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Time fractional 
Yang–Abdel–Cattani derivative 
in generalized MHD Casson fluid 
flow with heat source and chemical 
reaction
Sehra 1, Haleema Sadia 1*, Sami Ul Haq 2* & Ilyas Khan 3*

This present research article investigates the exact analytical solution for the mathematical model 
of the generalized Casson fluid flow by using the new fractional operator with Rabotnov exponential 
kernel i.e. Yang–Abdel–Cattani operator. The impacts of heat source, magnetic hydrodynamics and 
chemical reactions on the flow of fractional Casson fluid through a vertical flat plate are studied in 
this article. For the sake of a better interpretation of the rheological behavior of Casson fluid we have 
used the new operator of fractional order with exponential kernel of Rabotnov known as Yang–Abdel–
Cattani operator of fractional derivative. By making use of the technique of Laplace transform we 
have find the exact analytical solution of the problem in the Mittag–Leffler’s form, for all the three 
governing equations i.e. Velocity, energy and concentration equation. It has been noticed from the 
literature that it is challenging to obtain analytical results from fractional fluid model derived by the 
various fractional operators. This article helps to address this issue by providing analytical solutions 
for fractionalized fluid models. To analyze the physical importance of different fluid parameters 
such as Schmidt number, Prandtl number, MHD and alpha on the heat, mass and momentum class 
are presented through graphs. The concentration of the fluid decreases with Schmidth number and 
temperature of the fluid decreases with the increasing Prandtl number. The velocity of the fluid 
decreases with increasing MHD effects and increases with increasing Alpha. The Yang–Abdel–Cattani 
operator of fractional order can describe the memory effects more suitably than the other fractional 
operators.

List of symbols
v  Velocity (L  T−1)
v  Viscosity (kinematic)  (L2  T−1)
βT  Thermal expansion coefficient in volume (θ−1)
T∞  The fluid temperature away from plate
k  Conductivity of heat (M L  T−3 θ−1)
Gm  Mass Grashof
Cw  At plate fluid concentration
C∞  Far away fluid concentration from plate
ρ  Density of the fluid (M  L−3)
g  Acceleration (gravity)
λ  Porosity parameter
T  Temperature (θ)
μ  Viscosity(dynamic) (M  L−1  T−1)
Pr  Prandtl number 
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Cp  Constant-pressure specific heat  (L2 M  T−1 θ−1)
t  Time (T)
α  Fractional parameter
Tw  At the plate fluid temperature
C  Fluid concentration
Gr  Thermal Grashof
η  Chemical reaction parameter
γ  Grade-second parameter (dimensionless)
s  Laplace transform parameter

The process of transfer of mass and heat has many important applications in the industrial field. A large number 
of scientists and researchers worked on this area. The theory of Non-Newtonian fluid has a great impact on 
the modern technologies and different industrial field due to the failure of the Newtonian fluid theory in the 
expression of various flow characteristics. The simulation and modeling of the Non-Newtonian fluid flow play 
a significant role in our daily life and facilitated the Human life in different ways. Many researchers presented 
various models for the Non-Newtonian fluid flows i.e. Maxwell model, Oldroyd-B, Walters-B, Casson, Brinkman 
type, Jeffery, Bingham plastic, power law, visco-plastic fluid and second grade model to study the physical and 
computational characteristics of the  fluid1–3.

Several fluid models presented previously in the literature have many drawbacks and limitations such as, 
second grade model of fluid flow cannot explains the viscosity but this model efficiently explained the elasticity 
in fluid, the Power law model fails to explain the elasticity effects but explained the viscous properties of the 
fluid properly, this attract many mathematicians and researchers to study such complex fluids. The systematic 
study of this type of fluid flow is very important in the theoretical analysis as well as in practical implementa-
tion of modern machinery. Among these fluid models, the most common Non-Newtonian model which is also 
known as shear-thinning liquids i.e. Casson fluid model attracted special attention because of its applications 
and significant role in various fields such as chemical and mechanical applications, metallurgy and its applica-
tion in industries of fluid processing.

An important property of Casson fluid Model is that it describes two different matter states. It adopts the 
behavior of a solid having elasticity in the case when the applied tangential force in comparison to the yield stress 
is less, So no flow occurs in this case, and the flow takes place in the case when the yield stress in comparison to 
the shear stress is less. Some daily life examples of Casson fluid are synthetic lubricants, artificial fibers, concen-
trated fruit juices, tomato sauce, honey, jelly, soup, paints and coal, china clay and pharmaceutical chemicals. The 
Blood in the living bodies is considered as Casson fluid because it contains various materials such as fibrinogen, 
globulin and protein in the red blood cells and plasma with aqueous base  in4,5. Initially Casson in 1959 presented 
the model of the Casson fluid for the estimation of the pattern of flow for the pigment-oil  suspensions6. Several 
engineers, researchers, scientists and mathematicians explored the properties of the Casson model of fluid in 
relation to the fluid mechanics dependent upon different  situations7.

In8 Khalid et al. investigated the unsteady and natural convection during the Casson fluid flow with magnetic 
hydrodynamic impacts in a porous medium.  In9 Bhatta charyya et al. studied the Casson fluid flowing via a 
stretching and shrinking plane with the impacts of magnetic hydrodynamics.  In10 Oka and Syoten analyzed the 
Casson fluid flowing in tubes for the first time.  In11 Mernone et al. analyzed the Casson fluid peristaltical flows 
in a two-dimensional channel. Arthur et al.12 investigated the deformation occurring during the flow of Cas-
son fluid in a medium having porosity with the effects of chemical reaction and induced magnetic field. In12] 
Mukhopadhyay investigated the impacts of heat radiation and suction of heat on temperature over a stretching 
surface during the Casson fluid flow. Mustafa et al.13 explained the heat transport phenomenon in a Casson fluid 
flowing through a flat plate that is in motion by applying homotopy technique of investigation for the unsteady 
flow in the boundary layer.  In14 the author used an organized approach to analyze the influence of radiative 
thermal flux on mass and heat transference in a medium having porosity.

The main objective behind, finding the exact numerical solutions is its important applications in different field 
in our daily  life15,16. To obtain exact numerical solution, numerous techniques are implemented by mathemati-
cians and researchers. For instance, residual power series  method17, simple equation modification  method18, 
reproducing the kernel Hilbert space  method19,20, Riccati-Bernoulli Sub-ODE technique for sub-ordinary dif-
ferential equation (RBSODET)21, multi steps  approach22,23, unified  method24 and several  others25–27. As a result 
of advancements in the subject, Scientists have proposed a few new methods to describe and establish the solu-
tion to real world problems using the concept of fractional (non-integer order) calculus. To describe and design 
the model for different flow patterns in several fields for example fractal rheological models, models for electric 
circuit and populations fractal growth models, a lot of operators of fractional order have non-singular kernel 
but some of these operators have singular kernel. These Fractional operators are very important tool for the 
analysis of rheological properties of different physical models. In the literature, numerous researchers work hard 
to analyze fractional fluid models and derive a variety of compelling results which are useful for scientists and 
engineers to compare their experimental outcomes obtained from the governing PDE’s with the analytical results 
gathered making use of various mathematical tools and techniques of fractional models of the non-Newtonian 
 fluid28–30. Fractional integrals and fractional derivatives operators, both invented by Marchaud Caputo and 
Riemann–Liouville are based on singular kernels, have several limitations. For example, the modeling process 
for these fractional models was very challenging.

To minimize the difficulties that occurs in singular fractional models, some models are presented with non-
singular exponential kernels such that fractional operators of Prabhakar, Yang Abdel Cattani, Caputo-Fabrizio, 
Atangana-Baleanu and some others described  in31–33. Some of the kernels of these non-singularized fractional 
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operators are Exponential kernels, Mittag–Leffler functions and Rabotnov exponential function.  In34 the authors 
analyzed the Casson fluid flow without the consideration of mass transfer by using Caputo fractional model and 
obtained the analytical solution of the problem by applying integral Laplace transform, because of its efficient 
application for the conditions of non-uniform boundary.  In35 the authors analyzed the time fractional model 
of the Casson fluid based on the generalized Fourier’s and Fick’s Laws by using new fractional operator with 
Rabotnov exponential kernel i.e. Yang–Abdel–Cattani operator of fractional order.

The time fractional analysis by the Yang–Abdel–Cattani has many industrial applications for example in the 
field of medial it is used to design a mathematical model for the growth of the tumor cells with chemotherapeu-
tic  cells36. The time fractional approach is used to analyze of stuxnet virus fractional growth in the industrial 
control  system37. The time fractional approach is used to model the electrochemical double layer capacitors 
 mathematically38. It has been noticed from the literature that it is challenging to obtain analytical results from 
fractional fluid model derived by the various fractional operators. This article helps to address this issue by 
providing analytical solutions for fractionalized fluid models.

The authors studied the general form of the fractional reduced differential transform method FRDTM to the 
(N + 1)-dimensional cases and applied this method to handle the time fractional couple Whitham–Broer–Kaup’s 
type system  in39. The authors analyzed the Hausdorff vector calculus based on the Chen Hausdorff calculus 
for the first time and obtained Stokes-like, Gauss–Ostrogradsky-like and Green-like theorems, and Green-like 
identities in the framework of the Hausdorff vector calculus  in40. The authors considered some fractional integral 
formulas in terms of the Riemann–Liouville, Erdélyi–Kober type, and Weyl fractional integral operators and 
present the general fractional kinetic model involving the hyper geometric super hyperbolic sine function via 
the Gauss hyper geometric series  in41. The authors addressed a novel anomalous relaxation model with the new 
general fractional derivative of the Sonine  kernel42. The authors defined a weighted Caputo-type differential 
operator which was used to character relaxation and diffusion models in two different types. Then, one of the 
weighted Caputo-type integral operators by solving the related linear differential equation was also defined  in43.

In the published literature the fractional model of the Casson fluid with symmetric conditions for heat, con-
centration and momentum with the impacts of heat source, magneto hydrodynamics and chemical reaction and 
are until now neither studied nor published. To address this gap we solve a model of fractional Casson fluid with 
suitable conditions on concentration, temperature and velocity distributions. We use the new fractional opera-
tor with the Rabotnov kernel known as Yang–Abdel–Cattani operator to fractionalize velocity, temperature and 
concentration equations. As we are interested in the rheology of Casson fluid, to study it betterly we use the new 
fractional operator with exponential kernel of Rabotnov functions i.e. Yang–Abdel–Cattani fractional derivative 
as it can describe the generalized memory effects very well. To obtain the exact analytical solution of the problem 
in the form of Mittag–Leffler functions the method of Laplace transform is used. To visualize the influence of 
physical parameters on the momentum, temperature and mass of the fluid such as Prandtl number Pr, thermal 
Grashof number Gr, MHD, fractional order of YAC and Schmidt number, the effects are presented graphically.

Mathematical model
Take into consideration a Casson fluid flowing through an infinite plate under the influence of magneto hydro-
dynamics. The influence of source of heat at boundary and chemical reaction are also considered. In start at 
some time t = 0 the plate through which the fluid is flowing and the flowing fluid both are stationary with the 
constant temperature T∞ and constant concentration C∞ . At some later time t = 0+ the ramping wall condi-
tions are considered for the temperature and velocity such that φ = 0 the concentration is C(0,t) = Cw , the wall 
temperature is Tw and with the characteristic velocity u0 the fluid’s velocity along x-axis is given as v(φ, t). The 
Ramped wall condition on the Casson fluid flow has several important applications in different field such as 
modern industrial field and medical sciences. The fluid’s velocity obeys the continuity equation under the effects 
of assumed factors. By taking into consideration the given supposition, we obtain the following governing equa-
tions for the energy, mass and velocity of the fluid by using the Boussinesq’s  approximation35. Figure 1 shows 
the geometry of the flow dynamics.

Momentum equation;

Temperature equation;

With generalized Fourier’s law

Diffusion equation;

With generalized Fick’s law;

(1)ρ
∂v(ϕ, t)

∂t
= µ

(

1+
1

γ

)

∂2v(ϕ, t)

∂ϕ2
− σB20v(ϕ, t)+ ρgβT (T(ϕ, t)− T∞)+ ρgβC(C(ϕ, t)− C∞),

(2)ρCp
∂T(ϕ, t)

∂t
= −

∂q(ϕ, t)

∂ϕ
− Q(T(ϕ, t)− T∞),

q(ϕ, t) = −K
∂T(ϕ, t)

∂ϕ
,

(3)
∂C(ϕ, t)

∂t
= −

∂χ(ϕ, t)

∂ϕ
− k(C(ϕ, t)− C∞),
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With the considered IC’s and BC’s are given as;

The following set of dimensionless variables is introduce to non-dimensionalize the system equation;

To achieve the non-dimensional form of the equation we use Eq. (5) in (1–3) and then ignored the esterisk 
sign from the dimensionless variables we got the following model.

Momentum equation;

Temperature equation;

With dimensionless generalized Fourier’s law;

Concentration equation;

With dimensionless generalized Fick’s law;

After the dimensionless analysis the IC’s and BC’s are given as;

χ(ϕ, t) = −Dm
∂C(ϕ, t)

∂ϕ
,

(4)
v(ϕ, 0) = 0, T(ϕ, 0) = T∞, C(ϕ, 0) = C∞, ϕ ≥ 0,

v(0, t) = u0, T(0, t) = Tw , C(0, t) = Cw , t > 0,

v(ϕ, t) → 0, T(ϕ, t) → T∞, C(ϕ, t) → C∞ as ϕ → ∞.

(5)

t∗ =

u20t

ν
, ϕ∗

=

u0ϕ

ν
, v∗ =

v

u0
, ν =

µ

ρ
, T∗

=

T − T∞

Tw − T∞

, C∗
=

C − C∞

Cw − C∞

,

Gr =
gβTν(Tw − T∞)

u30
, Gm =

gβcν(Cw − C∞)

u30
, Pr =

µCp

k
,

1

Sc
=

D

ν
,

(

1+
1

γ

)

=

1

�
, M =

δB20
u20ρ

, η1=
ν2Q

u20k
, q∗ =

q

q0
, η2 =

kν

u20
.

(6)
∂v(ϕ, t)

∂t
=

1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

(7)
∂T(ϕ, t)

∂t
= −

1

Pr

∂2T(ϕ, t)

∂ϕ2
− η1T(ϕ, t),

q(ϕ, t) = −

∂T(ϕ, t)

∂ϕ
,

(8)
∂C(ϕ, t)

∂t
= −

1

Sc

∂2C(ϕ, t)

∂ϕ2
− η2C(ϕ, t),

χ(ϕ, t) = −

∂C(ϕ, t)

∂ϕ
.

Figure 1.  flow Geometry of the model.
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Some basic results
The Yang–Abdel–Cattani derivative of fractional order 0 < α < 1 is described as:

where;

where ψα describes the exponential kernel of Rabotnov of fractional order α such that α ∈ (0, 1).
The Laplace integral transform of the Yang–Abdel–Cattani operator of fractional order derivative is given as;

where s is the parameter of the Laplace integral transform and α  is the fractional parameter of Yang–Abdel–Cat-
tani operator of derivative.

The Yang–Abdel–Cattani operator of fractional order, a unique mathematical model that generalize the 
effects of heat memory, is introduced in this article. Based on the Yang–Abdel–Cattani operator of fractional 
order derivative, the following is the Casson fluid’s time-fractional model for mass, energy, and momentum:

Solution of the problem
To acquire an exact analytical solution to the problem of the time fractional Casson fluid model, we will apply 
the Laplace integral transform to (13–15) and use the result presented in (12). First of all we will find the solu-
tion of concentration and heat equation because the solution of the velocity equation is dependent upon the 
solution of these two classes.

Solution of concentration equation
The concentration equation in dimensionless form is given as;

When we introduce the fractional operator of Yang–Abdel–Cattani the equation become as;

After applying the Laplace transform to the (16) and using (12) we get;

After simplification it becomes;

(9)
v(ϕ, 0) = 0, T(ϕ, 0) = 0, C(ϕ, 0) = 0, ϕ ≥ 0,

v(0, t) = 1, T(0, t) = 1, C(0, t) = 1, t > 0,

v(ϕ, t) → 0, T(ϕ, t) → 0, C(ϕ, t) → 0 as ϕ → ∞.

(10)YACDα
t f (t) =

t
∫

0

ψα

(

−℘(t − τ)α
)

f ′(τ )dτ for t > 0 and 0 < α < 1.

(11)ψ(℘zα) =

∞
∑

n=0

℘nz(n+1)(α+1)−1

Ŵ(n+ 1)(α + 1)
for z ∈ C,

(12)L
{

YACDα
t f (t)

}

=

1

sα+1

sL{f (t)} − f (0)

1+ ℘s−(α+1)
.

(13)YACDα
t v(ϕ, t) =

1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

(14)YACDα
t T(ϕ, t) =

1

Pr

∂2T(ϕ, t)

∂ϕ2
− Q0T(ϕ, t),

(15)YACDα
t C(ϕ, t) =

1

Sc

∂2C(ϕ, t)

∂ϕ2
− η2C(ϕ, t).

∂C(ϕ, t)

∂t
=

1

Sc

∂2C(ϕ, t)

∂ϕ2
− η2C(ϕ, t),

C(ϕ, 0) = 0, C(0, t) = 1, and C(∞, t) = 0,

(16)YACDα
t C(ϕ, t) =

1

Sc

∂2C(ϕ, t)

∂ϕ2
− η2C(ϕ, t),

1

sα+1

sL{C(ϕ, t)} − C(ϕ, 0)

1+ ℘s−(α+1)
=

1

Sc

∂2C(ϕ, s)

∂ϕ2
− η2C(ϕ, s),

(17)
(

s

sα+1
+ ℘

+ η2

)

C(ϕ, s) =
1

Sc

∂2C(ϕ, s)

∂ϕ2
,
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with transformed IC’s and BC’s;

The solution of (17) using the appropriate initial boundary conditions is given as;

By using Taylor’s series expansion we can write (18) in series equivalent form so that to derive the inverse 
Laplace transform of the function more easily. In series equivalent form it can be written as;

The required solution of the concentration field after applying inverse Laplace transform is given as;

Solution of temperature equation
The temperature equation in dimensionless form is as;

When we introduce the fractional operator of Yang–Abdel–Cattani the equation become as;

After using the Laplace transform to the (19) and using (12) we get;

After simplification it becomes;

with transformed initial boundary conditions

The solution of (20) using the appropriate initial boundary conditions is given as;

By using Taylor’s series expansion we can write (21) in series equivalent form so that to derive the inverse 
Laplace transform of the function more easily. In series equivalent form it can be written as;

The required solution of the temperature field after applying inverse Laplace transform is given as;

C(ϕ, 0) = 0, C(0, s) =
1

s
, and C(∞, s) = 0,

(18)C(ϕ, s) =
1

s
exp

(

−ϕ

√

s.Sc

sα+1
+ ℘

+ η2.Sc

)

.

C(ϕ, s) =
1

s

∞
∑

n=0

(

−ϕ
√

Sc
)n

n!

(

(sα+1
+ ℘)η2 + s

)
n
2

(sα+1
+ ℘)

n
2

.

C(ϕ, t) =

∞
�

n=0

�

−ϕ
√

Sc
�n

n!
tαn







�

1+ n
2η2E

n
2

α+1, αn2 +1
(℘tα+1)

�

�

E
n
2

α+1, αn2 +1(−℘tα+1)

�






.

∂T(ϕ, t)

∂t
= −

1

Pr

∂2T(ϕ, t)

∂ϕ2
− η1T(ϕ, t),

T(ϕ, 0) = 0, T(0, t) = 1, and T(∞, t) = 0,

(19)YACDα
t T(ϕ, t) = −

1

Pr

∂2T(ϕ, t)

∂ϕ2
− η1T(ϕ, t),

1

sα+1

sL{T(ϕ, t)} − T(ϕ, 0)

1+ ℘s−(α+1)
= −

1

Pr

∂2T(ϕ, s)

∂ϕ2
− η1T(ϕ, s),

(20)
(

s

sα+1
+ ℘

+ η1

)

T(ϕ, s) =
1

Pr

∂2T(ϕ, s)

∂ϕ2
,

T(ϕ, 0) = 0, T(0, s) =
1

s
, and T(∞, s) = 0,

(21)T(ϕ, s) =
1

s
exp

(

−ϕ

√

Pr .s

sα+1
+ ℘

+ η1. Pr

)

,

T(ϕ, s) =
1

s

∞
∑

n=0

(

−ϕ
√

Pr
)n

n!

(

(sα+1
+ ℘)η1 + s

)
n
2

(sα+1
+ ℘)

n
2

,

T(ϕ, t) =

∞
�

n=0

�

−ϕ
√

Pr
�n

n!
tαn





1+ n
2η1E

n
2

α+1, αn2 +1(℘t
α+1)

E
n
2

α+1, αn2 +1(−℘tα+1)



.
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Solution of velocity equation
The velocity equation in dimensionless form is given as;

When we introduce the fractional operator of Yang–Abdel–Cattani the equation become as;

After using the Laplace transform to the (20) and using (12) we get;

After simplification it becomes;

with transformed initial boundary conditions

The solution of (23) using the appropriate initial boundary conditions is given as;

and

the value of constant A is given by;

The general solution for the velocity equation is given as;

Equation (25) represents the general solution of the velocity equation.
Where
The inverse Laplace transform of the function is given as;

∂v(ϕ, t)

∂t
=

1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

v(ϕ, 0) = 0, v(0, t) = 1, and v(∞, t) = 0,

(22)YACDα
t v(ϕ, t) =

1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

1

sα+1

sL{v(ϕ, t)} − v(ϕ, 0)

1+ ℘s−(α+1)
=

1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

(23)
s

sα+1
+ ℘

v(ϕ, s) =
1

�

∂2v(ϕ, t)

∂ϕ2
−Mv(ϕ, t)+ GrT(ϕ, t)+ GmC(ϕ, t),

v(ϕ, 0) = 0, v(0, s) =
1

s
, and v(∞, s) = 0,

(24)

v(ϕ, s) = vc(ϕ, s)+ vp(ϕ, s),

vc(ϕ, s) = A exp

(

−ϕ

√

�.s

sα+1
+ ℘

+M.�

)

,

vp(ϕ, s) =

(

(

sα+1
+ ℘

s

)

(

Gr

(Pr−�)s + (η1. Pr−M · �)
(

sα+1
+ ℘

)

))

exp

(

−ϕ

√

Pr .s

sα+1
+ ℘

+ η1. Pr

)

−

(

(

sα+1
+ ℘

s

)

(

Gm

(Sc − �)s + (η2.Sc −M · �)
(

sα+1
+ ℘

)

))

exp

(

−ϕ

√

s.Sc

sα+1
+ ℘

+ η2.Sc

)

.

A =

1

s
−

((

Gr

(Pr−�)s + (η1. Pr−M · �)
(

sα+1
+ ℘

)

)

−

(

Gm

(Sc − �)s + (η2.Sc −M · �)
(

sα+1
+ ℘

)

))

,

(25)

v(ϕ, s) =













1

s
−













�

sα+1
+ ℘

s

�

�

Gr

(Pr−�)s + (η1. Pr−M · �)
�

sα+1
+ ℘

�

�

−

�

sα+1
+ ℘

s

�

�

Gm

(Sc − �)s + (η2.Sc −M · �)
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The equation given in (26) represents the exact solution of the velocity equation after applying the inverse 
Laplace transform to the analytical solution of the velocity equation given in (25) by using the above inverse 
transforms of the exponential functions;

Results and discussion
In this research article we analyzed the exact analytical solution of the problem of the fractional Casson fluid 
by using the new fractional operator with exponential kernel of Rabotnov i.e. Yang–Abdel–Cattani operator of 
fractional derivative. The influence of heat source, magnetic hydrodynamics and chemical reactions on the flow 
of fractional Casson fluid through a flat plate is studied in this article. For the sake of a better interpretation of 
the rheological behavior of Casson fluid we have used the new operator of fractional order with exponential 
kernel of Rabotnov known as Yang-Abdel Cattani operator of fractional order. The Yang-Abdel Cattani operator 
of fractional order can describe the memory effects more suitably than the other fractional operators. By making 
use of the technique of Laplace integral transformation we have find the exact analytical solution of the problem 
in the Mittag–Leffler forms, for all the three governing equations i.e. Velocity, energy and concentration equation.
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To analyze the physical importance of different fluid parameters such as Sc, Pr, MHD and alpha on the 
temperature, concentration and velocity class are presented through graphs. Figure 2 is sketched to check the 
effects of eta η1 for temperature profile against φ, from which it is observed that by increasing the value of eta η1 
temperature decreases, because the consistency of thermal boundary layer decreases with the increasing values 
of parameter eta η1 . The role of heat source in a fluid transport is to increase its thermal conductivity and when 
the heat sources and all the heat fluxes are constant then in that case we consider the free convection heat transfer.

The graphs in Fig. 3 describe the impacts of Prandtl number on the temperature of the fluid against φ and 
an important impact on the temperature of the fluid in the boundary layer is analyzed. As we know that when 
the Prandtl number increases the heat conduction decreases since it is the ratio of Kinematic viscosity to heat 
conductivity. Due to decrease in the heat conductivity with the rising values of Prandtl number, consequently 
temperature of the fluid decreases. In physical sense the Prandtl number describes the relative thickness of the 
momentum and thermal boundary layer in heat transfer problem. The graphs in Fig. 4 represents the impacts 
of Schmidt number on the concentration of the fluid against φ and an important effect on the diffusion rate of 
the mass of the fluid in the boundary layer is analyzed. As we know that when the Schmidth number increases 
the diffusion rate decreases since it is the ratio of Kinematic viscosity to the mass diffusion rate. Due to decrease 
in the diffusion rate with the rising values of the Schmidth number, consequently the concentration of the fluid 
decreases. In physical sense the Schmidth number characterizes the fluid flow with simultaneous momentum 
and mass diffusion convection problems.

The graphs in Fig. 5 represents the impacts of dimensionless parametre of chemical reaction η2 on the con-
centration of the fluid against φ and an important effect on the diffusion rate of mass of the fluid in the bound-
ary layer is analyzed. With the rising values of the parameter η2 the concentration of the fluid decreases. As the 
values of the parameter of the chemical reaction η2 increases, it consequently increases the rate of the reaction 
due to which the concentration of the reactant decreases which causes a decrease in the rate of the diffusion.

Figure 6 represents the graphs of velocity profiles for the effects of the magneto hydrodynamics against φ. 
With the increase in the values of the magnetic hydrodynamics results in the increase of the resistive force that 
is known as Lorentz force which increases the drag during the flow due to this increasing drag force the velocity 
of the fluid decreases. So with the accelerating values of the parameter of magneto hydrodynamics M the velocity 
of the fluid decreases. Figure 7 shows that, as the values of the fractional parameter alpha rises the velocity of the 
fluid rises, because the increase in the fractional parameter alpha causes decrease in the boundary layer thickness.

Figure 2.  Temperature Profiles of dimensionless Prandtl number.
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Temperature profiles
Figure 4.

Concentration profiles
Figure 5.

Velocity profiles
Figure 6.

Conclusion
This research paper is dedicated to investigates exact analytical solution for problem of fractional Casson fluid 
by using the new fractional operator with exponential kernel of Rabotnov i.e. Yang–Abdel–Cattani operator. The 
effects of magnetic hydrodynamics, chemical reactions and heat source on the flow of fractional Casson fluid 
through a verticle plate are studied in this article. By using the Buckingham Pi theorem we obtained the dimen-
sionless form of problem. For the sake of a better explanation of the rheological behavior of Casson fluid we have 
used the new fractional operator with Rabotnov exponential kernel known as Yang-Abdel Cattani operator. The 
Yang-Abdel Cattani operator of fractional order can describe the memory effects more suitably than the other 
fractional operators. The Laplace transform is used to find the exact analytical solution of the problem in the 
terms of Mittag–Leffler functions, for all the three governing equations i.e. Velocity, energy and concentration 
equation. The results achieved in the results and discussion section can be concluded as;

Figure 3.  Temperature Profiles of dimensionless parameter of heat source.
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• The Prandtl number describes controls the relative thickness of momentum and temperature boundary layer. 
The temperature of the fluid decreases with the increasing values of the Prandtl number.

• In physical sense the Schmidth number characterizes the fluid flow with simultaneous momentum and mass 
diffusion convection problems. The rate of diffusion decreases with the increasing values of the Schmidt 
number.

• The rate of mass diffusion decreases with the increasing values of the parameter of chemical reaction i.e. eta.
• The fluid’s velocity decreases as effects of MHD increasing.
• The fluid’s velocity increases as the values of alpha increases.

Future recommendations

• The current work can be extended to study the combine effects of heat source and radiation.
• This can also be extended for the combine effects of porosity and MHD.
• The same problem can be solved for considering slip wall condition at velocity boundary layer.
• The same problem can be solved for considering Newtonian heating source at Temperature boundary layer.
• The same problem can be solved for considering exponentially varying concentration at Concentration 

boundary layer.

Figure 4.  Concentration profiles for dimensionless Schmidt number.
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Figure 5.  Profiles of concentration for dimensionless parameter of chemical reaction.
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Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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Figure 6.  Velocity Profiles for dimensionless parameter of MHD.

Figure 7.  Velocity profiles for dimensionless fractional parameter alpha.
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