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Dry growing seasons predicted 
Central American migration 
to the US from 2012 to 2018
Andrew Linke 1*, Stephanie Leutert 2,3, Joshua Busby 2,3, Maria Duque 4, 
Matthew Shawcroft 1 & Simon Brewer 1

Controlling for factors such as criminal violence and poverty, we tested if drier than usual growing 
season weather was a predictor of emigration from El Salvador, Guatemala, and Honduras to the 
US between 2012 and 2018. We focus on growing season weather because agriculture is a primary 
transmission pathway from the effects of climate change upon migration. We secured the migration 
apprehensions data for our analysis through a FOIA request to US Customs and Border Protection. 
Border Patrol intake interviews recorded the original home location of families that arrived at the 
southern US border. We used this geographic information to measure recent weather patterns and 
social circumstances in the area that each family departed. We found 70.7% more emigration to the 
US when local growing seasons in Central America were recently drier than the historical average since 
1901.

Between 2012 and 2018, the US Border Patrol apprehended more than 1 million people traveling from El Salva-
dor, Guatemala, and Honduras (hereafter the Northern Triangle of Central America, or “NTCA”)1. The arrivals 
were not exclusively young adults seeking employment opportunities. According to CBP, 29% of these apprehen-
sions were families (“individuals in a family unit” is the formal designation)1. These demographics demonstrate 
the broad scope of the issue, and suggest that the relocation is often permanent rather than temporary.

Some have attributed increasing NTCA emigration rates to violence, limited economic opportunities, cor-
ruption, political instability, and, more recently, the adverse effects of climate change. Climate change has altered 
weather patterns making rainfall and temperature trends unpredictable. Climate change also intersects with and 
possibly accentuates other weather phenomena such as El Niño Southern Oscillation (ENSO) cycles. ENSO 
cycles are known to reduce certain crop yields in some  regions2. El Niño generally brings drier than average 
weather to the region during key growing  months3, impacts that are likely to become more severe as global 
temperatures  rise4.

Scholars have found migration adaptations to droughts and changing weather patterns  globally5–7 and in 
 Asian8,9,  African10,11 and Latin  American12–20 case studies. However, while some policy-oriented reports and 
insightful single-country  studies21 have suggested a link between environmental stress and recent NTCA migra-
tion, we currently lack a comprehensive, empirical analysis of these human–environment interactions. A recent 
review of climate factors as drivers of migration claimed that evidence for precipitation is “inconclusive”22; our 
findings speak directly to this evaluation.

Because no longitudinal household survey data is available to model NTCA migration dynamics, we analyzed 
US Border Patrol apprehension data covering fiscal years 2012 through 2018. We acquired these data through 
a Freedom of Information Act (FOIA) request. These unique data record family apprehensions, which we argue 
is a conservative estimate of total migration (the majority of arrivals from 2012 to 2018 were single  adults1). We 
mapped the original home location of the 323,579 NTCA residents in the FOIA dataset, which allowed us to 
measure the environmental and social conditions surrounding their departure. In particular, we are interested in 
local rainfall and evapotranspiration during the recent growing season, which we measure relative to historical 
data from 1901. We used these data to test if drier than usual weather predicts emigration from NTCA to the US.
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Results
Controlling for various factors, including criminal violence and poverty, we found that dry growing season 
weather predicted emigration from NTCA to the US. According to our preferred model estimate, a department 
with particularly arid growing season weather saw 1.7 times more people travel to the US (e0.535) than areas with 
typical weather. Put differently, a growing season where the Standardized Precipitation-Evapotranspiration Index 
3-month average (SPEI03) was  − 1.0 standard deviation (SD) or drier than the historical average led to a 70.7% 
increase in migration. Our "Methods" section describes the Bayesian Integrated Nested Laplace Approximation 
(INLA, models 1–8) and spatial two-way fixed-effects ordinary least squares regression (TWFE OLS, models 
9–12) estimators that we used to obtain our results.

A battery of robustness checks generally agreed with our main conclusion and are credibly distinct from zero 
effect (see Fig. 1). Supporting Information Tables S3–S10 present our full INLA model results with 95% credibility 
intervals. Model 1 uses only the dichotomous dry growing season variable, and we found 213.1% more emigration 
than in places with average weather (e0.757). Our models all incorporated an expected rate of emigration. Instead 
of department population size (used in other estimates), model 2 used the emigration rate in the preceding 
year to calculate an expected rate of travel to the US and the results were similar (e0.940 or + 257.0% emigration). 
Model 3 included the regional homicide rate as a covariate, which adjusts for a powerful alternative explanation 
for emigration. Our results were still credible and positive (e0.427 or + 53.2% emigration). In model 4, we added 
socioeconomic and vegetation health covariates (see "Methods"); this is our preferred main model, where we 
observed 70.7% more emigration when conditions were dry (e0.535). Table S3–S10 diagnostic statistics show that 
model 4 has the best fit (DIC = 27248.013). Interpreting the precision of the spatial random effect hyperparameter 
(Table S6: 1/2243.418 = 0.0004) shows that it explains the least variance in model 4, suggesting that dry weather 
and covariate fixed effects have considerable explanatory power. Among models that included covariates, pre-
ferred model 4 also had the lowest level of yearly temporal variance remaining (Table S6: 1/347.535 = 0.002).

An alternative (drier) threshold for SPEI03 as ≤ −1.5 SD gave us similar model 5 results (e0.112 or + 11.8% 
emigration). In model 6, we operationalized dry conditions using SPEI12 ≤ −1.0 SD instead of SPEI03 ≤ −1.0 SD. 
While the effect was smaller, it remained credibly distinct from zero (e0.086 or + 8.9% emigration). Model 7 used 
the change in the emigration rate from the preceding year as the outcome, and we still found that dry weather 
predicts emigration (e0.173 or + 18.8% increase in the emigration rate). This effect estimate is smaller than our pre-
ferred model 4. Instead of indicating the risk of emigration during droughts, it predicted how much the emigration 
rate is rising with drier weather conditions. Finally, recalculating the variables and running our estimates at the 
municipality level (see emigration rate maps at this scale in Fig. S1) gave us consistent results. As with the oth-
ers, model 8 predicted greater emigration during dry growing season conditions (+ 44.3% emigration, or e0.367).

As we tested alternative operationalizations of the dry conditions dichotomous predictor, we also check 
our main results against a model using the continuous normal distribution of SPEI03. In a modified version of 
the main Fig. 1 INLA estimates we confirmed that incrementally wetter conditions – increasing SPEI03 values 
– reduce migration (see Fig. S9). A test for non-linear effects of SPEI03 across the range of values (low/dry to 
high/wet) also shows a spike in migration risk around  − 1.0 SDs and lower migration rates above 0.0 SDs (see 
Fig. S10).These results generally complement our finding that dry conditions increase migration.

Our within-unit TWFE OLS model results were generally similar (see Table 1). Controlling for all unobserved 
department, country, and year effects, dry growing seasons raised the average emigration rate 158.5 people per 
100,000 people above the rate during average weather (model 9). Model 9 results are influential, considering the 
average emigration rate is 126.0 per 100,000 people (see descriptive statistics Table S1). If we used emigration 
rate change as the outcome, as in INLA model 7, the model 10 results show that a dry growing season leads to a 

Figure 1.  INLA estimates of dry growing season effects on emigration. The distribution of each curve contains 
all estimates of the effect from each model. The vertical dashed line indicates zero effect. Model 1 is a bivariate 
“null” model. Model 2 uses a different calculation of the expected emigration rate. Model 3 includes the 
homicide rate control variable. Model 4 uses all covariates. Model 5 uses a more conservative operationalization 
of dry conditions (SPEI03 ≤ −1.5 SD). Model 6 uses a longer time period for measuring dry conditions (SPEI12). 
Model 7 estimates the effect of dry conditions on the change in the emigration rate from the preceding year. 
Model 8 reproduces our main Model 4 results at the municipality level (N = 891).
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198.4 person per 100,000 increase in the emigration rate from the preceding year. These findings reinforce our 
main results and explain considerable variation in the relationship between environmental stress and migration 
from NTCA to the US (e.g., model 9 R2 is 0.63). We also estimated the spatial simultaneous autoregressive error 
models 11 and 12. The results are nearly identical to the within-unit effect of dry growing seasons on emigration 
(+ 158.05 and + 197.845 for emigration and emigration rate change, respectively).

All of our models used three essential variables. We describe additional model covariates and their opera-
tionalization in "Methods". First, we secured our El Salvador, Guatemala, and Honduras emigration data using 
a FOIA request to CBP, an agency within the Department of Homeland Security. US Border Patrol detained 
323,579 individuals traveling as part of nuclear families at the US-Mexico border between 2012 and 2018. These 
data measure people arriving through illegal border crossings between formal ports of entry. The number of 
arrivals is our outcome variable, but being a member of a household is a key selection mechanism in the data 
generating process. The arriving nuclear family could be some part of a larger household (e.g., a father and son 
with mother and another child at home). There are no formal empirical designations about asylum claims in our 
data, but most arriving Central American families would have claimed asylum upon apprehension.

In their interviews with the apprehended, officials asked where they were from. We used this geographic 
information to calculate the emigration rate per 100,000 people in each NTCA department (N = 54) per year. 
Then, we merge these emigration rates—our primary outcome of interest—with other administrative unit vari-
ables, including weather patterns. Our data measure families relocating is probably a conservative proxy for total 
migration. The impetus for uprooting an entire household for a perilous journal is almost certainly more power-
ful than for one member of a family to relocate and mail remittances. The Border Patrol reported that between 
fiscal years 2012 and 2018, nearly 30 percent of apprehensions at the US border were individuals in family units. 
More broadly, according to the International Organization for Migration, 43% of migration to Organization for 
Economic Cooperation and Development member countries during 2021 was broadly defined as “family migra-
tion” (including reunification); of that share only 17% were “accompanying family,” which is defined as “family 
members who are admitted together with the principal migrant”23.

Figure 2A presents maps of NTCA annual emigration rates. There is considerable spatial heterogeneity, with 
some regions of western Honduras experiencing much higher emigration rates during 2013 than central and 
northern Guatemala (rates were more similar in later years, including 2018). Figure 2B shows that Emigration 
rates exhibited a consistent increase except in El Salvador, which experienced a rise through 2016, but subsequent 
decline afterward. Table S1 presents summary statistics for all variables and identifies the models that used each 
indicator. We also present municipality level (N = 891) emigration rates in Fig. S1 and confirmed our main model 
results at this scale. Additionally, we tested operationalizing the outcome variable as emigration rate change from 
the preceding year (see Fig. S2).

Second, our weather data are from the Climate Research Unit (CRU) TS 4.03 time series from 1901 to  201824. 
CRU data were calculated using historical empirical measurements and publicly-documented climatology and 
interpolations available from the data  project25. We used a zonal statistic to calculate the mean 0.5-degree raster 
layer pixel SPEI value within administrative unit boundaries (either departments or municipalities). SPEI is 

Table 1.  Alternative estimates of dry growing season effects on emigration (m9, m11) and emigration rate 
change (m10, m12) using TWFE OLS (m9, m10) and analogous spatial simultaneous autoregressive error 
models (m11, m12). TWFE OLS; 54 observations are lost in model 10 and 12 due to constructing a rate 
change variable; standard errors in parentheses. ***p < 0.001; **p < 0.01; *p < 0.05; λ is the model spatial error 
parameter.

m9: emigration rate m10: Δ emigration rate m11: emigration rate m12: Δ emigration rate

(Intercept)
14.550  − 2.631 14.787  − 2.665

(44.569) (54.841) (46.807) (56.319)

Dry growing season
158.586** 198.400** 158.052** 197.845**

(56.719) (66.082) (54.931) (63.671)

λ
 − 2.090***  − 2.028***

(0.295) (0.288)

Department FE? Yes Yes Yes Yes

Year FE? Yes Yes Yes Yes

Country FE? Yes Yes Yes Yes

Moran’s I  − 1.163  − 0.905  − 2.385  − 2.385

Moran’s I p value 0.878 0.817 0.991 0.991

R2 0.630 0.318 0.677 0.422

Adj.  R2 0.560 0.166

AIC 4676.339 4102.144

BIC 4924.237 4336.550

Deviance 3467425.049 3741617.385

Log likelihood  − 2275.169  − 1989.072

N 378 324 378 324
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expressed as SDs and accounts for temperature and hours of sunlight during the corresponding months, offer-
ing a more comprehensive measurement of weather conditions than rainfall  alone26. We primarily relied upon 
a SPEI 3-month average (SPEI03), which compares a given period (e.g. January through March) to the regional 
long-term historical average for those months. Figure 3A shows the average growing season SPEI03 values across 
departments. In 2015, there was considerable spatial variation in growing season weather; southern Guatemala 
was much wetter than average, while eastern Honduras was much drier than usual. 2016 was significantly dry 
across all of NTCA, a trend reflected clearly in the SPEI03 time series (see Fig. 3B). We lagged the SPEI03 values 
so that the indicator captures environmental conditions before emigration. We coded drier than usual weather 
as a dichotomous variable if SPEI03 ≤ −1.0 SD, but also tested a threshold ≤ −1.5 SD.

The connection between arid conditions and failing harvests—the key transmission pathway between climate 
change impacts and migration—would likely manifest during the growing season. According to the Food and 
Agriculture Organization, the primary growing months in the region are May through November in El Salvador, 
May through October in Honduras, and April through December in  Guatemala27. These ranges obscure regional 
variation. To achieve a highly precise local measurement of these critical growing season months sensitive to 
varying climatic zones, we used the Anomaly Hotspots of Agricultural Production (ASAP) phenology  data28. 
ASAP identifies the growing season of the main crop in an area using a long-term average (2003–2016) of a 
ten-day MODIS Normalized Difference Vegetation Index (NDVI). These 1 km raster data identify an average 
calendar day (ranging from 1 to 365) when the growing season starts (NDVI grows above 25% of the ascending 
amplitude) and ends (NDVI drops below 35% of the descending trend). Fig. S3 presents the considerable regional 
variation in growing season start and end dates. As a robustness check, we tested using SPEI12 (see Fig. S4), 
which measures dry conditions for the entire year, instead of growing season SPEI03. The results generally agree.

Third, we used homicide rate data to control for the influence of violence on emigration (see Fig. S5). We 
obtained the Guatemalan records using a transparency request filed to the Interior Ministry (Ministerio de 
Gobernación). We gathered the Honduran homicide records from the Online Police Statistics System (Sistema 
Estadístico Policial en Línea). Finally, we coded the El Salvador data from the online homicide repository files 
published by the National Police (Policia Nacional Civil). While some homicides may go underreported, we are 
confident that these data serve as an effective proxy for exposure to violence. We calculated a murder rate per 
100,000 people, merge these into administrative units, and lag the indicator by one year.

Discussion
Existing research has shown that unusual weather variability and unpredictable seasons has contributed to 
migration  globally5–22. We confirmed that this is also true for recent Central American migration to the US. In 
developing countries with economies heavily reliant on agriculture, declining harvest yields threaten farming 
livelihoods when investments surpass  revenues29–31. These deficits force millions of households worldwide to 

Figure 2.  Emigration rates from El Salvador, Guatemala, and Honduras departments (N = 54) to the southern 
US border according to US Border Patrol intake interview data (A). Darker regions have higher emigration 
rates. Over time, emigration rates generally increase but illustrate some temporal and regional variation between 
2012 and 2018 (B).
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adapt: “Negative shocks to agricultural productivity caused by climate fluctuations significantly increase emigra-
tion from developing countries”32.

The economy and the environment are tightly coupled across NTCA. In Guatemala, Honduras, and El Sal-
vador, agriculture, including coffee, corn, and bean cultivation, employed 32%, 37%, and 30% of the working 
population in 2012, according to the International Labor Organization. These rates are proportionally higher 
in rural regions of each country. By 2019, the agricultural shares of employment nationally had fallen to 31% 
(Guatemala), 29% (Honduras), and 16% (El Salvador). Even people who are not farmers but who earn wages 
harvesting or processing agricultural goods could still lose their livelihoods as yields fall.

Closely comparing our data to NTCA farmers’ experiences reassures us that drier than average growing 
seasons and emigration were plausibly related. For example, in 2016, the Las Marias community in Olancho 
department, Honduras, showed journalists and relief workers dry wells that no longer supported their families’ 
 crops33. In the same year, the Famine Early Warning Systems Network expressed grave concerns about hunger 
in Olancho and other nearby  areas34. Our data reflect these conditions, with Olancho experiencing a drier than 
usual growing season (SPEI03 = −1.18 SD). Furthermore, Olancho’s 2016 emigration rate (379.8 people per 
100,000) was above the 90th percentile (287.2 per 100,000).

Similarly, crops in San Miguel, El Salvador, withered without rain during 2016, and residents there reported to 
relief agencies that conditions were too dry even for alternative  varietals35. San Miguel farmers eventually relied 
exclusively on emergency food supplies. As in Olancho, our data reflect these narratives. The average SPEI03 dur-
ing the 2016 growing season was  − 1.41 SD that year, and the emigration rate was 624.1 people per 100,000 (three 
times the regional average). In another example, the Red Cross warned of dire drought conditions in Guatemala 
during the 2015 El Niño. During El Niño, Guatemala experiences canícula or veranillo, a phenomenon when it 
stops raining for several weeks or more during the rainy season (also called a “midsummer drought”)36. Among 
other departments, Huehuetenango is named in their reporting of “3.5 million people in need of assistance”37. 
Our data effectively captured the drought (SPEI03 = −1.7 SD), and we also observed a correspondingly high 
emigration rate (529.6 per 100,000 people). These illustrative examples demonstrate how lower than average 
rainfall impacts livelihoods and, in turn, plausibly raised emigration rates.

Many in NTCA supplement their diets with subsistence crops grown on small plots. Abnormally dry weather 
can lead to food security challenges through lost farm revenues among smallholders, diminished wages, or fail-
ing personal gardens. The World Food Program and International Organization for Migration recently called 
attention to rising food insecurity among nearly 3.5 million people living in the “dry corridor” that runs through 
all three  countries38. In addition, ethnographic research and household survey data analysis confirm that food 
insecurity is a dire concern under drying weather conditions in the  region39.

The adverse effects of climate change beyond water shortages also contribute to crop failures. Across NTCA, 
forecasts have shown reductions in the region’s suitability for coffee, a crop that provides the largest share of 
rural  employment40. For example, rising temperatures have contributed to plant diseases like “coffee rust” and 
 aflatoxin41. Coffee rust is caused by a fungus (Hemileia vastatrix) that affects the coffee species most common 

Figure 3.  Department-level (N = 54) growing season Standardized Precipitation Evapotranspiration 3-month 
weather deviations from the historical average (A). Data source: Climate Research Unit TS 4.03. The SPEI03 
data are operationalized as standard deviations. With some exceptions, SPEI03 values demonstrate a slight 
decrease overall from 2012 to 2018 (B).
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in El Salvador, Guatemala, and Honduras (Arabica). Higher normally-cool and lower normally-hot monthly 
temperature averages reduce the latent period of the Hemileia vastatrix fungus. In 2013, severe coffee rust caused 
over $1 billion in  damage42 and reduced yields by 16% compared with 2011–201243. We analyzed potential evapo-
transpiration indicators (e.g., SPEI03) incorporating temperature trends that account for these ecological impacts.

Independent of agricultural trends in NTCA, global coffee prices fell after 2011 with a temporary spike 
in 2014–201544 and only a recent increase in 2021. Coffee rust episodes and low average prices combine with 
short-term weather variability to undermine farmers’ livelihoods. Rising fertilizer, equipment, and transporta-
tion costs, unfavorable international currency exchange rates, and a host of other production and supply-chain 
 dynamics13 influence migration decisions in addition to the weather, but we accounted for such temporal trends 
in our INLA and TWFE OLS models.

Studies have found that environmental stress proxied by temperature and precipitation extremes is more 
likely to lead to international emigration from rural areas than internal migration to other domestic  cities45. 
Such conclusions about the scope of migration suggest that planning to travel to the US from NTCA, rather than 
remaining in-country, is plausible for struggling farmers. Strong global community networks and anticipated 
climate-related wage changes may account for these differences.

Migration responses to climate change are complex. Under certain circumstances, relocating can be a highly 
productive adaptation  strategy31,46–48. On the one hand, an intuitive scenario links drought to migration, which 
can occur through agriculture shocks: “municipal-level rainfall deficits relative to historical averages are an 
important predictor for both international and internal migration, especially in municipalities with predomi-
nantly rainfed agriculture”19. On the other hand, scholars have cautioned against reductive, deterministic, and 
overly-simplistic interpretations of this chain of events because migration responses to climate change are not 
inevitable. It is beyond the scope of this study, for example, to study so-called “trapped” households, who may 
lack the financial, institutional, or social capital that facilitates  relocation49–51. Of course, securitized borders also 
make international migration dangerous and  expensive52. Still, this fact only suggests that our family apprehen-
sions data are a conservative estimate of how severely droughts have affected NTCA communities.

Beyond accounting for secular temporal trends in our analysis, our study accounted for influential national-
level political circumstances that might correlate with migration. El Salvador, Guatemala, and Honduras have 
long histories of autocratic rule, for example, and the legacies of US interventions have contributed to chronic 
political instability and weak governance. The three countries currently have limited state capacity, and invest-
ments in the provision of public goods are low. In 2018, the NTCA countries ranked last in Latin America for 
collecting tax revenue on GDP, according to the World Bank, which undermines effective governance.

In addition to the impacts of climate change, criminal violence and insecurity were among the most convinc-
ing alternative explanations for emigration from Central America to the US. In 2018, El Salvador, Honduras, 
and Guatemala had murder rates of 51.0, 40.0, and 22.4 per 100,000 people, respectively, compared to 5.0 in the 
 US38. According to a 2015 US Senate Homeland Security and Government Affairs report, violence and insecurity 
topped the list of causes for NTCA  migration53. The Internal Displacement Monitoring Centre reported that 
242,000 and 247,000 people in Guatemala and Honduras, respectively, were displaced by violence as of 2020 
(statistics are not available for El Salvador). Population survey research with over 49,000 respondents across Latin 
America found that the probability of “seriously considering family migration to the US” was 30% higher among 
families who were violence victims than households who were  not54. Yet, there is evidence in some Honduran 
research that out-migration is primarily a function of material conditions (access to service and human capital 
accumulation) and less a result of high crime  rates55. In our analysis isolating the impact of dry weather, we use 
official national police agency homicide data to control for these effects of violence.

Tables S5–S10 show that the INLA model posterior estimate for homicide rate is always reliably positive and 
distinct from zero. The effect on emigration is relatively small, however. The relationship also cannot be inter-
preted as plausibly exogenous from social context (as is the case for SPEI03). For example, in preferred model 4 
(Table S5), every additional homicide per 100,000 people increases emigration by less than 1.0% (e0.005). Opera-
tionalizing the homicide rate using a binary indicator for departments that lie above the average (instead of the 
population normalized rate) confirms this relatively low magnitude effect (see Table S11). Holding covariates at 
their mean, a department with more violence than average will have 20.5% (e0.187) more emigration to the US. 
In these models, the credible effect of dry weather remains (e0.662) and has a stronger influence on emigration 
rates than violence.

Our results are robust, yet data limitations present opportunities for further research on this important topic. 
We use FOIA Border Patrol data because comprehensive, cross-national, and longitudinal household survey 
data are not available in the NTCA countries. Such data would allow scholars to evaluate our findings at a more 
granular level. One could definitively establish, for example, whether farming households suffering financial 
losses during droughts were more likely to be the same people arriving at the US border. More generally, the 
data generating process in our analysis begins with US Border Patrol apprehensions. Selection into the database 
requires successfully completing a long and arduous journey. Future research about NTCA migration during 
droughts could focus on communities relocating domestically, though such data may be difficult to obtain.

Methods
In this section, we outline our model estimation methods and describe additional socioeconomic and environ-
mental covariate data. These additional covariates were less centrally important to our study than emigration 
rates, growing season weather deviations, and homicide rates.
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Model estimation
First, we use Bayesian Integrated Nested Laplace Approximation (INLA) models to estimate the effect of weather 
patterns on emigration. Specifically, we estimate the number of emigrants ( Yij ) per department ( i ) and year (j) 
as count data, assuming that they are conditionally independent Poisson distributed: Yij ∼ Pois(θ

ij
Eij ), where 

Eij is the expected number of emigrants from administrative unit i per year j. We calculate Eij using both popula-
tion size and the baseline emigration rate in the department in 2012 (the results are similar). A region’s relative 
emigration rate θij is: log

(

θij
)

= β0 + β1X1ij . . . βpXpij + εij , with intercept β0 and β1...p vector of effects for X1...pij 
covariates (including weather deviations and additional covariates). Error εij has three components (it is a sepa-
rable space–time model): spatial effect, temporal effect, and unstructured noise in εij = ui+ vj + wij . Spatially 
structured effect ( ui ) is modeled as a conditional autoregressive Besag-York-Mollié (BYM)  model56. Spatial error 
is conditioned on neighbors and normally distributed with a mean derived from the mean error of the set of 
neighbors and a variance given by σ2u : ui|u−i ∼ N

(

µδi
,
σ 2
u
ni

)

 . Temporally structured effect ( vj ) we model as an 
autoregressive-1 (AR1) model to account for the yearly trends in Figs. 2, 3 (panels B). Temporal error is condi-
tioned on the error of the previous time step adjusted by AR correlation coefficient ( ρ ): vi ∼ ρ(vj−1, σ

2
v) . All 

remaining error is modeled as normally distributed noise in wij ∼ N(0, σ2w) . Model 1–8 INLA estimations 
reported in the “Results” are fit using the ‘R-INLA’ package in  R57. The estimates presented in Fig. 1 show the 
posterior distributions of the dry growing season effect. Tables S3–S10 present the point estimate (mean) of the 
weather effects with 95% credibility intervals. 

Second, we use within-unit two-way fixed-effects ordinary least squares (TWFE OLS) regressions. Our strat-
egy is to consider weather indicators as plausibly-exogenous treatment variables with an as-if-random assignment 
to observations. Using fixed effects for year and department, we constrain the probability of treatment assignment 
to the known likelihood of extreme weather events in any region. In a controlled experiment, the analogous 
probability of treatment assignment is also known (it is zero or one). The calculation of SPEI achieves this by 
comparing past weather in an area to that region’s observable historical weather trends. We view these models 
as a robustness check against the INLA results. Specifically, the TWFE OLS estimates: 
Yij ∼ β0 + β1Xi + β2C + β3j + β4i + ε

ij
 with emigration rate Y in observation i and year j affected at β1 by 

dichotomous dry growing season variable Xi . Coefficients β2 , β3 , and β4 capture any unobserved confounding 
migration influences in country (C), year (j), and department (i) fixed effects, respectively. The remaining sto-
chastic error is captured in εij . We do not include additional covariates in this estimation because any department-
year variable would be redundant and not alter the main β1 effect. We use TWFE OLS estimates in "Results" 
Table 1 models 9–10. We use a global Moran’s I with first-order queen contiguity weights statistic to test if model 
residuals are clustered, which would violate basic OLS assumptions. Finally, Table 1 models 11–12 replicate the 
straightforward TWFE OLS but in a spatial simultaneous autoregressive error estimation using ‘spdep’ in R. 
Table 1 shows that the autoregressive error models have a better fit than the baseline TWFE OLS estimates. 

Covariate data
Our analyses include several covariates that are less critical to our results than the weather, migration and violence 
data (see "Results"). Table S1 presents summary statistics for the following three variables. Table S2 presents the 
statistics for the municipality-level models that also use these variables. Diagnostic statistics reported in Table S6 
show that including these covariates improves the fit of our model. The covariate data are proxies for key influ-
ences upon the relationships between weather, agriculture, and migration. Figure 1 model 1 results show that 
excluding these variables from our analysis only changes the magnitude of the effect estimate and does not change 
our general conclusion that dry conditions increase the likelihood of migration.

First, the relationship between weather variability and emigration is probably most substantial where farming 
is common. We therefore measure the annual average area of each administrative unit classified as cropland by 
 ASAP28. This cropland control also has the benefit of adjusting our effect estimates to account for the major type 
of agriculture. Specifically, these data would reflect short-term shifts in vegetation (e.g., annually harvested food 
crops); pixels designated as actively harvested cropland would not be timber forests. These 1 km pixel values 
record the area designated as cropland, and we average those values within administrative territories. Finally, 
we lag these values by one year to match the SPEI03 operationalization (see Fig. S6).

We also use a Normalized Difference Vegetation Index (NDVI) value measuring vegetation health. Suppose 
other forces reduce vegetation health in an area, such as infrastructure development or irrigation changes. In that 
case, our estimates of dry condition effects would be most robust with an NDVI control. NDVI data are from 
the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer (AVHRR) 
at 1.1 km  resolution58. NDVI values range from  − 1.0 to 1.0, with higher values indicating healthy plants. Raw 
LTDR v5-AVHRR values are scaled from  − 1000 to 10,000 for radiometric and atmospheric corrections. We lag 
NDVI by one year (see Fig. S7).

Third, the general poverty level in an area could be an alternative explanation for emigration. As a surrogate 
measurement of socioeconomic status (SES), we use night-time light emission (NTL) remote sensing data. Exist-
ing  research59 establishes a general precedent for this. In Latin America, Colombia research finds that NTL are 
positively correlated with socioeconomic status in both rural and urban  areas60. We settled on these data because 
lighting has a cost that relatively wealthier households will be able to afford. Specifically, we use annual Visible 
Infrared Imaging Radiometer Suite (VIIRS) cloud-free coverage  data61 measures 500 m pixel-level luminosity 
that we aggregate within administrative units using a mean zonal statistic. Fig. S8 maps the VIIRS SES proxy 
across regions.
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