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Application of ensemble 
machine learning approach 
to assess the factors affecting 
size and polydispersity index 
of liposomal nanoparticles
Benyamin Hoseini 1, Mahmoud Reza Jaafari 2,3, Amin Golabpour 4, 
Amir Abbas Momtazi‑Borojeni 5,6, Maryam Karimi 7 & Saeid Eslami 1,8*

Liposome nanoparticles have emerged as promising drug delivery systems due to their unique 
properties. Assessing particle size and polydispersity index (PDI) is critical for evaluating the quality 
of these liposomal nanoparticles. However, optimizing these parameters in a laboratory setting is 
both costly and time‑consuming. This study aimed to apply a machine learning technique to assess 
the impact of specific factors, including sonication time, extrusion temperature, and compositions, 
on the size and PDI of liposomal nanoparticles. Liposomal solutions were prepared and subjected to 
sonication with varying values for these parameters. Two compositions: (A) HSPC:DPPG:Chol:DSPE‑
mPEG2000 at 55:5:35:5 molar ratio and (B) HSPC:Chol:DSPE‑mPEG2000 at 55:40:5 molar ratio, 
were made using remote loading method. Ensemble learning (EL), a machine learning technique, 
was employed using the Least‑squares boosting (LSBoost) algorithm to accurately model the data. 
The dataset was randomly split into training and testing sets, with 70% allocated for training. The 
LSBoost algorithm achieved mean absolute errors of 1.652 and 0.0105 for modeling the size and 
PDI, respectively. Under conditions where the temperature was set at approximately 60 °C, our EL 
model predicted a minimum particle size of 116.53 nm for composition (A) with a sonication time of 
approximately 30 min. Similarly, for composition (B), the model predicted a minimum particle size of 
129.97 nm with sonication times of approximately 30 or 55 min. In most instances, a PDI of less than 
0.2 was achieved. These results highlight the significant impact of optimizing independent factors 
on the characteristics of liposomal nanoparticles and demonstrate the potential of EL as a decision 
support system for identifying the best liposomal formulation. We recommend further studies to 
explore the effects of other independent factors, such as lipid composition and surfactants, on 
liposomal nanoparticle characteristics.

Abbreviations
HSPC  Hydrogenated soy phosphatidylcholine
DPPG  Dipalmitoyl-phosphatidylglycerol
Chol  Cholesterol
DSPE-mPEG2000  Distearoyl-glycero-3-phosphoethanolamine- methoxypolyethylene glycol2000
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Over the past few decades, the field of drug delivery has experienced significant growth, with further innovations 
 anticipated1–3. Drug delivery systems describe how pharmaceutical compounds are ‘packaged’—like a nanoparti-
cle—that protects the pharmaceutical compounds from  degradation4. In recent years, Nano-drug delivery systems 
(NDDS) have emerged as a promising approach to overcome the challenges associated with drug delivery, which 
can limit its therapeutic  potential5–10. NDDSs enable controlled release and targeted delivery of pharmaceutical 
compounds while reducing non-specific interactions in undesirable  tissues11–14. The size of nanoparticles affects 
most phenomena, such as selective targeting of tumors and enhanced oral drug  absorption15,16. Evidence suggests 
that smaller particles are more effective in reaching their intended  targets17. Thus, particles should be controlled 
for their size and size distribution in NDDSs. Size distribution is described by the polydispersity index (PDI), 
specifying the uniformity of nanoparticles, which a PDI value of 0.1 to 0.25 indicates a narrow size distribution 
while a PDI greater than 0.5 refers to a broad  distribution18,19.

Particle size and PDI are two essential parameters of evaluating a formulation of drug-loaded 
 nanoparticles20–25, which depend upon different factors such as compositions, sonication time, and extrusion 
 temperature24. To obtain a minimum particle size with a narrow size distribution, these independent factors 
are routinely manipulated by empirical methods, relying on the iterative TRAIL-and-ERROR  approach20,24. The 
substantial drawbacks of this method are the restricted number of experiments and the one-factor-at-a-time 
approach to doing these  experiments26,27. Besides, this approach ignores the interactions between the factors 
affecting a parameter. Accordingly, developing models that can predict the size and PDI of nanoparticles would 
be very beneficial, as it will save cost by preserving the materials consumed during the optimization of the 
formulations.

Design of Experiments (DoE), exemplified by Box-Behnken designs, serves as the primary experimental 
framework within response surface methodology (RSM)7. Artificial Neural Networks (ANNs) and RSM repre-
sent two distinct techniques harnessed for the optimization and prediction of nanoparticle  characteristics26,28–40. 
ANNs are characterized by their data-driven approach, proficiency in handling non-linearity, and widespread 
application in machine learning  contexts37,41. Conversely, RSM adopts a statistical paradigm meticulously tailored 
for modeling and optimizing processes, relying on empirical data and mathematical  equations7,29. The selection 
between these methodologies hinges upon factors such as the specific problem domain, data availability, and 
the necessity for interoperability. Recent research has notably illustrated the superiority of ANNs over RSM 
in optimizing nanoparticle  properties29,32,42,43. Nonetheless, ANNs are not without limitations, notably their 
propensity to converge on local optima and their confinement within a limited factor  space41,44. In scenarios 
necessitating profound insights into intricate phenomena, an alternative approach becomes imperative. Ensemble 
learning (EL) modeling is one way to overcome these barriers, as it applies algorithms to learn from data and 
predict  outcomes45–48.

An EL approach is a generalized meta method of machine learning, seeking to predict better by combining 
predictions from multiple learning  models49. This method is a vital interpretation of experimental outcome, 
hence may provide better insight into the optimal formulation  parameters50. In this sense, models for particle size 
and PDI linked to EL may be useful for assessing relationships between inputs and outputs. Although liposomal 
drug-loaded nanoparticles have been widely studied in the field of drug  delivery13,24,40,51,52, to our knowledge, 
no study has addressed the EL technique as a tool for the optimization of input factors to experimentally obtain 
the minimum responses in liposomal particle size and PDI.

Liposomes are small, spherical artificial vesicles that contain at least one lipid  bilayer53. The hydrophobic-
ity and/or hydrophilicity, biocompatibility, particle size, high loading capacity, controlled-release properties of 
loaded drugs and many other characteristics of liposomes make them ideal drug delivery nanoparticle for phar-
maceuticals and  nutrients54–57. Liposomes have been recently used for the delivery of  curcumin24,30,51. Curcumin is 
the main active constituent of turmeric isolated from the plant Curcuma  longa58. Curcumin has a broad spectrum 
of biological effects including anti-inflammatory, antioxidant,  antiangiogenic59 and the potential anticancer activi-
ties to treat various types of  cancers60–62. However, short half-life, fast metabolism, chemical instability, as well as 
poor water solubility and bioavailability are important barriers of curcumin, restricting its clinical  applications63.

Proper formulation and processing studies can identify the composition and manufacturing methodologies 
to make liposomes of the appropriate particle size with excellent  stability64. Thus, stable liposomes that can 
deliver loaded curcumin with excellent pharmacodynamics and pharmacokinetics are an urgent need in the 
field of lipid drug delivery. In addition, particle size and PDI can influence how much of the loaded curcumin 
will be released and absorbed upon reaching the target site, directly affecting its pharmacological characteristics. 
Applying EL to optimize the curcumin-loaded liposomal nanoparticles, as a case study, might shed some light on 
the capabilities of this technique in the field of drug delivery. Accordingly, the study aimed to assess the impact 
of specific factors, including sonication time, extrusion temperature, and molar ratios, on the size and PDI of 
liposomal nanoparticles using EL.

Material and methods
Materials
Curcumin (Sami Labs Limited, Bengaluru, Karnataka, India) and  Caelyx® (Janssen Pharmaceuticals, Inc., a 
subsidiary of Johnson & Johnson; Behestan Darou Company, Tehran, Iran). HSPC, DPPG, Chol and DSPE-
mPEG2000 were purchased from Avanti Polar Lipid (Alabaster, USA). Dimethyl sulfoxide (DMSO), ethanol and 
chloroform (Merck, Darmstadt, Germany). All chemicals and solvents used were of analytical grade.

The preparation of liposomes and drug loading encompassed a preliminary screening study in which two 
specific compositions were identified for further investigation. These compositions were designated as (A) 
HSPC:DPPG:Chol:DSPE-mPEG2000 with a molar ratio of 55:5:35:5, and (B) HSPC:Chol:DSPE-mPEG2000 
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with a molar ratio of 55:40:5. These compositions exhibited exceptional performance in terms of high encapsula-
tion efficiency (EE%) and were created using the remote loading method.

To initiate the process, lipids dissolved in chloroform were combined in a round-bottom flask, forming a 
lipid film. Subsequently, the solvent was evaporated under vacuum conditions using a rotary evaporator (Hei-
dolph, Germany). Lyophilization, performed using a specialized lyophilizer (VD-800F, Taitech, Japan), was then 
conducted for 2 h to eliminate any residual solvent traces. The resultant lipid film was subsequently hydrated in 
pre-warmed absolute ethyl alcohol within a hydration buffer (Phosphate-buffered saline (PBS) at 10% (v/v)). The 
thin film was initially dissolved in absolute ethanol, followed by the addition of the pre-heated hydration buffer 
(at about Tm temperature). This mixture was vortexed using a vortex shaker to ensure proper dispersion of the 
lipid blend within the buffer, resulting in the formation of large multilamellar vesicles (MLVs).

To further refine the liposomal structure, the MLVs underwent a 30-min sonication process within a bath 
sonicator (Bandelin Electronics, Germany) set at a temperature of 55 °C. Subsequently, a series of steps were 
undertaken to generate small unilamellar vesicles (SUVs). This involved the sequential extrusion of liposomes 
through a thermobarrel extruder (Avestin, Canada), employing a series of polycarbonate filters (Whatman, 
Maidstone, Kent, UK) with diminishing pore sizes: 400 nm, 200 nm, 100 nm, and finally 50 nm. The formula-
tions underwent 11 rounds of extrusion through each filter.

The determination of the temperature for formulation preparation was guided by the phase transition tem-
perature (Tm) of the phospholipids within each liposomal formulation. Given the predominant presence of 
HSPC in our compositions, constituting 55% of the molar ratio, the Tm was ascertained based on the phase 
transition temperature of HSPC.

To encapsulate curcumin into liposomes, the solvent-assisted active loading technology (SALT) involving 
DMSO was  employed65. This novel technique incorporates a hydrophobic drug into the liposomal core, as a very 
small quantity of DMSO rapidly and effectively disrupts the assembly of liposomes, then the hydrophobic drug 
enters the liposomal core, and after that, the liposomes reform again. This method has been previously proven 
by Tang et al.65, to not significantly affect the liposome structure, allowing hydrophobic drugs to be incorporated 
into the liposomal core. Following this method, a curcumin solution was prepared by dissolving 2 mg/ml of 
curcumin in DMSO, ensuring complete dissolution through vigorous vortexing. Subsequently, the prepared 
curcumin solution was added to the liposomes at 65 °C for 10 min, with a DMSO concentration of as low as 5% 
at this step. In order to remove the free curcumin and DMSO, liposomal curcumin was dialyzed (12–14 kDa 
MWCO) against PBS buffer at a ratio of at least 1 to 100. All the final prepared liposomal formulations were 
sterilized through filtration using 0.22 µm syringe  filter66.

Nanoliposomal characterization
The particle size and PDI were measured by Dynamic Light Scattering instrument (Nano-ZS; Malvern, UK)67. The 
amounts of phospholipids were determined by the Bartlett phosphate assay  method68. Also, the morphological 
feature of liposome was evaluated using transmission electron microscopy (TEM) via negative  staining69. The 
sample was prepared for TEM photography as follows: first liposome was diluted (1:40 of liposome to dialysis 
buffer (PBS)) and 20 µL of sample was dropped onto a carbon-coated copper grid. After 1 min, the excess lipo-
some was removed by filter paper. Then 20 µL filtered uranyl acetate (2% w/v) was dropped onto grid. After dry-
ing, the samples were photographed with a LEO 912 TEM at an accelerating voltage of 80 kV (Jena, Germany).

To assess the stability of the liposomal formulations, a comprehensive liposome stability assessment was con-
ducted. The investigation covered a storage duration of 24 weeks under controlled conditions of 4 °C and 25 °C. 
Key parameters, including size distribution, zeta potential, PDI, and EE%, were rigorously analyzed at various 
intervals (0, 4, 12, and 24 weeks post-preparation). The detailed procedure and outcomes of this assessment are 
provided in the Supplementary file.

Ensemble learning modeling method
EL is a modeling method where multiple prediction models are combined to make joint decisions, taking advan-
tage of the strengths of each individual  model49. Each prediction model has its own set of advantages and disad-
vantages, as well as specific suitability for different data domains and volumes. By combining these predictions, 
the accuracy of the overall prediction is improved, compensating for any individual model’s limitations. To make 
the prediction result better, two conditions should be addressed for EL: (1) There must be a difference between 
each prediction model; (2) The accuracy of each prediction model should be > 0.5. Theoretically, the prediction 
will have the better accuracy. If both conditions are met and the weak models are combined.

Least-squares boosting (LSBoost)70 is a sophisticated machine learning algorithm frequently employed in EL 
methodologies. At the core of this algorithm are individual prediction models known as ‘weak learners’ or ‘trees’. 
These weak learners are essentially like small prediction modules that, on their own, might not be particularly 
accurate or robust. However, they are systematically combined to create a more powerful and accurate predic-
tive  model71,72. At every iteration step, the ensemble fits in a fresh learner, as puzzle pieces that, when assembled 
correctly, form a complete picture.

In the context of LSBoost, the algorithm works by involving hundreds of these weak learners, each of which 
is designed to make a prediction. Through a series of iterative steps, the algorithm aims to improve the overall 
predictive accuracy. It does this by focusing on correcting the errors made by the previous weak learners in 
subsequent iterations. This correction process gradually transforms the collection of weak learners into a ‘strong 
learner’, which is a much more accurate and reliable predictive model. Thus, LSBoost employs a multitude of 
weak learners to collectively build a strong and precise predictive model through iterative error correction. This 
approach leverages the strengths of individual models to achieve a more robust and effective overall prediction.
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The mean square error (MSE) is utilized as a measurement to assess the variance between the actual outcomes 
(Yi) and the predicted outcomes (f(Xi)) for each observation and is estimated using Eq. (1) as  follows72:

where Yi, f(Xi), and K indicate the actual output, the predicted output generated by the model, and the number 
of samples, respectively. In this study, outputs were particle size and PDI, and K was the number of experiments.

Owing to the hypothetical bias and variance issues, the fitted model and the resulting predicted outcome may 
severely suffer from underfitting or overfitting problems, leading to a high error between the targeted response 
and the estimated variables. In order to address such drawbacks, the inconsistency of f(Xi) in Eq. (1) needs to 
be placed under control by employing the bagging or LSBoost  algorithms72. Bagging, also known as Bootstrap 
 aggregating73, is an EL technique that involves creating multiple models using different subsets of the training 
data, obtained through random sampling with replacement. These models are then aggregated to reduce variance 
and improve overall prediction performance. It helps to reduce the risk of overfitting by introducing diversity 
into the models.

This study addressed the LSBoost algorithm for the prediction of particle size and PDI. This choice was moti-
vated by the ensemble methods modeling capabilities of nonlinear and non-stationary problems. These methods 
have several advantages, i.e. flexible input, ability to indirectly identify dynamic non-linear interactions between 
dependent and independent predictors, ability to identify all potential interactions between predictors and have 
demonstrated high performance in solving medical prediction challenges.

Additionally, the mean absolute error (MAE), which quantifies the average absolute difference between the 
predicted values ( ̂yi ) generated by the model and the actual values  (yi), is employed as the primary cost function 
in this study. Equation (2)67 defines the MAE as the  below74:

where yi, ŷi and n indicate the actual output, the predicted output generated by the model, and the number of 
samples, respectively. In this study, outputs were particle size and PDI, and n was the number of experiments.

The ensemble methods required training of the models to find the optimal set of the parameters. Thus, the 
data was randomly divided such that 70% of the data were used for training of the models and rest of them 
(30%) were reserved for testing. This procedure ensured that the results were not prone to overfit and would be 
transferable to the similar settings. Table 1 shows these training and testing datasets used in our EL modeling. 
The decision to report the particle size and PDI separately in Table 1 is driven by the fact that each of these 
parameters is individually modeled by the EL algorithm. Even though the input data for both parameters are the 
same, they are treated as separate outcomes in the modeling process. As a result, during the random allocation of 
data into training and testing subsets, a data record for one parameter might end up in the training set, while the 
same record for the other parameter might be placed in the testing set. This distinction occurs only within the 
modeling framework, and it’s important to note that during actual experimental measurements, both particle size 
and PDI are naturally measured simultaneously for a given set of conditions (see Table S1 in supplementary file).

LSBoost algorithm was implemented using Matlab R2020a (The Mathworks Inc., Natick, Massachusetts). The 
programming codes are presented in Supplementary file. The parameters were optimized regarding performance 
and transferability using the training/validation split of the data. LSBoost was optimized for finding the best 
number of trees, learning cycles, and leaf size. The following search space for the parameter optimization was: 
Type: ’regression’; Method: ’LSBoost’; LearnerTemplates: ’Tree’; NLearn: 100; LearnRate: 0.2000.

Inputs and output variables
As it mentioned before, particle size and PDI were endpoints of interest in this study. We modeled the effect of 
three factors (compositions, sonication time, and extrusion temperature) on these parameters. All experimen-
tal conditions set for input factors along with actual values measured for particle size and PDI are outlined in 
Table S1 (see Supplementary file). The Shapiro–Wilk test using IBM SPSS Statistics (version 20.0, IBM Corp., 
Armonk, NY, USA) was applied to examine the normality of the data.

Response surfaces
The 3D plots were depicted to demonstrate the relationships between input factors and their effect on the particle 
size and PDI (i.e. outputs). These plots allow for the effective representation of how two input factors influence 
the endpoint of interest at a given time. To comprehensively depict the combined effect of all three input factors 
on particle size and PDI, we employed a specific approach. Since one of the factors, composition, was binary in 
our study, we chose to illustrate the impact of the remaining two factors on particle size and PDI separately for 
each composition. This approach allowed us to capture the nuanced effects of the input factors on the desired 
outcomes for both compositions.

Ethics approval and consent to participate
The study received approval from the Mashhad University of Medical Sciences Ethics Committee. No human or 
animal experiments were conducted as part of this study.

(1)MSE = L
(
Y , f (Xi)

)
=

K∑

i=1

(
Yi + f (Xi)

)2
,

(2)MAE = 1/n

n∑
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∣∣yi − ŷi
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Results
After modeling the normally distributed data, the best predictive models yielded MAEs of 1.6520 for particle 
size and 0.010452 for PDI on the testing datasets. Table 2 presents the parameters evaluated for both the trained 
and test models, indicating the robust predictive capability of the trained models. The measured and predicted 
values for particle size and PDI are displayed in Table 1, showcasing a remarkably close match between the model 
predictions and the measured values. This minimal deviation underscores the validity of the ensemble models.

The response surface 3D plots illustrate the relationships between input factors (compositions, sonication 
time, and extrusion temperature) and the responses/outputs (particle size (Fig. 1) and PDI (Fig. 2)).

Table 1.  The training and testing datasets used in machine learning modeling. Compositions: (A) 
HSPC:DPPG:Chol:DSPE-mPEG2000 at 55:5:35:5 molar ratio and (B) HSPC:Chol:DSPE-mPEG2000 at 
55:40:5 molar ratio. Time (min) = sonication time (minutes), Temp (°C)= extrusion temperature (°C), PDI= 
polydispersity index. 

Composition
Time 
(min) Temp (°C)

Measured 
size (nm)

Predicted 
size (nm) Composition

Time 
(min) Temp (°C)

Measured 
PDI

Predicted 
PDI

Training dataset

 A 15 27 139.60 138.71653 B 60 27 0.284000 0.290500

 B 45 55 136.70 138.68319 A 30 45 0.111000 0.105721

 B 45 27 147.10 146.44182 B 30 45 0.171000 0.178962

 B 15 27 143.90 144.49479 A 15 65 0.020000 0.027361

 B 15 55 135.70 134.25234 A 15 27 0.136000 0.133870

 A 30 45 118.90 118.03337 B 45 27 0.297000 0.290178

 B 15 45 139.60 141.11013 A 45 27 0.134000 0.148558

 A 45 27 164.80 169.07407 B 15 65 0.164000 0.156373

 A 15 65 121.40 121.59488 A 60 27 0.219000 0.208004

 A 60 27 181.80 178.03320 B 60 45 0.181000 0.177430

 B 60 27 154.80 155.05217 A 60 45 0.161000 0.163312

 A 45 55 157.90 154.43624 B 30 27 0.265000 0.275490

 A 30 65 114.80 116.52785 B 30 55 0.141000 0.156373

 B 30 45 137.80 136.82434 B 15 27 0.288000 0.275490

 B 45 45 143.70 141.46544 A 60 65 0.102000 0.108920

 A 60 45 159.20 160.82535 A 30 55 0.041000 0.027361

 A 60 65 144.60 145.75851 B 45 55 0.218000 0.209098

 B 60 45 149.10 150.07579

Testing dataset

 A 30 27 131.80 133.64949 A 45 45 0.103000 0.120408

 A 15 45 128.70 123.10041 B 45 45 0.197000 0.193650

 A 45 45 152.10 151.86622 A 30 65 0.022000 0.027361

 B 30 27 140.20 140.20899 B 30 65 0.133000 0.156373

 A 30 55 117.30 116.52785 B 15 55 0.169000 0.156373

 B 15 65 132.40 134.25234 A 45 55 0.086000 0.080087

 B 30 65 129.40 129.96655 A 30 27 0.139000 0.133870

 B 30 55 132.30 129.96655

Table 2.  Optimization and prediction capability of ensemble learning for particle size and PDI. PDI 
polydispersity index, MSE mean squared error, MAE mean absolute error, PSNR peak signal-to-noise ratio 
definition, RMSE root mean square error, NRMSE normalized root mean square error.  Significant values are in 
bold and italic.

Parameters

Particle size PDI

Trained model Test model Trained model Test model

MSE 3.8361 5.5780 8.6112e-05 1.5858e-04

MAE 1.5885 1.6520 0.0084089 0.010452

PSNR 42.2919 40.6660 40.6494 37.9976

Rvalue 0.9998 0.9997 0.9976 0.9910

RMSE 1.9586 2.3618 0.0093 0.0126

NRMSE 0.0292 0.0679 0.0335 0.072
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For composition (A), the minimum predicted values for particle size and PDI were determined to be 116.53 
nm and 0.027, respectively, indicating that composition (A) is associated with both smaller particle size and a 
lower PDI. Conversely, composition (B) exhibited minimum predicted values of 129.97 nm for particle size and 
0.156 for PDI.

In general, the plots illustrating the impact of sonication time and extrusion temperature on particle size for 
both compositions exhibited consistent trends (refer to Fig. 1). As the temperature increased from 27 °C to 65 °C, 
a notable decrease in particle size was observed, reaching a minimum at approximately 60 °C. Conversely, particle 
size exhibited an upward-downward pattern as sonication time increased from 15 to 60 min. For composition (A), 
the EL model predicted a minimum particle size of 116.53 nm at approximately 30 min of sonication when the 
temperature was set at around 60 °C (see Fig. 1a). In composition (B), the model projected a minimum particle 
size of 129.97 nm at sonication times of approximately 30 or 55 min (see Fig. 1b).

PDI responses were modeled as functions of sonication time and extrusion temperature for two distinct 
compositions, as illustrated in Fig. 2. In both compositions, the minimum PDI values were attained at specific 
conditions: approximately 15–37 min of sonication time and around 50–65 °C for temperature. These conditions 
yielded predicted PDIs of 0.027 and 0.156 for compositions (A) and (B), respectively. Notably, in composition 
(A), PDI exhibited a decreasing trend as temperature increased and sonication time decreased. In contrast, for 
composition (B), the pattern varied slightly, resulting in a PDI of 0.178 under conditions of 55–60 min of sonica-
tion and 37–65 °C of temperature. It’s worth mentioning that, in most instances, PDIs less than 0.2 were achieved.

  a) Composition (A)   b) Composition (B)

Figure 1.  Predicted 3D response surface plots of size (nm) as a function of temp (°C) and time (m) for two 
different liposomal compositions: (A) HSPC:DPPG:Chol:DSPE-mPEG2000 at 55:5:35:5 molar ratio (a) and 
(B) HSPC:Chol:DSPE-mPEG2000 at 55:40:5 molar ratio (b). The figure illustrates the variations in particle size 
in relation to sonication time and extrusion temperature. The compositions’ significance is reflected in their 
distinct responses. Size (nm) represents particle size (nm), Time (m) signifies sonication time (minutes), and 
Temp (°C) denotes extrusion temperature (°C).

a) Composition (A) b) Composition (B)

Figure 2.  Predicted 3D response surface plots of PDI as a function of temp (°C) and time (m) for two 
different liposomal compositions: (A) HSPC:DPPG:Chol:DSPE-mPEG2000 at 55:5:35:5 molar ratio (a) and (B) 
HSPC:Chol:DSPE-mPEG2000 at 55:40:5 molar ratio (b). The figure illustrates the variations in PDI in relation 
to sonication time and extrusion temperature. The compositions’ significance is reflected in their distinct 
responses. Size (nm) represents particle size (nm), Time (m) signifies sonication time (minutes), and Temp (°C) 
denotes extrusion temperature (°C).
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Discussion
The appropriateness of liposomal formulations for a specific route of drug administration hinges upon the 
physicochemical properties of the liposomes, encompassing parameters such as particle size, PDI, and surface 
 charge75. The meticulous control of these factors holds significant promise in enhancing the biodistribution 
and pharmacokinetics of liposomal formulations, thereby contributing to improved clinical outcomes of drug 
 therapies27,75–77. Particle size and size distribution of liposomes are pivotal determinants, significantly influenc-
ing attributes such as EE, stability, drug release kinetics, cellular uptake, and  biodistribution78. In this study, we 
systematically employed the EL technique to assess the impact of three independent factors, namely, composi-
tions, sonication time, and extrusion temperature, on the particle size and PDI of nanoliposomes. Our findings 
strongly corroborate the established relationships between these independent factors and the parameters under 
assessment, in alignment with prior research  endeavors20,30,79,80.

Liposomes exhibit a diverse range of sizes, ranging from very small (0.025 μm) to large (2.5 μm) vesicles, and 
may possess single or bilayer  membranes53. By employing EL-designed models, the study predicted the minimum 
liposome sizes to be 116.52 nm and 129.97 nm for two distinct compositions. These predictions highlight that 
composition (A) is associated with a smaller particle size and lower PDI, indicating a more uniform and poten-
tially more stable formulation of liposomal nanoparticles. Conversely, composition (B) demonstrates a slightly 
larger particle size and higher PDI, suggesting a less uniform distribution of nanoparticles. These predictive 
results offer valuable insights for optimizing the formulation process and selecting the appropriate composition 
to achieve the suitable particle size and PDI properties.

Cholesterol plays a pivotal role as a primary component in our liposomal compositions. As observed by Shaker 
et al.80, there exists a direct correlation between the concentration of cholesterol and the size of liposomes. In our 
study, larger liposomes, which are generally considered undesirable in liposomal compositions, were observed in 
composition (B) with a higher cholesterol concentration. It’s worth noting that while cholesterol may influence 
liposome properties, the role of other components, particularly DPPG, should not be overlooked. To gain a more 
comprehensive understanding of the interplay between these constituents, we suggest assessing different compo-
sitions such as HSPC:Chol:DPPG at 60:35:5 in future research. This will enable a deeper exploration of the con-
tributions of cholesterol and DPPG to liposomal characteristics and aid in refining our liposomal formulations.

Although the augmentation of cholesterol may correlate with an enlargement in liposome size, the inclusion of 
cholesterol yields several advantageous outcomes within the composition. It substantially heightens the stability 
of the liposomes by bolstering their resistance to aggregation, diminishing bilayer permeability, and fostering 
more efficient packing of phospholipids. Consequently, cholesterol contributes to increased rigidity of the lipid 
bilayer and reduced drug leakage, thereby augmenting the overall integrity of the  liposomes80–84.

Moreover, it is crucial to acknowledge that particle size also has a significant impact on the EE of liposomal 
compositions, making it an important parameter to consider when selecting the optimal  formulation78. Research-
ers should carefully evaluate and balance all of the aforementioned parameters to develop a formulation that 
meets their specific requirements. In this context, EL can serve as a valuable decision-support system. While 
EL provides insights and support, researchers should ultimately rely on their expertise and knowledge to make 
informed decisions in conjunction with the guidance provided by EL.

PDI serves as a crucial indicator of colloidal dispersion homogeneity, with values exceeding 0.7 typically 
denoting a broad size  distribution85. Modeling by EL technique yielded the PDIs lower than 0.16 for both com-
positions, signifying that these specific compositions did not exert a substantial influence on PDI within the 
confines of our study. While researchers possess the flexibility to select either composition based on other perti-
nent parameters, it is imperative to acknowledge that our study refrained from assessing an extensive spectrum 
of compositions and/or molar ratios.

As a consequence, it is not tenable to assert that compositions and/or molar ratios lack a considerable impact 
on PDI within our study’s boundaries. Thus, further inquiries involving a more comprehensive exploration of 
compositions and/or molar ratios are imperative to comprehensively discern the implications on PDI. Our study 
revealed that despite both liposomal formulations yielding homogeneous populations, the EL analysis illuminated 
the susceptibility of PDI to influences such as sonication time and temperature.

Sonication is a simple approach for reducing the size of  liposomes79. We modeled the size of liposomes as a 
function of sonication time using EL technique, showing the strong association between time and size in both 
compositions. By increasing time, liposome size first decreases until about a specific time and then rises again 
that is in line with the previous  studies86–88. Yamaguchi et al. reported that the high-intensity focused ultrasound 
could affect the size of the  liposomes89. Paclitaxel-liposomes and liposomes formulated for enhanced thromboly-
sis have also shown a similar  trend90,91.

One of the methods commonly used to prepare liposomes is extrusion, which involves passing a lipid mixture 
through a series of filters with decreasing pore  sizes24. The extrusion temperature can have a significant impact 
on the size of the resulting liposomes. Higher temperatures may result in larger liposomes due to increased lipid 
mobility and fusion events during the extrusion process. In our study, the size reduced substantially when the 
temperature increased to about 37 °C in the composition (A) and, in line with another  study92, revealed that the 
increment of temperature above 37 °C does not affect the size and size distribution of the liposomes, especially 
at 30 min sonication time. In composition (B), a substantial reduction in size and size distribution appeared 
when the temperature increased above 50 °C. Thus, controlling the extrusion temperature is critical to achieve 
the desired liposome size and optimizing their properties for various applications.

Machine learning techniques, particularly ANNs, have been successfully used to optimize the formulation of 
drug-loaded  liposomes30,32,93,94. These models have proven to be more accurate than traditional linear regression 
models in predicting liposome  properties93,94. However, using an ensemble instead of a single model has several 
advantages, including better prediction accuracy and reduced prediction  dispersion49. Although the EL technique 
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has been applied in pharmaceutical sciences  before95,96, this study is the first to use it to optimize liposomal nano-
particles. The study produced MAEs of 1.6520 and 0.010452 for size and PDI, respectively, demonstrating the 
significant potential of this technique in modeling the complex interactions involved in the drug delivery process.

To the best of our knowledge, this study represents the pioneering application of ensemble learning techniques 
for the evaluation of factors influencing particle size and PDI in nanoliposomal formulations. Although our 
investigation successfully attained a favorable particle size and PDI by employing the HSPC:DPPG:Chol:DSPE-
mPEG2000 lipid composition at 55:5:35:5 molar ratio, coupled with an impressive EE of 89%, it is crucial to 
acknowledge that our deliberate selection of two specific lipid compositions during the preliminary screening 
phase might have inadvertently limited the exploration of alternative lipid compositions that could potentially 
yield advantageous particle size and PDI outcomes. Furthermore, it is noteworthy that our study deviated from 
the conventional expectations associated with extrusion methods, which typically yield particles within the 50 to 
60 nm range. In contrast, our study resulted in nanoliposomes with a size of 116 nm. However, despite exceed-
ing the conventional size range, this deliberate choice was made with precision to align with our final objective 
of developing curcumin-loaded liposomes. This particle size was meticulously selected to optimize curcumin 
delivery to the tumor site, as particle sizes around 116 nm are known to be suitable for tumor accumulation 
based on the enhanced permeability and retention  effect97.

Conclusion
The study provides useful insights into the factors affecting the size and PDI of liposomal nanoparticles. The 
results indicate that the optimization of the independent factors can significantly affect the characteristics of 
liposomal nanoparticles, and EL can be used as a decision support system for determining the best liposomal 
formulation. Further studies are recommended to investigate the effect of other independent factors, such as 
lipid composition and surfactants, on the characteristics of liposomal nanoparticles.

Data availability
The data analyzed in this study is presented in the paper and Matlab programming codes are available in Sup-
plementary file.
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