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Utilising random forests 
in the modelling of Eragrostis 
curvula presence and absence 
in an Australian grassland system
J. Brown 1*, A. Merchant 1 & L. Ingram 1,2

Eragrostis curvula is an agronomically and ecologically undesirable perennial tussock grass dispersed 
across Australia. The objective of this study is to investigate relationships of ecologically relevant 
abiotic variables with the presence of E. curvula at a landscape scale in the Snowy Monaro region, 
Australia. Through vegetation surveys across 21 privately owned properties and freely available 
ancillary data on E. curvula presence, we used seven predictor variables, including Sentinel 2 NDVI 
reflectance, topography, distance from roads and watercourses and climate, to predict the presence 
or absence of E. curvula across its invaded range using a random forest (RF) algorithm. Assessment of 
performance metrics resulted in a pseudo-R squared of 0.96, a kappa of 0.97 and an R squared for out-
of-bag samples of 0.67. Temperature had the largest influence on the model’s performance, followed 
by linear features such as highways and rivers. Highways’ high importance in the model may indicate 
that the presence or absence of E. curvula is related to the density of human transit, thus as a vector 
of E. curvula propagule dispersal. Further, humans’ tendency to reside adjacent to rivers may indicate 
that E. curvula’s presence or absence is related to human density and E. curvula’s potential to spread 
via water courses.

Eragrostis curvula is a species that has attracted government, public and scientific interest due to its impacts 
on ecological integrity and agricultural  productivity1–3. E. curvula is a C4 perennial tussock grass in the family 
Poaceae. The Eragrostis genus has 300 species worldwide, with 66 present in Australia, 52 native, and 14 consid-
ered non-native  species4. E. curvula was intentionally introduced into Australia as early as 1910 by the Australian 
Government as part of a larger scheme to introduce soil-stabilising plant species that may also offer a source of 
feed to grazing  livestock5,6. In Australia, E. curvula has become an undesirable plant species in agricultural and 
ecological contexts, impacting species diversity, richness, and agricultural  productivity7,8. However, evidence 
suggests that E. curvula can sustain agricultural enterprises but requires intensive management to be a moder-
ate pasture grass, regarding sustaining livestock health and weight for productive agricultural output while still 
impacting native species  diversity5,6,9,10. Since its introduction, E. curvula has spread and is now present in every 
state in Australia, including high densities in agricultural  regions7,8,11.

Factors driving E. curvula’s ability to distribute so widely in Australia and across the world include its 
high propagule pressure and phenotypic plasticity, allowing it to establish itself in a wide range of climatic 
 conditions6,10,12–14. The extent to which a species can alter its morphological or physiological traits to suit various 
landscape conditions defines the amount of phenotypic plasticity a species  possesses14–16. Firn et al.14 found E. 
curvula to have greater variability in six measured plant traits when growing conditions were altered compared 
to two other co-occurring native species (Eragrostis sororia and Aristida personata), indicating that E. curvula 
has greater phenotypic plasticity. However, this phenotypic plasticity has been shown to act as a double-edged 
sword; where when nutrients are applied to E. curvula, it will increase its resource use efficiency, thus absorbing 
nutrients desirable to foraging organisms and becoming a more desirable forage for herbivores and subsequent 
decrease in E. curvula  abundance14. The findings by Firn et al.14 support the ability of E. curvula to adapt its 
phenological development to a wide range of conditions but also offer unique insight into potential management 
strategies. More broadly, E. curvula’s continent-wide distribution may result from its ability to adapt to various 
stressful and varied environmental  conditions16. This phenotypic plasticity appears common across cultivars 
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of E. curvula and is reflected by relatively distinct yet variable properties such as appearance palatability and 
phenology within the  species17,18.

Holmes19 reported on the impact of both the perennial weeds E. curvula and serrated tussock on the Monaro 
grazing industries suggesting that the difference between the cumulative cash surplus of an uninvaded farm and 
an invaded farm can be up to $300 000, primarily due to the difference in return from livestock. In an invaded 
farm situation, the land’s carrying capacity can be as low as two dry sheep equivalent (dse) per hectare, which 
according to  Holmes19, is insufficient to “break-even” and results in an income deficiency.  Holmes19 categorises 
uninvaded native pastures as being able to sustain four des per hectare and eight des per hectare in modified 
pastures.  Holmes19 argues that the benefits of managing invasive plants, despite the monetary cost of labour and 
resources required, far outweigh the financial cost impacts of no management due to invasive species’ impact 
on an area’s carrying capacity decreasing a farm’s gross income.

Due to its ability to impact both native ecosystems as well as economically important grazed grasslands, 
research has been conducted that relates the ecological factors that influence the distribution of E. curvula and 
which may be integrated into a single model used for the prediction of distribution across larger spatial  areas6,10,20. 
Predictive models are dependent on relevant predictor variables, and in the case of species distribution models, 
understanding what predictor variables are most likely to influence a species distribution is vital in the devel-
opment of accurate  models21–23. Thanks to developments in the accessibility of open-source data through data 
collectors such as Copernicus, Earth Explorer, and the Bureau of Meteorology, predictive models have become 
more accurate and  widespread24,25. E. curvula is considered an invasive species in Australia, among other coun-
tries, and predictor variables influencing its distribution relate to its invasive traits, such as the production of 
many small seeds and the ability to grow under a wide range of climatic  conditions3,6,10. E. curvula is primarily 
dispersed by hydrochory (water dispersal), anemochory (wind dispersal) and zoochory (animal dispersal), and 
as such, predictor variables relating to climate, distance to waterways and distance to human and animal dispersal 
pathways (such as roads) are likely to be the strongest predictors of E. curvula  distribution6,10.

Random Forest models (RF) are a highly flexible and robust machine learning technique that has gained 
prominence in various fields of study, including research on drought, land-use change and predictive species 
distribution  modelling26–31. Random forests are an ensemble classifier formed from many classification and 
regression  trees26. Roozbeh Valavi, Elith, Lahoz‐Monfort, and Guillera‐Arroita (2023) highlight the advantage 
of flexible models, such as RF, in their ability to generalise data and model complex, non-linear relationships. 
An issue often present in machine learning techniques is  overfitting26. The inherent model architecture of RF, 
such as the incorporation of bootstrapping, random feature selection and the model’s ensemble mechanisms, 
work to overcome overfitting  issues26. However, RF are not immune to overfitting data issues, and appropriate 
performance metrics analysis is required to evaluate  RFs26. Jalayer et al.27 use RF and a neural network architec-
ture for supervised learning, fussy ARTMAP, to model land cover change in the Chalus Watershed, Iran. Using 
these models, Jalayer et al.27 provide evidence of increases in agricultural land and barren areas and declines in 
grasslands and forested areas where the major land use changes between 2001 and 2021. Further, the model’s 
prediction was validated on the known land use change and found to be an accurate simulation, with K-index 
values ranging from 0.92 to 0.94. Here, the K-index values approaching one, reflect a high degree of accuracy 
between the predicted and actual land use change maps. Jalayer et al.27 used these models to forecast land use 
change into 2040 and predict a further decrease in forest cover and increase in expansion of barren areas, agri-
cultural land and build-up area.

There is a general consensus among invasion ecologists that simply eradicating invasive plants is not feasible 
in landscape management of social, environmental, and economic values where a species has been established for 
many years and has developed substantial aboveground biomass and soil seed bank and replaced native species 
that fulfil a similar role in the  ecosystem32,33. Rather, mitigation of impacts on the most susceptible areas and 
preventing the further spread into uninvaded areas is the true goal, especially for species established for decades, 
such as E. curvula32,34. With an overarching goal of limiting the spread of invasive species into uninvaded areas, 
our research objective is to investigate the extent of easily accessible abiotic variables’ ability to predict the pres-
ence or absence of E. curvula at a landscape scale in the Snowy Monaro region, Australia, using random forest 
modelling techniques. Random forests (hereafter RFM) are powerful classification and regression methods that 
function by combining multiple randomised decision trees and aggregates their predictions by  averaging35,36. 
We achieve the research objective through observational studies using E. curvula in the Snowy Monaro Regional 
Council area as a case study species and region.

Methods
Study area
The extent of the study area covers the New South Wales Local Government Area of Snowy Monaro Regional 
Council (hereafter SMRC), which has an approximate area of 1,516,000 hectares (top: −35.579312, right: 
149.602741, bottom: −37.262980, left: 148.200678) (Fig. 1). The mean annual temperature within the SMRC 
between 1976 and 2005, derived from monthly mean temperature data, is 9.4 °C, with a standard deviation of 
1.5 °C37. The notable rivers of the region are the Murrumbidgee and Snowy, and many more sub-water ways 
connecting to the river systems. Two major highways run within the SMRC; the Monaro highway runs approxi-
mately north–south, and Snowy Mountains highway runs from the northwest, meeting up with the Monaro 
highway at Cooma, then continues east approximately 9 km south of Nimmitabel, which provides transport of 
livestock, fodder, residence and tourists. The SMRC ranges in elevation from a minimum of 213 m above sea level 
to a maximum of 2223 m above sea  level38,39. The region’s mean elevations are approximately 1000 m above sea 
level, with a standard deviation of 259.2  m38,39. The region’s higher elevations are located towards the east along 
the portion of the Great Dividing Range commonly known as the Australian Alps and home to Mt Kosciuszko. 
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This study excluded nature conservation areas from potential sites due to the research scope focusing on graz-
ing systems that spatially dominate the SMRC. Excluding nature conservation areas removes large areas of the 
Australian Alps from the study area and focuses on areas within the Monaro tableland, which is approximately 
represented by the Interim Biogeographic Regionalisation for  Australia40, Version 7 sub-region “Monaro”41.

Field method
Field data collection occurred from September to December 2019 and again from August to October 2021 (Sup-
plementary Information). The 2019 data collection method involved placing a transect in a location represent-
ing the vegetation community of interest and perpendicular to established roads of varying use. Transects were 
established in areas that contained either high or no/low density of E. curvula. Low-density sites are defined as 
not having any E. curvula present, or where E. curvula is present; it is not present in swards larger than 10  m2. 
High-density sites are defined as having E. curvula in dense swards covering the majority of the sampled site. The 
transects were 100 m long with 20, 50 × 50 cm quadrats stratified along the length, with GPS points recorded at 
each quadrat (Fig. 2). The number of replicates at each site depended on the property’s area, with larger proper-
ties having more transects, with between 20 and 80 quadrats per property.

The 2021 data collection method differed from that of 2019 in that out of the 21 properties originally sampled, 
six were selected as sites having a particularly high or low density of E. curvula or sites that have areas of high 
E. curvula density in some locations within the property and low density in others. At these sites, three areas 
of at least five hectares were outlined as a polygon using QGIS software, and ten points were randomly chosen 
within each polygon, with no points being within 20 m of another (Fig. 2). At the location of each of the points, 
a 1 × 1-m quadrat was placed, and a vegetation survey was conducted.

Figure 1.  Map of the study locations within the Snowy Monaro Local Government Area. The blue crosses 
indicate areas surveyed that did not have Eragrostis curvula present, while the green crosses indicate areas where 
E. curvula was absent. Temperature (°C) is represented as the annual mean temperature between 1976 and 
 200542.
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Ancillary data
Due to black summer bushfires across this region during Dec 2019–Mar 2020 and institutional COVID-19 travel 
restrictions, the data collection on additional properties in 2020 was greatly impeded. Due to these restrictions, 
a decision was made to use ancillary data in the form of the Atlas of Living  Australia11 E. curvula dataset (Sup-
plementary Information). The Atlas of Living  Australia11 acts as an E. curvula presence dataset with information 
on location within the Snowy Monaro Local Government Area, bolstering the number of E. curvula present data 
points. The ancillary data was refined to only include records from the year 2000 onwards and had a coordinate 
uncertainty of less than 100 m.

Copernicus Sentinel  data43 provide global satellite imagery at spatial resolutions of ten meters for bands 2 
(blue), 3 (green), 4 (red) and 8 (near infrared). Bands 4 and 8 can be used for the calculation of NDVI, an index 
of the greenness of vegetation and a proxy of vegetation density using the formula:

The calculation is performed on each pixel within the satellite imagery using the open software provided by 
QGIS.org44. This research utilises Copernicus Sentinel  data43 collected on 01/11/2019 on sentinel tiles T55HFA, 
T55HFV, T55HGA and T55HGV. This date was chosen as it falls within the sampling period for this study’s first 
data collection period. Using the open software QGIS.org44, values for NDVI were extracted at each data point 
using the sample raster values function, resulting in each point used to train the model having a corresponding 
NDVI value recorded at that location.

Using the open software QGIS (version 3.16.9), the distance (in metres) from each survey location to the 
nearest road was  determined44. Roads included all named roads within NSW and farm tracks used to navigate 
the interior of properties individually added for each property surveyed; in addition, the role that highways may 
have played as a vector of spread was included in the RF as a separate  predictor45. Using QGIS (version 3.16.9), the 
distance from each survey location to the nearest hydroline was obtained using the distance to nearest hub (line 
to hub) function. The Hydroline data includes surface water features such as lakes, rivers, creeks, canal drains, 
spillways, races, tunnel-siphons and  connectors46. The values recorded are to the nearest meter Hydroline was 
subset only to include rivers, and the same methodology used to calculate the distance to hydroline was used.

(1)
(Band 8− Band 4)

(Band 8+ Band 4)
.

Figure 2.  Schematic of the two methods used to collect data for one of the 21 properties used in this study. (a) 
The random points within polygons using the polygon method. Each quadrat in (a) is at least 20 m apart from 
another quadrat. The site polygons are at least 5 hectares in area and were used to bound the random placement 
of the quadrates within. (b) The transect method with quadrate spaced 5 m apart along a 100-m transect. The 
transects in (b) run perpendicular to roads or tracks within the property.
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Mean annual temperature (°C) and rainfall (mm) data for the period 1976–2005 at the spatial resolution of 1 
Arc-second were  obtained37. One arc second is approximately 30 m but varies due to the earth’s irregular oblate 
spheroid, or geoid, shape. The mean temperature and rainfall values were extracted at each survey point using 
the sample raster values function. Eragrostis curvula has been suggested to be present in the study area for at 
least 70 years; as such, it has spread over the area under a changing climate as a result of anthropogenic climate 
 change47. As such, this research has chosen to use mean annual temperature data and monthly mean precipitation 
from 1976 to 2005 as it would best reflect the climatic conditions present in the region during a large time period 
of its establishment and  spread5,47. For each site, the elevation (m) above sea level (asl) was determined using 
a one Arc-second resolution digital elevation model based on data collected in February 2000 Gallant et al.38.

Random forest model
Random Forest creates many (e.g. 500) bootstrap samples, and the data that does not appear in each bootstrap 
sample is known as the out-of-bag (OOB)  sample35,36. The bootstrapped samples are passed through a classifica-
tion tree with randomised binary splits at each node with a random subset of the provided predictor  variables35,36. 
The OOB sample from each bootstrap sample is then run through a classification tree, with each OOBs sample 
classification being recorded, with the final classification of a given sample being the majority vote of all of the 
classification  trees35,36. We developed an RFM with binary response variables (hereafter RF P/A) for classifying 
the presence/absence of E. curvula based on seven predictor variables. The predictor variables for the RF P/A 
are elevation, distance to road, distance to highway, distance to river, distance to any watercourse, Sentinel 2 
NDVI, mean temperature over 40 years and mean rainfall over 40 years. All predictor variables are continuous.

The data set for the RF P/A comprises 1292 observations, a combination of in-field measurements using field 
methods described above, totalling 1096 data points, and E. curvula presence data gained from the Atlas of Living 
 Australia11, totalling 196 data points. The Atlas of Living  Australia11 data comprises 196 presence data points. 
The data set has 612 instances of  E. curvula absence and 680 instances of E. curvula presence.

The RF P/A hyperparameter tuning was conducted using a grid search, where the researcher compared a 
combination of different hyperparameters chosen to determine the optimal model. As the RF P/A is created for 
prediction, the metric used to tune the hyperparameters is the error rate or the number of correct predictions 
the model performs on a data  set48.

Statistical analyses
All mapping outputs were created using open-source GIS software version 3.16.9-Hannover produced by QGIS.
org44. All model calculations were performed in the open-source R software Version 4.2.1 produced by RStudio 
 Team49. The model was trained and evaluated using the train function inside the R package Ranger. Metrics to 
assess model performance are AUC, R squared for the out-of-bag samples (R squared OOB), pseudo R squared, 
Cohen’s Kappa, sensitivity, specificity and F1  score48. Predictor variables of elevation and NDVI were found 
to be highly correlated (> 0.65) with other predictor variables in the model and thus removed as they had the 
lowest importance of the correlated variables when included in the RF P/A. Further, the ecological justification 
of retaining the correlated predictor variables of mean annual rainfall and mean annual temperature relates to 
the ecology of E. curvula as species tolerant of dry conditions but potentially intolerant to certain temperature 
 extremes6,10,50. Due to the fluctuating nature of performance metrics when conducting RFM, the optimal RF 
P/A underwent 30 repetitions, with the performance metric being recorded from each interaction and allowing 
for a measure of spread using standard deviation. Predictions were generated using the predict function from 
the inbuilt stats package in R.

Results
Presence/absence random forest model performance
The RF P/A for E. curvula has an AUC of 0.9995, R squared OOB of 0.67, and a pseudo-R squared of 0.96 
(Table 1). The relatively low standard deviation of the model after 30 repetitions indicates the model is perform-
ing consistently across the 30 repetitions. The model had a very good agreement regarding Kappa with a value 
of 0.97, other performance metrics of sensitivity, specificity and F1 scores of 0.98, 0.99 and 0.98, respectively 
(Table 2). However, as  Lantz48 notes, the term very good agreement is accompanied by subjectivity. Compar-
ing the pseudo-R squared, AUC and Kappa to the R squared OOB indicate that the model performs with high 
accuracy when classifying data that it was trained on but lost accuracy when classifying completely new data. 
Regardless, a random model that arbitrarily assigns points as having E. curvula present or absent would be 
expected to have an AUC of 0.5 and an R-squared OOB of 0, assuming a binary response and equal samples in 
the presence and absence dataset.

Table 1.  Performance metrics used to assess random forest performance.

Performance metric Mean after 30 repetitions Standard deviation after 30 repetitions

Aera under curve 0.9995 0.00003

R squared (out of bag) 0.67 0.001

Pseudo R squared 0.96 0.0003
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Presence/absence random forest model predictors
All predictor variables had some influence on the RF P/A, with the removal of any one predictor increasing the 
mean error when permuted (Fig. 3). Temperature, distance from highway and distance from river were the most 
important predictor variables when minimising error in the RF P/A, respectively. The relationship between E. 
curvula and the three most important predictor variables does not appear linear when all other predictor variables 
are held constant, reflecting the complex interactions among predictor variables in predicting the distribution of 
E. curvula (Fig. 4). Variation in the response curve of the three most important predictor variables has minimal 
deviation from the general trend (Fig. 4).

Table 2.  Confusion matrix of the random forest binary classification model predicting presence (1) and 
absence (0).

Confusion matrix Predicted: 0 Predicted: 1

Actual: 0 608 17

Actual: 1 4 663

Figure 3.  Variable importance plot showing the increase in mean error computed on the out-of-bag data across 
trees when predictors are permuted during the development of the random forest.

Figure 4.  Response curves of the random forest model showing the top three important predictor variables 
derived from the model, (a) mean annual temperature (°C) 1976–2005, (b) distance from highway (m) and (c) 
distance from river (m). The bold black line indicates the response of E. curvula presence as a result of changes 
in the x-axis predictor variable, with all other predictor variables held at their 50% quantile. The thin grey lines 
show the variation of the response of E. curvula to the x-axis predictor variable after 30 repetitions.
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Discussion
Adopting a modelling approach to predicting the potential presence and absence of E. curvula has the potential to 
significantly benefit efforts to suppress its spread throughout the region by assisting targeted, proactive manage-
ment strategies. Our model is empirically based on physical and ecological parameters offering further value in 
identifying potential mitigation strategies to reduce or contain its spread. The predictor variables used in the RF 
P/A were chosen to be a balance between easily accessible data available for public download and ecologically 
relevant variables that would likely impact the distribution of an invasive  species6,10. As such, the observed influ-
ence of individual parameters (and their interactions) gives functional insight into potential mechanisms that 
may be used to constrain spread. Figure 4 highlights the complex non-linear relationship between temperature, 
distance from highway and distance from river and E. curvula presence. Roozbeh Valavi et al.28 conclude that 
flexible models, such as RF, can effectively predict a range of response variables in spatially distinct areas, such 
as those found in the SMRC. Roozbeh Valavi et al.28 define a flexible model as a modal that can adapt to simple 
and complex data, fitting closely to the data when needed but avoiding overfitting by not capturing random noise.

Tables 1 and 2 highlight high model performance, with a notable decrease in R squared (out of bag) compared 
to the other performance metrics. This notable decrease reflects the RF P/A limitations in modelling the presence 
or absence of E. curvula beyond the data it has been trained on. However, the RF P/A highlights the model’s 
explanatory power due to the high Kappa and F1 scores. Specifically, the RF P/A produces few false positives 
and fewer false negatives (Table 2). Few false negatives are preferred in this context, as under the precautionary 
principle, it would be considered better to assume the presence of an invasive species, check and be incorrect 
rather than believe that there are no invasive species in an area, risk being incorrect and the invasive species 
continuing to  spread51. Using a similar workflow, De Simone et al.52 obtained an overall accuracy of 94.76% and 
a kappa of 88% when using RF for species distribution modelling of the invasive perennial grass Brachypodium 
genuense in an Italian grassland system. De Simone et al.52 find slope, elevation and solar radiation to be the 
most important predictor variable of B. genuense distribution, as opposed to temperature, distance from roads 
and distance from rivers in our research. Differentiating this research from that of De Simone et al.52 is that 
the selection the predictor variables used in this research were chosen based on their ecological relevance to 
E. curvula’s  occurrence6,10,53. The predictor variables of De Simone et al.52 were chosen based on topographic 
variables available using the Sentinel-2 image database. Regardless, both De Simone et al.52 and this research 
highlight the utility of RF in developing accurate species distribution models for modelling invasive species 
within grassland ecosystems.

Temperature as a predictor of Eragrostis curvula
The predictor variable of temperature was the most important variable in the RF P/A. Removing temperature 
as a variable from the model had the most detrimental effect on the RF P/A performance regarding error rate. 
Ngoy and  Shebitz20 found a similar association between E. curvula and temperature, where the mean annual 
temperature was one of the most significant predictors of E. curvula across New Jersey in the United States 
of America. The ecological relevance of temperature to plant growth relates to the optimal conditions a plant 
requires for the most efficient metabolic  processes54,55.

Temperature has been identified as an important predictor variable in the RF P/A, but a simple linear relation-
ship cannot be assumed due to the nature of RFM. For example, the sample point located at longitude 148.57 and 
latitude −36.66 has an average annual temperature of 10.6 °C and has E. curvula present, while another sample 
point located at longitude 149.20 and latitude −36.29 also has an average annual temperature of 10.6 °C but 
does not have E. curvula present. Temperature in isolation is, therefore, not a reliable predictor in the RF P/A. 
However, when considered in the context of the other predictor variables, it becomes important in minimising 
error and maximising the accuracy of the RF P/A. Figure 4 highlights this complex relationship with no clear 
trend in the temperature response curve when all other predictor variables are held constant. A peak between 
11 and 12 °C may indicate that E. curvula prefers this annual mean temperature within the study region. Roberts 
et al.6,10 found that temperatures between 17/7 °C for E. curvula seed collected from Maffra, Tenterfield, and 
Shepparton, Australia, germination time and survival rate were lower than at higher temperature ranges when 
investigating the germination biology for four different populations of E. curvula. Roberts et al.6,10 observed that 
temperature did not directly influence E. curvula seeds obtained from Midvale, Australia. The finding of Roberts 
et al.6,10 provides further evidence to support the phenotypic plasticity of E. curvula and its ability to adapt to 
a wide range of environmental conditions. Thus, making E. curvula a species well adapted to spatial dispersal 
across landscapes if given appropriate dispersal corridors such as roads and waterways.

Roads as a predictor of Eragrostis curvula
The distance to highway was the next most important predictor variable in the RF P/A. Similar to temperature, 
due to the nature of RFM, the model does not make generalisations regarding the relationship between E. 
curvula and distance to highway. However, the ecological context suggests that as the distance from frequently 
used roads increases, the cover of invasive species such as E. curvula is likely to decrease, a trend supported 
by Fig. 4. Figure 4B shows a pattern of forecasting higher predictions of E. curvula present when the distance 
from highways is low, and all other predictor variables are constant. The distance to highway acts as a proxy to 
human dispersal and, by extension, a vector for E. curvula dispersal. Distance from human dispersal corridors, 
such as roads, consistently appears to influence invasive plant presence and  density16,28, 30,35,44, 56–58. Gelbard and 
 Belnap59 found that as road use increases, the cover and richness of invasive species also increase adjacent to 
these roads and decrease as distance increases from the road into the interior of the surrounding area. Hansen 
and  Clevenger60 suggest that corridor edges, such as roads and railway lines, are more prone to invasion as they 
may act as microhabitats or microclimates suitable for invasion recruitment. These microclimates are suitable 
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due to areas adjacent to roads often having barriers to invasion removed, such as competition for light and soil 
 moisture60. The concept of ecosystem invasibility is relevant here as it pertains to roads acting as a vector of 
disturbance, thus removing competition and opening niche space for invasive species to  exploit61,62. For this 
reason, areas adjacent to roads can be seen as more invasable, allowing invasive species to establish and spread 
into surrounding areas. Furthermore, roads can increase the propagule pressure of invasive plants where seeds 
are spread long distances by vehicle  travel63–65.

Rivers as a predictor of Eragrostis curvula
Rivers are a dynamic, inherently spatial system as water is transported through the landscape, with material 
actively or passively transported in  conjunction66. The dynamic and spatial nature of riverine systems alleviates 
one of the major barriers to invasive species recruitment: the dispersal of propagules to sites outside of their native 
 range66,67. Furthermore, riverine systems and the associated riparian systems undergo regular disturbance in the 
form of flooding and livestock  watering67. Nakayama, Nishihiro, Kayaba, Muranaka, and  Washitani68 investigated 
the potential for E. curvula to spread via riverine systems by comparing the fall velocity of E. curvula seeds with 
different sediment particle sizes. Nakayama et al.68 found that sediment particle size of < 0.25 mm, here consid-
ered fine sand, had a similar fall velocity to E. curvula. Furthermore, a positive correlation between fine sand 
and E. curvula seed occurred at the study site of the Kinu River, Japan. Nakayama et al.68 provide evidence for 
E. curvula to disperse via hydrochory and link to our findings that show a trend for lower E. curvula presence 
prediction as the distance from rivers increases.

Limitations of the predicted presence and absence of Eragrostis curvula
Due to the large number of seeds E. curvula produces and its high germination rate, there will likely be other E. 
curvula plants within at least 1 hectare of any given  plant6,10. Further, sites close to each other are likely to have 
more similar abiotic conditions than sites further away which is the basis of spatial  interpolation69. Therefore, 
sites, where E. curvula was not observed when conducting the vegetation survey cannot be ruled out as inca-
pable of supporting E. curvula, particularly if an E. curvula plant was observed within close proximity. Further, 
due to the relative course resolution of predictor variables of the climatic variable of temperature and rainfall, 
compared to the sampling spatial resolution, finer microclimatic variations are generalised over a larger area, 
potentially overlooking important fine scale influence on E. curvula  distribution70,71. Despite several limitations 
to data collection imposed by COVID-19 travel restrictions and the Black Summer bushfires, our RF P/A showed 
value in outperforming the neutral random model and therefore has great potential to assist in targeted efforts 
for monitoring and managing E. curuvla presence. However, these limitations potentially influenced the avail-
ability and quality of data used to train the model due to the reliance on ancillary data, impacting the reliability 
of predictions.

Further, due to the intentional decision to use open-source, free-available data as predictor variables, there 
are inconsistencies in the spatial resolution of the data. Mishra et al.72 show that increasing spatial resolution can 
result in higher classification rates of land use and land cover classes. The inconsistencies in the spatial resolu-
tion of the predictor variables could overinflate the importance of certain predictor variables. However, there is 
limited research on this as a factor influencing bias.

Conclusion
The predictor variables of annual mean temperature, distance from highway and distance from river were iden-
tified as the most important variables predicting the presence of E. curvula in the study area. These predictor 
variables align with previously identified predictor variables of E. curvula and other invasive plants relating to 
hydrochory and  zoochory6,10. The RF P/A indicates conditions in which the presence of E. curvula is supported 
based on a range of open-access landscape predictor variables. However, the model’s performance metrics based 
on extrapolating outside of the data it has been trained on should be interpreted cautiously. As such, the outcomes 
of our findings should be used as a tool as part of a larger toolbox rather than a rule used to manage E. curvula 
as part of integrated management strategies. However, the model has inherent limitations in high-resolution 
accuracy due to the decision to use easily accessible predictor variables with differing spatial resolutions. As 
more high resolution becomes freely available, further predictive models will utilise this and likely develop more 
precise and accurate models.

Furthermore, the RF P/A should be tested on data it has not been trained on and compare ground-truth 
observational data with predictions generated by the RF P/A. Regardless of how accurate predictive models 
become, community communication is necessary so properties without E. curvula neighbouring properties 
with E. curvula can act accordingly to put management strategies in place to minimise the risk of further spread, 
and the outcome from the RF P/A can be utilised to inform those at most risk. The RF P/A produced may aid 
community members in understanding the possible extent of E. curvula based on their location in the landscape 
and highlight the areas predicted to be the most susceptible to E. curvula presence. This research highlights 
the necessity for more detailed mapping of the current distribution and density of E. curvula across the Snowy 
Monaro to prevent the spreading from high-density E. curvula areas to low-density E. curvula areas. If such a 
map existed in conjunction with the provided output from the RF P/A, then concentrated survey and manage-
ment efforts could be focused on the most at-risk areas.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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