg number, the pressure distribution decreases.

• Mobility factor variations have no significant effects on the bearing pressure distribution.
• The first normal stress difference for variation of all three effective parameters (the mobility factor, the Weis-

senberg number, and the eccentricity ratio) initially shows a downward trend and then an upward trend while 
by increasing all three parameters, the first normal stress difference also increases.

• The second normal stress difference alternations for the mobility factor, the Weissenberg number, and the 
eccentricity ratio are similar. For large values of independent variants, the dependent quantity fluctuates 
more evidently. The extreme amounts are near the narrowest region of a journal bearing.

• The bearing load capacity can be divided into two parts: a linear region where the mobility factor and Weis-
senberg numbers have little effect and the bearing load distribution increases linearly, and a second area 
where load capacity changes are exponential.

• When the Weissenberg number is zero, it implies that elastic effects are negligible, and the fluid can be 
treated as a simpler, Newtonian fluid. As a result, you can observe that increasing the Weissenberg number 
significantly affects bearing load capacity when using a viscoelastic fluid compared to a Newtonian fluid.

• When a viscoelastic fluid experiences deformation or shear, the polymer chain within the fluid have the 
capacity to elongate and retain elastic energy. This elastic energy can help support and distribute the load, 
increasing the load carrying capacity and a feature not observed in conventional Newtonian lubricants.

• Increasing the mobility factor in the Giesekus model leads to an increase in shear stress than Newtonian 
lubricants because it enhances the material’s elastic response and its ability to resist deformation, store energy, 
and generate shear stress as a result.

Figure 18.  Variations of the difference in stress ratio, SR, for different Deborah numbers assuming Wi = 0.1, 
ε = 0.3 and α = 0.1.
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• Greater eccentricity ratios can lead to the formation of elevated shear stress areas within the bearing. While 
these regions are vital for supporting loads, it’s imperative to effectively control them to avoid excessive wear 
and overheating.

• Polymers exhibit a stiff resistance to any elongational deformation due to their long chain molecules; hence, 
the elongational viscosity of a polymer is naturally high. Therefore, this subject can be monitored particularly 
where the flow has higher viscoelasticity, such as θ = 240◦ and De = 1.

• Generally, the fluid flow is similar to a simple shear flow except around θ = 180◦, where we have a pure 
extensional flow.

Figure 19.  Flow-type parameter (ξ) contours for (a) different mobility factors assuming Wi = 0.1 and ε = 0.3, (b) 
different eccentricity ratios assuming Wi = 0.1 and α = 0.1, (c) different Weissenberg numbers assuming α = 0.1 
and ε = 0.3.
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