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Forty years of monitoring 
increasing sea turtle relative 
abundance in the Gulf of Mexico
Jacob Andrew Lasala 1*, Melissa C. Macksey 1, Kristen T. Mazzarella 1, Kevan L. Main 1, 
Jerris J. Foote 1,2 & Anton D. Tucker 1,3

Longitudinal data sets for population abundance are essential for studies of imperiled organisms 
with long life spans or migratory movements, such as marine turtles. Population status trends are 
crucial for conservation managers to assess recovery effectiveness. A direct assessment of population 
growth is the enumeration of nesting numbers and quantifying nesting attempts (successful nests/
unsuccessful attempts) and emergence success (number of hatchlings leaving the nest) because of the 
substantial annual variations due to nest placement, predation, and storm activity. We documented 
over 133,000 sea turtle crawls for 50.9 km of Florida Gulf of Mexico coastline from 1982 to 2021 for 
a large loggerhead turtle nesting aggregation and a recovering remnant population of green sea 
turtles. Over time both species have emerged to nest significantly earlier in the year and green sea 
turtle nesting seasons have extended. Nest counts and hatchling production for both species have 
significantly increased, but the rate of emergence success of hatchlings leaving nests has not changed 
for loggerheads and has declined for green sea turtles. Sea level rise and coastal developments 
undoubtedly influence coastal habitats in the long-term, impacting nest site selection and potential 
recruitment from the loss of emerged hatchlings. However, the present indications for steady Gulf of 
Mexico recovery of loggerhead and green sea turtles counter findings of the Florida Atlantic coasts. 
This study indicates that effective conservation practices can be detected within time scales of 1–2 
turtle generations.

Long term data sets and analyses are essential to conservation plans of a species1–3. In ideal situations, observa-
tions of behavior can be combined with census counts of individuals4,5 thus allowing researchers to quantify 
how populations change over time. For many species, especially those that are threatened or endangered, these 
changes may be difficult to observe6,7 and proxies for direct observation must be used instead. This is especially 
true for animals that migrate from foraging grounds to breeding grounds8–10 and might not be easily accessible 
year-round, such as marine turtles.

Marine turtles are one of the few reptiles that migrate long-distances between foraging areas and breeding 
areas11,12. Observational data linked with mark-recapture histories indicate that migration cycles are resource 
driven and food availability can affect the time-frame between breeding seasons13–15. Remigration cycle shifts may 
influence recruitment rates, possibly impacting a population’s growth over time. Some demographic studies of 
marine turtles occur in-water through mark-recapture techniques16–18, but most estimates of population size are 
made during the breeding season from evidence of female tracks at nesting beaches. Females, their nests, and the 
resulting hatchlings are accessible on the beach during the nesting season and provide a baseline for population 
trends19–21. Marine turtles reach sexual maturity later than other reptiles and have a long lifespan22–25 reducing 
the likelihood that changes within a population are immediately apparent. Long term beach monitoring data 
can provide a reference point for the health of that breeding population26–28 and by coupling nest counts with 
reproductive success data researchers can predict future issues stemming from population fitness changes29.

The prevailing theory of marine turtle population structure suggests that data from one beach may not 
be enough to see the full picture of a breeding population30. Marine turtle genetic population structure is 
driven by female natal philopatry31 and gene flow occurs throughout the region as males travel along the coast 
toward their breeding areas32,33. More recent studies propose that population subdivision creates pockets of 
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subpopulations30,34,35. It is therefore critical to document monitoring for more than a decade of contiguous nest-
ing beaches to assess a region’s population trend36,37.

Marine turtles are threatened globally. In some regions they are hunted for their meat and shells, their eggs are 
poached, and turtles can be caught as bycatch38–40. Pollution in the ocean increases the likelihood of plastic inges-
tion or death and boat strikes are prevalent near populated areas41,42. Nesting beaches are at risk from armoring/
sand nourishment activities, their nests are at risk of predation, and hatchling disorientation or misorientation 
from artificial lighting43–45. However, relative abundance research provides conservation managers with tools to 
better protect these animals. The loggerhead sea turtle (Caretta caretta) nesting aggregation on the Northwest 
Atlantic Ocean is the largest in the world46, and 90% of these clutches are laid in Florida47,48. Green sea turtle 
(Chelonia mydas) nesting populations have been rapidly increasing in Florida since 199849,50; these increases 
have resulted in the down-listing of this species from “endangered” to “threatened”51. Much of the research on 
these and other species of marine turtles occurs on the East coast of Florida, where nesting density is high52–54. 
Few studies have focused on Florida’s Gulf of Mexico coastline28,55,56, despite the growing nesting populations in 
this region. Programs that have monitored marine turtle nesting over time are invaluable to identifying trends 
of how populations have changed through time27,57,58.

The primary goal of this study was to determine how nesting counts and hatchling production have changed 
over time and to quantify how nesting turtles on these beaches are contributing to the greater Gulf of Mexico 
marine turtle populations. The secondary goal was to assess how the different beaches contribute to the popula-
tion and to identify regions that are more or less productive to inform regional conservation managers of these 
trends.

Methods
Study sites
Since 1982, the Mote Marine Laboratory Sea Turtle Conservation and Research Program (MML STCRP) has 
standardized annual monitoring for 50.9 km of nesting habitat across six beaches in Sarasota County, Florida. 
With 40+ years of continuous data, STCRP is uniquely placed to identify trends in the growing population and 
to estimate how this population’s breeding behavior has changed over time. Sarasota County hosts the largest 
nesting aggregation of loggerheads within the Gulf of Mexico and is an excellent representation of the growth 
of nesting in the region59,60.

During the nesting season (April–October), MML STCRP staff and volunteers monitor sea turtle nesting 
during morning patrols on six beaches in Sarasota County. The majority of these barrier islands are considered 
to be critically eroded61, threatening suitable nesting habitat and residential property. Residents of these coastal 
communities have attempted to safeguard their beaches through beach nourishment and/or implementing coastal 
armoring techniques. These activities can negatively impact sea turtle nesting behavior62–65. Each beach varies 
in length, sand color and sand grain, armoring, nourishment, and profile (Table 1, Fig. 1).

Coordinated citizen science nesting surveys
All beaches monitored by MML STCRP fall under the Statewide Nesting Beach Survey (SNBS) program under 
the Florida Fish and Wildlife Conservation Commission (FWC). Siesta Key is also part of a standardized data 
collection program called the Index Nesting Beach Survey (INBS). These two programs are designed to assess 
the distribution and relative abundance of sea turtle nesting across Florida to inform beach managers of coastal 
development issues and promote the recovery of sea turtle populations57,66. Survey data are collected through 
permit holders, but the core of the data could not be collected without the help of trained volunteers who patrol 
the beaches to identify and document sea turtle ocean emergences. One such volunteer group: Longboat Key 
Turtle Watch (LBKTW) started quantifying nesting activity in 1969 and was a pioneering example for other 
long-term projects in the region. Since 2005, volunteers log an average of 19,000+ hours every nesting season.

Annual daily beach monitoring was conducted from April 15 (May 1st prior to 2016) through October 31, or 
3 days after the final hatchling emergence. Permitted personnel traveled the shoreline at dawn above the mean 
high-water line to document turtle nesting activity. Using Florida Fish and Wildlife’s marine turtle guidelines67, 
each activity was classified as a nest or a non-nesting emergence (also known as a false crawl) and the species was 
identified via crawl pattern. Nest counts were defined as the number of crawls that emerged from the ocean that 
resulted in the laying of a clutch of eggs within the sand before the turtle returned to the ocean. A non-nesting 

Table 1.   Six beaches in Sarasota County, Florida, USA that STCRP monitors annually (mapped in Fig. 1). 
Each beach is unique in length, sand color/albedo/grain size, beach profile, nourishment, and armoring 
methods.

Beach Length km (mi) Sand color Sand grain Beach profile Nourished? (# of times) Armoring

Longboat Key 17.1 (10.6) White–brown Fine–medium Moderate Yes (18) Seawalls, groins, rock revetments

Lido Key 5.3 (3.3) White Fine Flat–moderate Yes (10) Groins, rock revetments

North Siesta Key 5.2 (3.2) White–brown Very fine Flat No Outfalls, groins, rock revetments

South Siesta Key 4.1 (2.5) Dark Coarse Dynamic Yes (2) Rock revetments

Casey Key 11.8 (7.3) Brown Medium Flat–moderate No Seawalls, groins, rock revetments, pilings, jetty, sandbags, 
stepped revetments, geotextile container

Venice 7.4 (4.6) Dark Coarse Dynamic Yes (5) Outfalls, rock revetments, jetty
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emergence was defined as an emergence that did not result in egg deposition. Nesting success was calculated as 
the proportion of emergences that resulted in a nest in relation to the total number of crawls and served as an 
indicator of a beach’s nesting suitability68–72:

Nesting density is an index of nest distribution and is used as a metric for conservation success when assessed 
over time73,74:

Most clutches were left in situ, but clutches laid during active nourishment projects were relocated by 9 a.m. 
the morning after deposition—eggs were transported to a location higher on the beach and placed into an artifi-
cially built nest chamber that closely resembled the original nest chamber in shape, size, and depth. Additionally, 
regulations reflecting the potential negative impacts of nest relocations were not set prior to 1987 and many nests 
were relocated to protective “hatcheries”.

Turtle crawl locations were documented in relation to the nearest Florida Department of Environmental 
Protection (FDEP) range monument to the north and, beginning in 2004, with global positioning system (GPS). 
Starting in 1997, personnel measured the distance from the nest or false crawl apex to the closest upland vegeta-
tion/barrier and from the nest or false crawl apex to the day’s mean high-water line. By adding these two values 
together, total beach width was estimated. These measurements were used to assess nest site selection in relation 
to the lower, middle, or upper thirds of the beach, regardless of beach width.

All nests prior to 2013 were monitored: eggs in the clutch were verified, nest sites were marked with stakes, 
and nest sites were checked daily for depredation, disorientation/misorientation, wash-overs/inundation, wash 
outs and hatchling emergences. By 2013, the nesting population had grown too large to monitor and stake every 
nest. Following communication with FWC, MML STCRP shifted to a new sampling protocol based on turtle 
species and beach nesting density. On moderate to high density non-nourished beaches all loggerhead clutches 
laid on Wednesdays were verified and thereafter monitored; all nests on low density beaches, all rare species 

(1)Nesting Success =
#nests

#nests + #false crawls

(2)Nesting Density =
#nests

distance (km)

Figure 1.   Nesting beaches monitored by MML STCRP in Sarasota Florida. North to South they are Longboat 
Key, Lido Key, Siesta Key (North and South), Casey Key and Venice. Beaches vary in physical parameters (sand 
type, nourishment, obstructions, armoring) and these differences are highlighted in Table 1.
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[green, Kemp’s ridley (Lepidochelys kempii), leatherback (Dermochelys coriacea), and potential hybrid] nests, 
research nests, relocated nests, and all nests in nourishment areas were monitored.

Nest depredation occurred when a native or non-native organism preyed on incubating sea turtle eggs and 
hatchlings. In Sarasota County, depredation occurs from native predators (raccoons, armadillos, ghost crabs, 
coyotes) and from non-native predators (fire ants). Depredation events included predators digging into a nest 
and removing or damaging nest contents, subsequently impacting hatchling production. From 1982 to 2020, to 
mitigate depredation, self-releasing cages and/or screens were installed at all verified rare species nest sites and 
some loggerhead nest sites in high depredation areas.

After a monitored nest hatched and the hatchlings emerged, MML STCRP determined whether the hatchlings 
disoriented/misoriented en route to the Gulf. If a hatchling is disoriented, they will wander on the beach without 
direction (typically from skyglow), and if a hatchling is misoriented they typically travel to an artificial source of 
light and not the ocean75. Disorientation or misorientation events can be caused by natural and artificial lighting76 
and can have an impact on hatchling survival77. MML STCRP documents every disorientation/misorientation 
event, but their impact on hatchling survival is not fully described here.

Incubation duration was assessed by subtracting the date hatchlings emerged from the nest by the date the 
nest was laid. MML STCRP staff excavated the nest three days following an observed emergence. If an emer-
gence was not noted, excavations occurred after 70 days of incubation (80 days on North Siesta Key - where 
cooler sand temperature extends the incubation duration, and for all leatherback nests). During an excavation, 
nest contents were classified by counting hatched eggshells, hatchlings, and remaining unhatched eggs78. This 
method has not changed over the course of the study reducing error58. These counts were used to determine the 
emergence success of the nest. Emergence success quantified how many hatchlings exited the nest chamber and 
made it to the surface:

Emergence success was calculated for all nests from 1982 to 2012, but only for monitored nests from 2013 to 
2021 (see above). To remove potential bias from relocations, only in situ nests were included in the emergence 
success calculations. Partial depredations and partial washouts were removed from overall success calculations 
because we could not ascertain how many eggs were lost. Full depredations and full washouts were included as 
zero (0) success because the entire clutch was removed from productivity. By compiling these data, the annual 
hatchling production was assessed using regression analysis by beach and year. Two values are provided here: (1) 
a minimum number of hatchlings confirmed from all excavations from 1982 to 2021 and (2) a higher estimated 
number of hatchlings if MML STCRP had monitored and excavated every nest post-2013 (a further explanation 
can be found in Supplementary Information A).

Data standardization and analysis
All data were assessed and analyzed between 1982 and 2021. All analyses were performed on loggerhead and 
green data sets. MML STCRP also identified nests and false crawls from Kemp’s ridleys, leatherbacks and log-
gerhead/hawksbill hybrids (confirmed by genetics, B. Shamblin pers comm.), but the total number of these rare 
sea turtles nesting in the region remains too low to make inferences about overall nesting behavior. Further, 
adjustments were made to the beach protocol over time (see above); thus, not all parameters could be compared 
and analyzed throughout the timeframe. Nest counts, nesting density, nesting success, and incubation duration 
were all compared for the full 40-year monitoring timeframe (emergence success for 35 years). Nest location 
placement was only compared for the period 1997–2021. A separate data set removing beaches by the year that 
they were nourished was analyzed and the results are presented in Supplementary Information B.

All analyses were run in Program R 4.0.379, all figures were made using package ggplot280, and all maps were 
made using QGIS 3.1681. All data were tested for normality (Shapiro–Wilk or Kolmogorov–Smirnov tests) and 
homoscedasticity (Levene’s test). Most data were non-normal and most tests were non-parametric. To identify if 
there were differences in nest counts, nesting density via beach or year, generalized linear models were assessed 
and post-hoc Dunn tests were performed (package dunn.test)82. Siegel nonparametric linear regression (pack-
age mblm)83 was used to determine if first and last nest dates had changed over the course of the study and for 
analysis of incubation duration and emergence success over time. Both nesting success and emergence success 
are proportions that range between values of 0 and 1. Modified beta regression models (package betareg)84 were 
run to explore whether nesting success or emergence success were affected by abiotic factors including Year, 
Beach Width, Date of Activity and Latitude (proxied by FDEP monument). Finally, Kruskal–Wallis tests were 
used to compare nest site selection in relation to the spatial placement on the beach.

Results
MML STCRP documented 133,957 marine turtle crawls from 1982 to 2021; 48.8% of these crawls resulted in 
nests (65,321). Of those, 99.0% (64,692) were laid by loggerheads. There were 608 green sea turtle nests, ten 
Kemp’s ridley nests, five leatherback nests and two known loggerhead/hawksbill hybrid nests.

Nesting counts for loggerheads and rare species have increased since monitoring began (Fig. 2). The nest 
count data for both loggerheads and green sea turtles were not normally distributed (Shapiro–Wilk: loggerheads: 
W = 0.71, p < 0.001; green sea turtles: W = 0.42, p < 0.001) and residuals were non-normal for both species. No 
other species data were analyzed due to small sample size. For loggerheads, there were significant differences 
in nest counts over time and by beach (χ2 = 84.59, df = 39, p < 0.001; χ2 = 142.83, df = 5, p < 0.001 respectively). 
Post-hoc tests revealed that Casey Key had significantly higher nest counts than the other beaches and Lido Key 

(3)

Emergence Success =
#hatched eggs − (live hatchlings in nest chamber + dead hatchlings in nest chamber)

total clutch size
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and North Siesta Key had significantly fewer nests than the other beaches. For green sea turtles, even though the 
nesting population was growing there was no significant difference in nest counts over time (χ2 = 28.03, df = 26, 
p = 0.36). However, green sea turtle nesting counts were significantly higher on Casey Key than on all of the other 
beaches (χ2 = 16.91, df = 5, p < 0.001).

Species phenology, density, and success
The earliest loggerhead clutch was laid on April 20 and the latest was laid on September 30, and for green sea 
turtles: May 21 and September 19, respectively. Emergences resulting in a nest have significantly shifted earlier 
in the year for both loggerheads (V = 37, df = 38, p < 0.001) and for green sea turtles (V = 76.5, df = 22, p = 0.037; 
Fig. 3). Nesting season has not significantly shifted longer for loggerheads (V = 437, df = 38, p = 0.104), but has 
shifted significantly later for green sea turtles (V = 298, df = 22, p < 0.001).

Nesting density for both loggerheads and green sea turtles were not normally distributed (W = 0.79, p < 0.001; 
W = 0.49, p < 0.001) and neither were the residuals. For loggerheads, nesting density (x̄: 30.7 nests/km) sig-
nificantly increased over time and was significantly different between beaches (χ2 = 96.12, df = 39, p < 0.001; 
χ2 = 129.54, df = 5, p < 0.001; Fig. 4). Loggerhead nesting density was highest on Casey Key and lowest on North 
Siesta Key. For green sea turtles, nesting density (x ̄: 0.822 nests/km) increased over time—but not significantly 
(χ2 = 30.43, df = 25, p = 0.21); however, there were significant differences by beach (χ2 = 16.36, df = 5, p = 0.01). 
Post-hoc tests determined that green sea turtles prefer to nest on Casey Key and South Siesta Key and have never 
nested on North Siesta Key.

Nesting success for both species was not normally distributed (loggerheads: W = 0.97, p < 0.001; green sea 
turtles: W = 0.91, p < 0.001) and neither were their residuals. Loggerhead nesting success declined over time, 
but not significantly (x ̄: 0.49 ± 0.14; χ2 = 51.57, df = 39, p = 0.09). Loggerhead nesting success significantly var-
ied between beaches (χ2 = 68.39, df = 5, p < 0.001). Nesting success was highest on South Siesta Key (0.57) and 

Figure 2.   Nest counts for the period 1982–2021 from all beaches monitored by MML STCRP. Rare species 
include green sea turtles, leatherbacks, and Kemp’s ridley turtles.

Figure 3.   Julian date of earliest (a) and latest (b) laid nests for loggerheads (tan) and green sea turtles (green) 
for the period 1982–2021. Both species are significantly laying their nests earlier over the 40-year timeframe and 
greens are significantly laying their last nests later.
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lowest on North Siesta Key (0.38). Nesting success for green sea turtles varied widely (x ̄: 0.53 ± 0.33), but it did 
not significantly vary by year (χ2 = 30.967, df = 30, p = 0.42), nor by beach (χ2 = 4.577, df = 5, p = 0.47), despite 
the lack of nesting on North Siesta Key.

Species incubation and emergence success
The average incubation duration and emergence success for loggerheads across all beaches was 58.9 days and 
52.1%, respectively (a full breakdown by beach is in Supplementary Information). Over the course of the study, 
neither incubation duration, nor emergence success were normally distributed (Kolmogorov–Smirnov: D = 1, 
p < 0.001; D = 0.5, p < 0.001 respectively), and neither were their residuals. Loggerhead incubation duration has 
significantly increased over time (V = 741, df = 37, p < 0.001) and was significantly different between beaches 
(χ2 = 113.39, df = 5, p < 0.001). The longest average incubation duration was on North Siesta Key (77.6 days in 
2015) and the shortest average on Venice (50.9 days in 1994). Loggerhead emergence success decreased over 
time—but not significantly (V = 310, df = 38, p = 0.181), but emergence success did significantly vary between 
beaches (χ2 = 54.50, df = 5, p < 0.001). Casey Key had the highest average emergence success (61.1%) and North 
Siesta Key the lowest (28.3%). Over the course of the study, the minimum number of loggerhead hatchlings 
that emerged from these nests was 2,180,700. Using multiple regression models (outlined in Supplementary 
Information A), a higher value of 3,078,811 is estimated. Casey Key produced the most hatchlings annually (x ̄: 
24,000–33,500 per year, see Fig. 5).

Figure 4.   Loggerhead nesting density per km over time for the period 1982–2021. Nesting density significantly 
increased over time (the grey band represents the 95% confidence interval). Grey dots represent outliers from 
those years. Southern beaches had higher densities than northern beaches, resulting in high variation between 
the beaches from year to year.

Figure 5.   Estimated number of loggerhead hatchlings produced per year. Prior to the black box, all nests were 
excavated and the hatchling numbers were confirmed. The black box includes estimated number of hatchlings 
based on regression analysis (Supplementary Information A).
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Hatchlings emerged from 484 of the 608 green sea turtle nests (79.6%), resulting in 40,580 hatchlings. The 
average incubation duration was 58.4 days, and the average emergence success was 63.7%. Over the course of 
the study, neither incubation duration nor emergence success were normally distributed (W = 0.954, p < 0.001; 
W = 0.803, p < 0.001 respectively), nor were their residuals. Incubation duration has significantly increased over 
the course of the study (V = 226, df = 20, p = 0.001) and incubation duration significantly varied between beaches 
(χ2 = 45.87, df = 4, p < 0.001). Lido Key had a longer average incubation duration than both South Siesta Key 
and Venice. Green sea turtle emergence success has significantly decreased over time (V = 6, df = 21, p < 0.001). 
However, there was no significant difference in emergence success between beaches (χ2 = 6.69, df = 4, p = 0.15). 
There were 320 Kemp’s ridley hatchlings that emerged from nests (incubation x ̄: 63.8 days, emergence success 
x ̄: 27.3%) and 165 loggerhead/hawksbill hybrid hatchlings (incubation x̄: 54 days, emergence success x ̄: 50%). 
None of the five leatherback nests hatched.

Effects of nest site selection on nest success
Only statistically significant values are explained below; full model breakdowns are in Supplementary 
Information.

For loggerheads, nesting success significantly increased from north to south (z = − 7.75, p < 0.001) and sig-
nificantly decreased as the beach widened (z = − 12.84, p < 0.001). Nesting success was also significantly differ-
ent when these terms interact (z = 7.28, p < 0.001). For green sea turtles: nesting success significantly decreased 
from north to south (z = − 2.41, p = 0.02) and significantly decreased as the beach widened (z = − 1.99, p = 0.046, 
Fig. 6). Emergence success for loggerheads significantly increased from north to south (z = 2.68, p = 0.007). 
Emergence success significantly decreased over the course of the nesting season (z = − 2.45, p = 0.014) and sig-
nificantly decreased over the course of the study (z = − 2.69, p = 0.007). For green sea turtles, emergence success 
significantly increased over the course of the study (z = 2.45, p = 0.014); significantly increased from north to 
south (z = 2.05, p = 0.04), as the beach widened (z = 3.92, p < 0.001), and significantly decreased over the course 
of the season (z = − 2.71, p = 0.007).

For both species, nest site selection differed between the upper, middle, and lower portions of the beach (by 
width, Table 2). Loggerheads significantly preferred to nest in the upper portion of the beach—nearer to the dune 
(χ2 = 962.92, df = 2, p < 0.001), but they were significantly more successful at nesting in the middle (χ2 = 419.05, 
df = 2, p < 0.001). Loggerheads had a significantly higher emergence success in the upper portion of the beach 
(χ2 = 208.62, df = 2, p < 0.001), and a significantly lower incubation duration in the lower part of the beach 
(χ2 = 101.72, df = 2, p < 0.001). Green sea turtles significantly preferred to nest in the upper part of the beach 
near or in the dune (χ2 = 58.64, df = 2, p < 0.001), were significantly more successful at nesting in the upper por-
tion (χ2 = 9.02, df = 2, p = 0.01), and had significantly lower emergence success in the lower portion (χ2 = 11.65, 
df = 2, p < 0.001). There was a significant difference in incubation duration in relation to location on the beach 
(χ2 = 6.06, df = 2, p = 0.048), nests in the upper portion of the beach had a higher average incubation duration.

During some years, storm activity and high surf effectively removed the lower and middle portions of the 
beach over the course of the season. To account for this spatial difference, separate models were run to determine 

Figure 6.   Loggerhead and green sea turtle nesting success in relation to average beach width (m). Nesting 
success was calculated as the proportion of sea turtle emergences that resulted in a nest. Greens rarely nested 
successfully on wide beaches.
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if nest placement, nesting success, emergence success, and incubation duration were impacted by the con-
tinuous variable of distance to the upper barrier or dune. For loggerheads, nest placement was significantly 
more likely to be closer to the upland barrier (t = − 18.77, df = 9786, p < 0.001), nesting success was significantly 
greater closer to the upland barrier (z = − 28.33, df = 9787, p < 0.001); emergence success significantly declined 
further from the upland barrier (z = − 12.72, df = 5628, p < 0.001, Fig. 7), and incubation duration significantly 
increased further from the upland barrier (t = 5.29, df = 4935, p < 0.001). For green sea turtles, nest placement 
was significantly more likely closer to the upland barrier (t = − 7.03, df = 466, p < 0.001), but nesting success did 
not differ (z = − 1.28, df = 466, p = 0.20); emergence success significantly declined farther from the upland barrier 
(z = − 1.99, df = 235, p = 0.473), and incubation duration significantly declined farther from the upland barrier 
(t = − 2.75, df = 223, p = 0.006).

Discussion
Although loggerhead nesting counts have increased across Florida beaches59, evidence of a significant increase 
in the overall number of breeding females in the past 30 years is lacking66, hampering a strong recovery of the 
overall population. Few studies have looked at nesting trends on the Florida Gulf of Mexico coastline and their 
impact on the larger breeding population. Recent research in the Northern Gulf of Mexico suggests a reduc-
tion in the number of nests85. To the south on Keewaydin Island, although nest counts have increased, their 
hatchling production has declined28. Further, little information has been published about the slow recovery of 
green sea turtles in the Gulf of Mexico following the overharvesting of the species in the 1800’s86,87. However, 
the data presented in this paper shows that nest counts in Sarasota County have rapidly grown for both species, 
encouraging recovery. Beaches in Florida have partnered with FWC for their SNBS program since 1979 and the 
INBS program since 1989. For over 40 years, citizen scientists have provided data for the management of these 
beaches. Conservation efforts in this region appear to be effective and are needed.

One of the contributing factors of increased growth may be due to the implementation of turtle excluder 
devices (TEDs) on shrimp trawling vessels in the 1990s. Reducing bycatch invariably expands the number of sea 

Table 2.   Nest site selection, nesting success, emergence success, and incubation duration within three spatial 
“thirds” of the beach width. Significantly different values are described in the text but are bolded in the table.

Loggerheads Greens

Nest placement Nesting success Emergence success Incubation Nest placement Nesting success Emergence success Incubation

Lower 16.7% 38.0% 40.6% 58.4 3.8% 38.3% 30.5% 58.8

Middle 28.2% 55.7% 48.6% 59.6 11.2% 44.7% 58.8% 57.4

Upper 55.1% 48.3% 58.2% 59.3 85.0% 51.4% 65.9% 59.1

Figure 7.   Emergence success in relation to the distance from the upper barrier (the dune). Loggerhead clutches 
laid closer to the dune tend to have a higher emergence rate. Few green turtles lay their clutches away from the 
dune and tend to have a higher success rate near, but not in the vegetation.
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turtles reaching sexual maturity—loggerheads reach sexual maturity between 27 and 38 years13,24 and green sea 
turtles reach sexual maturity between 19 and 44 years22,88,89. Thus increasing the number of potential nesters for 
future generations. There was an estimated 60% reduction in bycatch of all species of sea turtles in the Atlantic 
following the TED regulation (mortality: 94% reduction90). The usage of TEDs and the increased awareness in 
the region have provided 1–2 generations worth of potential nesters to aid in recruitment and growth of the 
population. Additionally, these increased recruitment rates could be due to ocean currents in the Gulf of Mexico.

Recruitment to sea turtle nesting aggregations is strongly influenced by proximity to the Gulf Stream System 
(GSS), which affects overall population structure91. Putman and colleagues modelled that the GSS accounted 
for 90% of the spatial variation in regional nesting density on the Atlantic and may explain why rookeries on 
the east coast of Florida will continue to dramatically increase in recruitment. In the Gulf of Mexico, the Loop 
Current passes near the western coast of Florida before joining the GSS92, and may explain increased nesting in 
the Sarasota County region in relation to the rest of the Florida rookeries on the Gulf of Mexico. From 2016 to 
2021, loggerhead nesting counts in Sarasota County (which includes beaches monitored by MML STCRP and the 
Coastal Wildlife Club) accounted for 44.4% of all nesting on Florida beaches on the Gulf of Mexico and 50.1% 
for greens59,60. Genetically, the loggerhead population nesting in the region is distinct from management units 
to the north (St. Georges Island, Florida) and to the south (Keewaydin Island, Florida)93 and the central west 
region is one of the fastest growing nesting populations in Florida66. While biogeography may help explain the 
overall population shifts, individual assessments could explain the finer differences by beach.

Loggerheads and green sea turtles prefer to nest on beaches with less artificial light and on shorelines that 
are less developed94–96. Comparable to previous observations87,97, both species in the Sarasota region also prefer 
to nest closer to the upland barrier. Nesting success has significantly declined over the course of the study, likely 
due to increased coastal housing density and construction near the beach49,98. Increases in coastal development 
result in more obstructions on the beach deterring nesters71,99, more lighting issues that discourage nesters45,100, 
and more nourishment or beach armoring that can prevent nesters from approaching the beach43,65,101. Two 
of the beaches with the lowest nesting success and nesting density (Lido Key, and Longboat Key) are also the 
beaches that have been (re)nourished the most in the county. Casey Key is the least developed and it has the 
highest nesting density. Unfortunately, modeling of nesting beach inundation into the future suggests that sea 
level rise could cover 5–32% of suitable nesting beach widths by the year 2100102–104. A recent report from NOAA 
estimates that by 2050 sea levels will rise on average between 0.25 and 0.30 m, increasing the likelihood of coastal 
flooding, storm surge impact, and coastal erosion105. Nesting density has continued to increase in line with the 
nest counts, which could be an exacerbating factor if the suitable nesting areas decline due to sea level rise and 
coastal development.

Nesting females may increase their fitness by laying clutches earlier in the season, in varied locations over the 
course of the season, and by varying the number of eggs per clutch106. Loggerhead nests laid later in the season 
had a much lower emergence success rate—likely due to the increased level of tropical storms and predation 
over the course of the season. Regional temperature increases at foraging areas are influencing sea turtle nesting 
phenology107–109. Although longer-lived females consistently lay more clutches over the course of the season110, 
few estimates of true nest counts derived from satellite tagging data have been published15,111–113 and updates are 
needed. Further modeling of how clutch frequency and clutch size has changed over time in relation to rising 
temperature and sea levels should be prioritized for nesting beaches on the Gulf of Mexico.

Throughout Florida, air temperature rises over the course of the nesting season, but different abiotic factors 
influence how nest temperatures fluctuate. Increased temperature influences embryo mortality114, but nests in the 
Sarasota region typically get more rainfall than nests on the east coast of Florida at similar latitudes and thus tend 
to be cooler (Lolavar & Wyneken pers. comm). The six beaches have different sand particle size and reflectance 
(albedo) that affect incubation temperature and duration (e.g., nest incubation duration is shorter on the dark, 
coarse sand of Venice than on the white, silty sand of north Siesta). An assessment is needed for the region to 
determine how physical characteristics (sand type, slope, albedo, etc.) influence nest temperatures. Green turtles 
tend to dig deeper egg chambers, that are placed closer to the upper barrier resulting in few green turtle nests 
that fully washout (barring a hurricane). On the Gulf coast of Florida, green sea turtles are considered to be a rare 
species and most of their nests were caged to prevent depredation and increase potential recruitment. Previous 
caging protocols are a likely factor of the discrepancy in emergence success between the two species115. However, 
the green nesting population is recovering and since 2021, MML STCRP has stopped caging all green nests.

Following emergence, 6–7.6% of hatchlings do not make it to the water77,116, thus reducing potential recruit-
ment. Sky glow and artificial lighting sources lead hatchlings towards the dune and increase the likelihood of 
depredation or exhaustion. From 2018 to 2021 misorientation/disorientation events in Sarasota County made up 
9% of all recorded events in the state of Florida117. Models from Mazaris and colleagues identified that increasing 
hatchling recruitment even at a single site, would increase the overall hatchling production from entire nesting 
aggregations118. Future projects should assess lighting issues in relation to disorientation events and hatchling 
mortality in the Sarasota region.

The data presented here documented the expanding nesting population for a productive Gulf of Mexico 
rookery. Although total nesting counts in the Gulf of Mexico annually accounts for only 7% of all loggerhead 
nesting in Florida, these beaches have a significant hatchling production annually reinforcing recovery. Primary, 
adult, and breeding sex ratios should be assessed to quantify the population age structure and determine if there 
is any risk of a sex ratio skew that other rookeries are experiencing119,120. Projects should model how ocean level 
increases will decrease suitable nesting habitat and how coastal development exacerbates the issue103,105. When 
suitable nesting area decreases, will there be an effect on carrying capacity or will nesters migrate to less suitable 
beaches? Recruitment is critical to lasting recovery, and protection measures are needed to maintain population 
growth.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17213  | https://doi.org/10.1038/s41598-023-43651-4

www.nature.com/scientificreports/

Data availability
The data sets generated during and/or analyzed during the current study will be available by request. Please 
contact the corresponding author at jlasala@mote.org for information.
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