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Multivariate linear mixture models 
for the prediction of febrile seizure 
risk and recurrence: a prospective 
case–control study
Jan Papež  1,2,5, René Labounek  3,5, Petr Jabandžiev 1, Katarína Česká 2, Kateřina Slabá 1, 
Hana Ošlejšková 2, Štefania Aulická  2,4,6* & Igor Nestrašil  3,6*

Our goal was to identify highly accurate empirical models for the prediction of the risk of febrile 
seizure (FS) and FS recurrence. In a prospective, three-arm, case–control study, we enrolled 162 
children (age 25.8 ± 17.1 months old, 71 females). Participants formed one case group (patients with 
FS) and two control groups (febrile patients without seizures and healthy controls). The impact of 
blood iron status, peak body temperature, and participants’ demographics on FS risk and recurrence 
was investigated with univariate and multivariate statistics. Serum iron concentration, iron 
saturation, and unsaturated iron-binding capacity differed between the three investigated groups 
(pFWE < 0.05). These serum analytes were key variables in the design of novel multivariate linear 
mixture models. The models classified FS risk with higher accuracy than univariate approaches. The 
designed bi-linear classifier achieved a sensitivity/specificity of 82%/89% and was closest to the gold-
standard classifier. A multivariate model assessing FS recurrence provided a difference (pFWE < 0.05) 
with a separating sensitivity/specificity of 72%/69%. Iron deficiency, height percentile, and age were 
significant FS risk factors. In addition, height percentile and hemoglobin concentration were linked 
to FS recurrence. Novel multivariate models utilizing blood iron status and demographic variables 
predicted FS risk and recurrence among infants and young children with fever.

Febrile seizures (FS) are the most common convulsive disorder in childhood, usually associated with a fever of 
38 °C (100.4°F) or higher and an incidence of 2–11%1–4. Fever is not triggered by metabolic disorders or central 
nervous system (CNS) infection; both etiologies need to be excluded in the differential diagnostic workup. 
Children aged four months to 5 years are mostly affected with the peak incidence at 18 months of age3,4. Besides 
an increased risk of epilepsy5 and psychiatric disorder6, the recurrent FS (RFS) represent the most common 
long-term effect of FS4,6 with an estimated 14–24% of the recurrence within the same febrile illness2. Overall, 
the recurrence decreases with age from 50% in children younger than 12 months at the first FS to 30% afterward. 
After a second FS, the probability of additional FS is 50%3,4. The accurate prediction of FS/RFS can outline strate-
gies to prevent FS and mitigate the burden of FS on a child’s health or avoid repeated hospital visits, which may 
deepen the anxiety in children and families1–4.

Multiple FS/RFS risk predictors have been proposed such as body peak temperature, iron status, electrolyte 
imbalance, age, sex, and genetics, but inconsistent or contradictory results across various studies were observed. 
Combining more than one predictor may drive the risk prediction higher2,7,8, thus, estimating the FS/RFS risk 
with higher accuracy. Iron deficiency (ID) is frequent in infants and toddlers with the concurrent peak age as 
FS7,8. The association of iron status and febrile seizures (FS) has been postulated but supported by equivocal or 
inconclusive reports1,7,9–11. This controversy may be explained by cultural and geographic differences, as iron 
status is closely linked to socioeconomic status, malnutrition, and weaning practices1,8–11.
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In this work, we collected blood iron status and demographic data in prospective cohorts of children with FS, 
RFS, fever without seizures, and afebrile healthy controls. Next, we investigated separation ability, i.e., sensitivity 
(SE) and specificity (SP)12, of individual variables. Then, we designed multivariate linear mixture models sensitive 
and specific to FS risk and recurrence.

Methods
This prospective case–control study was performed at the University Hospital Brno, Czechia, from April 1, 2015 
to August 31, 2017 with a subsequent 5-year follow-up (until August 31, 2022) under the Masaryk University 
Ethics Review Board approval and was conducted in accordance with the ethical principles of the Declaration 
of Helsinki. The informed consent form was obtained from every participant’s parent/legal guardian prior to 
the study enrollment.

Participants
A total of 162 Caucasian children were enrolled and formed one case group (FS group) and two control groups 
(febrile patients without seizures and healthy controls). Inclusion criteria were age 4–72 months, electroencepha-
lograph (EEG) without epileptiform abnormality and normal background activity corresponding to age (FS 
group), normal neurodevelopment, and neurological exam. The diagnostic criteria of FS followed the American 
Academy of Pediatrics clinical guidelines3,4. The FS group consisted of 53 children (15 females) aged 4–70 months 
and formed two subgroups; non-recurrent FS (36 children, 11 females) and RFS (17 children, 4 females). Three 
children (one female) presented complex non-recurrent FS (one with repeated seizure within 24 h and two with 
transient focal post-ictal deficit); all the other FS children presented with a simple FS. Fifty-three children (26 
females), aged 6–70 months, had a febrile illness caused by respiratory or urinary tract infection but without 
seizures. The healthy control group, recruited from children coming for a regular preventive care exam, com-
prised 56 children (30 females) aged 6–67 months. Exclusion criteria were age below four or above 72 months, 
peak body temperature ≤ 37.5 °C (99.5°F) for febrile groups, psychomotor developmental delay, malnourishment, 
seizures lasting more than 15 min, focal signs or lateralization in a neurological exam, epilepsy, genetic epilepsy 
with febrile seizures plus, antiepileptic-drug usage, history of afebrile seizures, history of CNS infection or severe 
head trauma, electrolyte, glucose, or homeostasis imbalance. Children suffering from chronic illnesses such as 
cardiovascular, renal, rheumatological, or malignant diseases, hemoglobinopathies, or other blood disorders 
that are associated with a higher likelihood of anemia were excluded. Demographics are summarized in Table 1.

Data collection
Each participant underwent a blood draw with the analysis of red blood cell count (RBC), hemoglobin (HGB), 
serum iron (Fe), iron saturation (satFe), ferritin (Fer), transferrin (TF), and unsaturated iron-binding capacity 
(UIBC). In FS and RFS patients, electrolytes and vitamin D were also measured. Blood draw analysis results, peak 
body temperature, age, sex, gestational age (GA), height and weight percentiles were utilized in between-group 
difference testing and multivariate statistical modeling. In addition, all available screening values for all seizures 

Table 1.   Demographic and blood iron status variables. GA gestational age, RBC red blood cells, HGB 
hemoglobin, Fe serum iron concentration, Fer serum ferritin concentration, TF serum transferrin 
concentration, satFe iron saturation, UIBC unsaturated iron binding capacity, FS febrile seizures, n/a not 
applicable.

Demographics FS Non-recurrent FS Recurrent FS Febrile controls Healthy controls

Subjects (n, %) 53 36 67.9% 17 32.1% 53 56

Females (n, %) 15 28.3% 11 30.6% 4 23.5% 26 49.1% 30 53.6%

Median Mean SD Median Mean SD Median Mean SD Median Mean SD Median Mean SD

Descriptive metric

 Age (months) 19 23.9 14.6 17 21.5 14.9 24 26.5 14.0 24 30.2 19.9 33 30.5 16.7

 GA (weeks) 40 39 1.4 40 39.1 1.5 40 38.9 1.3 39 39.3 1.6 40 39.8 1.1

 Height (percentile) 54.5 52.1 30 62.5 62 26.3 31.5 41.6 30.4 40 43.2 24.6 50 48.6 22

 Weight (percentile) 37.5 42.4 31.5 51.0 50.8 31.9 22.0 33.6 29.0 40.0 43.2 24.4 50.5 49.3 22.9

 Age at the first seizure 
(months) 16 20.1 13.6 17 21.5 14.9 15 17.1 9.9 n/a n/a n/a n/a n/a n/a

 Peak temperature (°C) 38.6 38.7 0.6 38.6 38.8 0.6 38.6 38.6 0.6 38.4 38.5 0.6 n/a n/a n/a

Iron status

 RBC (10e6/μL) 4.57 4.61 0.58 4.53 4.50 0.37 4.62 4.83 0.83 4.59 4.53 0.37 4.61 4.61 0.31

 HGB (g/L) 115.50 116.20 10.00 114.00 113.80 10.80 117.50 118.70 8.40 120.00 119.30 10.30 121.50 121.30 8.30

 Fe (μmol/L) 3.50 3.99 1.76 3.00 3.81 1.90 3.80 4.34 1.42 8.60 9.07 5.68 13.70 13.84 7.19

 Fer (ng/mL) 41.90 52.15 43.86 43.10 57.81 49.97 36.90 40.84 25.55 38.60 57.74 47.59 25.45 36.09 36.94

 TF (g/L) 2.68 2.75 0.42 2.73 2.76 0.47 2.63 2.73 0.30 2.54 2.56 0.38 2.82 2.83 0.47

 satFe (%) 5.00 5.78 2.53 5.00 5.44 2.62 6.00 6.44 2.25 13.00 14.17 8.32 20.00 19.77 9.67

 UIBC (μmol/L) 63.79 66.07 11.88 65.34 66.92 12.54 60.99 64.38 10.58 53.80 54.06 10.39 56.59 56.46 13.10
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were reported in participants with RFS. The precise FS duration and interval between fever onset and FS were 
not collected as these parent-reported outcomes tend to be inaccurate. The study participants were followed up 
for five years to record RFS or treatment for ID or anemia.

Statistical analysis
Between-group differences were evaluated with the Wilcoxon rank-sum test for each examined variable (critical 
threshold value pFWE < 0.05; FEW—family-wise error correction; non-corrected p < 0.05 was considered as a trend 
in the data). For variables demonstrating significant differences between case and control groups, a maximal 
sum of SE + SP defined the variable-specific separating threshold (Fig. 1). The healthy control group was not 
included in the SE + SP estimations, as healthy children without fever do not seek medical attention. The SE + SP 
sum is proportional to a minimal Euclidean distance to the ideal “gold standard” classifier, i.e., the classifier with 
SE = 100% and SP = 100%, in the receiver operating characteristics (Fig. 4b).

Pearson cross-correlation analysis (r) investigated the presence of mutual linear relationships between vari-
ables (critical value |r|> 0.26 ≈ p < 0.001 for 162 samples).

A univariate analysis does not usually reach the gold standard classifier property. As the blood and demo-
graphic screenings provide a low cross-correlated multi-dimensional dataset of “independent” variables, several 
data analysis approaches utilizing step-wise linear regression were designed to find a multivariate linear mixture 
model (Eq. (1)) that increases the SE + SP to FS risk or recurrence and gets closer to the gold standard classifier.

Figure 1.   Between-group differences at the univariate level. The figure-embedded table summarizes between-
group differences with highlighted significant findings. Graphs show value distributions for selected variables. 
Automatically enumerated discriminating thresholds (dashed gray lines) and corresponding SE and SP values 
are displayed for satFe, Fe, and UIBC variables, which demonstrated the strongest separation between groups. 
1 healthy controls, 2 febrile patients without seizures, 3 febrile patients with non-recurrent FS, 4 febrile patients 
with recurrent FS, GA gestational age, Age age at the first febrile seizure attack, Height height percentile, Weight 
weight percentile, HGB hemoglobin, Fe serum iron concentration, Fer serum ferritin concentration, FS febrile 
seizures, TF serum transferrin concentration, satFe iron saturation, UIBC unsaturated iron-binding capacity, thr 
threshold, SE sensitivity, SP specificity.
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The vector x0 is the constant member and the vector ϵ is Gaussian random noise. Vectors xm where index 
m ∈ {1, 2,…,n} represent n variables (i.e., variables derived from the blood screening or demographic variables) 
significantly contributing (p < 0.05) to the expected signal y. Coefficients βm define magnitudes of contributions. 
The crucial part of linear mixture modeling is the definition of the expected signal y.

Three models (i.e., model1, model2, or model3) with three different expected signals (i.e., y1, y2, or y3) were 
designed and tested. In model1, y1 equals 0 at positions of healthy controls, equals 1 at positions of patients 
without FS, and 2 at positions of patients with FS. In the model2, only patients were considered, and y2 equals 0 
at positions of patients without FS and 1 at positions of patients with FS. In model3, only patients with FS were 
considered, and y3 equals 1 at positions of patients with non-recurrent FS and equals 2 at positions of patients 
with RFS. Model-specific Wilcoxon rank-sum test, SE, SP, and the separating threshold maximizing the SE + SP 
sum were evaluated in the same fashion as for the univariate approach while getting closer to the gold standard 
classifier was the set goal.

Model1 and model2 represent two concurrent models potentially separating non-seizure and seizure patients 
with high SE and SP. Therefore, we tested whether an orthogonal projection (f) of both models into one bi-linear 
model y12 (Eq. (2)) can even increase the SE and SP and improve the developing classifier. Two scalar separating 
thresholds y1 and y2 were again identified by maximizing the SE + SP sum.

Continuous biological factors, such as age, gestational age, height percentile, and weight percentile, were 
additional inputs for the linear mixture modeling via the step-wise linear regression for model1, model2, and 
model3. For model3, maximal body temperature and sodium and vitamin D concentrations were additional input 
variables in the regression analysis. Categorical biological factors should be spread uniformly over the dataset 
to guarantee a fair design of any classifier. Sex was distributed equally in the control groups. However, FS and 
RFS demonstrated higher prevalence and incidence in males. Therefore, we employed the adaptive synthetic 
sampling approach matching the number of female samples in the case (FS and RFS) groups to minimize the 
risk of imbalanced learning13,14. As initial conditions were randomized, each model training was repeated 5000 
times to test and guarantee model stability and reliability. Moreover, sex was also used as a binary input variable 
in the regression.

The sample size of our dataset was limited. To test dataset power to establish stable FS risk and recurrence 
model/s, we have permutatively down-sampled the dataset to 90%, 80%, 70%, 60%, and 50% of its original size, 
while intra-group sex distributions remained unchanged. Again, the adaptive synthetic sampling matched the 
number of female samples in the case groups. Model training was 5000 times repeated for each dataset size. 
Objective measures assessing model/s’ stability and reliability were as follows: (i) frequency occurrence of the 
most common model (a priori defined by the full 100% dataset size); averages and variances of (ii) regression 
coefficient; (iii) explained variance; (iv) Pearson correlation coefficient between modeled and predicted signal 
y (Eq. (1)); (v) between-group separating threshold determined via the SE + SP sum maximization; and (vi) SE 
and SP. In under-sampled datasets, the SE and SP were assessed for selected (training) and unselected (testing) 
data points.

Data and computer code availability and license statement
Raw input anonymized data and MATLAB language script (written in version R2018b) making statistical testing 
and deriving the regression models are available under the GNU General Public License version 3 at: https://​
github.​com/​umn-​milab/​febri​le-​seizu​re-​blood-​models (release r20231005).

Tools for cross-correlation analysis are available under the same license at: https://​www.​mathw​orks.​com/​
matla​bcent​ral/​filee​xchan​ge/​74204-​corrp​lotg.

The MATLAB basic programming environment, MATLAB Statistics, Machine Learning Toolbox, and Econo-
metrics Toolbox licenses need to be available to an end-user for full program compatibility.

The MATLAB implementation of the adaptive synthetic sampling is available in the ADASYN toolbox under 
the copyright© 2015, Dominic Siedhoff: https://​www.​mathw​orks.​com/​matla​bcent​ral/​filee​xchan​ge/​50541-​adasyn-​
impro​ves-​class-​balan​ce-​exten​sion-​of-​smote.

Results
Iron status results and demographics are summarized in Table 1. The prospective enrollment revealed a 2.5-
fold higher incidence of FS and 3.25-fold of RFS in males than females, respectively. Control groups showed 
balanced sex distributions. Complex FS were all non-recurrent and occurred in three children (5.7%). Family 
history in the first-degree relatives for FS was positive in four cases (two females; 7.6%), who all presented with 
simple non-recurrent FS. Family history for epilepsy was positive in one male (1.9%) with simple RFS. Peak body 
temperature did not differ between FS subgroups. The EEG was recorded after the seizure and did not show a 
pathological finding in any case. In the follow-up, none of the study participants was treated for ID or anemia.

Univariate between‑group differences
Figure 1 shows significant between-group differences or trends for single variables. Group-specific demograph-
ics with iron status are in Table 1. Serum Fe, satFe, and UIBC were the only three variables demonstrating a 
significant difference between control and case groups (Fig. 1). The automatically enumerated thresholds with 
corresponding SE and SP are presented in Fig. 1. There were no significant differences for FS case subgroups at 

(1)y = x0 + β1x1 + · · · + βnxn + ε

(2)y12 = f
(

y1, y2
)

https://github.com/umn-milab/febrile-seizure-blood-models
https://github.com/umn-milab/febrile-seizure-blood-models
https://www.mathworks.com/matlabcentral/fileexchange/74204-corrplotg
https://www.mathworks.com/matlabcentral/fileexchange/74204-corrplotg
https://www.mathworks.com/matlabcentral/fileexchange/50541-adasyn-improves-class-balance-extension-of-smote
https://www.mathworks.com/matlabcentral/fileexchange/50541-adasyn-improves-class-balance-extension-of-smote
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the single-variable level (Fig. 1). The significant difference in Fer levels was only between afebrile healthy controls 
and febrile children without seizures. The visualization of control and case groups for the single variables is shown 
in Fig. 1. Within-group differences were present in healthy controls when divided based on sex. The median 
and interquartile range (IQR, defined as 25–75% percentiles) of iron concentration was 10.4 (7.9–14.2) μmol/l 
in males and 15.3 (10.7–20.2) μmol/l in females (p = 0.021); iron saturation was 0.15 (0.12–0.24) in males; 0.21 
(0.18–0.26) in females (p = 0.032). No other sex-related within-group differences were observed.

Serum electrolytes and vitamin D did not differ between FS and RFS groups. Sodium concentrations were 133 
(130–137) mmol/L in FS and 133 (131–138) mmol/L in RFS. Vitamin D concentrations were 89.9 (46.9–135.1) 
nmol/L in FS and 77.0 (45.3–105.2) nmol/L in RFS.

Linearly dependent variables
As expected, height and weight percentiles were linearly dependent. In addition, several blood iron status vari-
ables were mutually cross-correlated. Demographics and iron status were not significantly correlated, except for 
the positive correlation between age and hemoglobin. A detailed view of the cross-correlation analysis is shown 
in Fig. 2. Simultaneously, we did not observe any clear non-linear relationships between variables (Fig. 2), which 
would suggest a potential necessity for the non-linear transformation of some variable/s before further linear 
mixture modeling.

Multivariate linear models maximizing between‑group differences
Multivariate linear mixture models with enhanced separating properties between case and control groups (i.e., 
model1 or model2) or between case sub-groups (i.e., model3) were defined.

Figure 2.   Cross-correlation matrix plot for investigated variables. Value in the upper-left corner of each 
plot is the Pearson correlation coefficient (r) for corresponding variable pairs. Value r is red-highlighted for 
the significant coefficient with p < 0.001. The correlation regression line is presented as a black dashed line. 
The values at x- and y-axes are fixed for each variable across the plot. Histograms at the main plot diagonal 
display the value distribution for each corresponding variable. GA gestational age (weeks), Age age at the first 
febrile seizure attack, Height height percentile, Weight weight percentile, HGB hemoglobin, Fe serum iron 
concentration, Fer serum ferritin concentration, TF serum transferrin concentration, satFe iron saturation, 
UIBC unsaturated iron-binding capacity.
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The model1 (Eq. (3), Fig. 3a, Table 2) identified the significant contribution of four linearly mixture variables 
(i.e., Fe, UIBC, height percentile, and Fer) forming a predicted signal yp1 with increased separating properties 
(SE = 95.49 ± 1.61%, SP = 69.43 ± 1.15%) between non-seizure and seizure patients with the separating thresh-
old 0.5744 ± 0.0317. The quantitative characteristics of the estimated model1 (Eq. (3)) were as follows: F-value 
F = 38.41 ± 0.66, root mean square error RMSE = 0.6239 ± 0.0024, explained variance R2 = 46.04 ± 0.42%, and 
Pearson correlation coefficient r between the modeled signal y1 and predicted signal yp1 r = 0.643 ± 0.000. Means, 
including variances of derived regression coefficients, are listed in Table 2.

Single-subject predicted yp1 values significantly separated all examined groups between themselves except 
for case sub-groups, and control subgroups (Fig. 3a).

The model2 (Eq. (4), Fig. 3b, Table 2) identified the significant contribution of four linearly mixture variables 
(i.e., satFe, UIBC, height percentile, and Age) forming a predicted signal yp2 with increased separating properties 
(SE = 83.53 ± 1.04%, SP = 82.89 ± 0.92%). The quantitative characteristics of the estimated model2 (Eq. 4) were 
as follows: F = 28.82 ± 0.63, RMSE = 0.3620 ± 0.0019, R2 = 47.38 ± 0.54%, and r = 0.660 ± 0.000. Means, including 
variances of derived regression coefficients, are listed in Table 2.

Same as the model1, single-subject predicted yp2 values significantly separated all examined groups between 
themselves except for case sub-groups and control sub-groups (Fig. 3b).

The mutual orthogonal projection (Eq. (2)) of model1 (Eq. (3)) and model2 (Eq. (4)) formed a bi-linear clas-
sifier providing the strongest separating properties (SE = 81.5%, SP = 88.7%; Fig. 4a).

All three presented linear mixture models (i.e., model1, model2, and bi-linear model1-model2 classifier; 
Fig. 3a,b, and 4a) improved separating properties and predictive power to FS risk when compared to the uni-
variate analysis (Fig. 4b). The bi-linear classifier demonstrated the lowest Euclidean distance to the gold standard 
classifier (Fig. 4b).

Model3 (Eq. (5), Fig. 3c, Table 2) estimated a trivariate model (i.e., height percentile, HGB and satFe) form-
ing a predicted signal yp3 with separation properties (p = 0.00128), which improved predictive power to FS 
recurrence when compared to model1 (p = 0.0032) or model2 (p = 0.0036; Fig. 3), or to univariate trends (height 
percentile p = 0.0050; weight percentile p = 0.0199; satFe p = 0.0202; and Fe p = 0.0363; Fig. 1). Quantitative char-
acteristics of the model3 (Eq. 5) were as follows: F = 8.24 ± 0.83, RMSE = 0.4182 ± 0.0055, R2 = 26.04 ± 1.93%, and 
r = 0.441 ± 0.005. Due to suboptimal model characteristics, the subgroup-specific yp3 values remained overlap-
ping, and separating SE/SP were limited to 83.86 ± 7.67% / 58.44 ± 6.69% (Fig. 3c). Means, including variances 
of derived regression coefficients, are listed in Table 2.

The parameter sensitivity analysis on under-sampled datasets showed the stability of the proposed regression 
coefficients in all three models. Still, their standard deviation increased as the dataset got more under-sampled 
(Table 2). Similar mean and standard deviation properties were applied for the models’ RMSE, R2, Pearson cor-
relation, SE, and SP (Table 2). Models’ F value decreased, and the separating threshold increased as the dataset got 
more under-sampled (Table 2). When the dataset was divided into training and testing sub-datasets, the SE and 
SP were slightly lower on the testing dataset than obtained on the training dataset. However, both measurements 
remained proportional (Table 2). Model2 was the most stable and reproducible model as it remained the most 
often detected model even if the dataset was under-sampled to 70% of its original size (Table 2). Simultaneously, 
no other model was detected for the original 100% dataset size (Table 2). Model1 remained reproducible and the 
most often detected when the dataset was under-sampled to 90% of its original size (Table 2). Model3 was stable 
and reproducible only for the dataset of the original 100% dataset size (Table 2).

In summary, the under-sampled datasets led to models with either a sub-set of significant variables or a full 
set of significant variables and additional tested variables. However, such models were suboptimal compared 
to our models1–3. The significant contribution of presented variables can be expected in all three investigated 
models, but a certain validation of models1 and 3 would benefit from a larger dataset (Table 2).

Discussion
We confirmed the previous findings in febrile seizure research, such as blood iron status association with the risk 
of FS and higher incidence of FS in males than females with fever. More importantly, we designed novel multi-
variate linear mixture models for a potential accurate risk prediction of FS risk and recurrence based on blood 
iron status and demographic data. The models and, specifically, the derived bi-linear classifier demonstrated 
high SE + SP to discriminate between children who developed seizures and those who stayed seizure-free during 
the febrile episode. The accurate FS risk prediction among children with fever bears an unimagined potential in 
managing FS, such as FS prevention and avoiding the related stress and anxiety from seizure and hospitalization. 
Although our data were from a single center and the sample size is relatively limited, we propose the application 
of similar approach relying on multivariate models and classifiers to predict the risk of FS or RFS.

Multiple predictors have been identified1,2,6–11, pointing towards the multifactorial etiology of FS. One of the 
common FS predictors was the presence of ID8,11. Iron is an essential nutrient for brain maturation and overall 
body growth with unprecedented indispensability during “critical periods” of accelerated brain development 
spanning ages 6 to 24 months15–17. Within this time, the brain is prone to structural and functional alterations that 

(3)y1 ∝ yp1 = −0.071 ∗ Fe + 0.012 ∗ UIBC + 0.005 ∗Height + 0.003 ∗ Fer

(4)y2 ∝ yp2 = −3.224 ∗ satFe + 0.004 ∗Height + 0.009 ∗ UIBC − 0.005 ∗ Age

(5)y3 ∝ yp3 = −0.0072 ∗Height + 0.0129 ∗HGB+ 6.1796 ∗ satFe



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17372  | https://doi.org/10.1038/s41598-023-43599-5

www.nature.com/scientificreports/

Figure 3.   Between-group differences with multivariate linear mixture models. Left-sided panels: (a-b) represent dataset 
3D visualizations in the space of three significant variables (in figure (a) height, UIBC, Fe; in figure (b) height, UIBC, and 
satFe) with p-values for respective between-group comparisons under each panel; c shows linear dependence between 
height percentile and HGB evaluated with Pearson correlation coefficient (r) for subgroups of patients with non-recurrent 
and recurrent febrile seizures. Right-sided panels: (a-b) show distributions of regressed values for all investigated groups, 
c for subgroups of patients with non-recurrent and recurrent febrile seizures. Automatically enumerated discriminating 
thresholds are shown with dashed gray lines; corresponding SE and SP values for separation properties of control and case 
groups are based on model1 (a), model2 (b), model3 (c). Model equations are displayed in the y-axis label descriptions. 
1 healthy controls, 2 febrile patients without seizures, 3 febrile patients with non-recurrent FS, 4 febrile patients with 
recurrent FS, Fe serum iron concentration, satFe iron saturation, Fer serum ferritin concentration, Age age at the first 
febrile seizure attack, Height height percentile, FS febrile seizures, UIBC unsaturated iron-binding capacity, HGB 
hemoglobin, thr threshold, SE sensitivity, SP specificity, *p-values were evaluated with the Wilcoxon rank-sum test.
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Table 2.   Quantitative characteristics and stability of identified multivariate linear mixture models tested 
on full and undersampled dataset. All values were averaged from utilized 5000 iterations with randomized 
initial conditions. Values are represented as mean ± standard deviation among the iterations. In a majority 
of the listed quantitative measurements, the mean values are quite stable and standard deviation increases as 
the dataset is more undersampled. *The bold highlighted “Model detection rate” represents that the model 
with listed regression coefficients has been the most often identified as the best model characterizing the 
data among the iterations. The adaptive synthetic sampling matched the number of female samples in the 
case groups to minimize the risk of the imbalanced learning within each modeling iteration. The separating 
threshold has been identified by maximizing sum of sensitivity and specificity. Then, the classifying sensitivity 
and specificity have been tested on the training dataset itself and on the training dataset (i.e., the samples 
excluded from the training due to dataset undersampling).

Dataset size 100% 90% 80% 70% 60% 50%

Model1

Model detection rate [%] *66.0 *20.8 11.2 6.4 3.2 2.2

Total number of identified models 6 61 90 121 142 160

Height regression coefficient 0.0049 ± 0.0002 0.0051 ± 0.0007 0.0052 ± 0.0008 0.0055 ± 0.0009 0.0059 ± 0.0011 0.0067 ± 0.0012

Fe regression coefficient − 0.0715 ± 0.0005 − 0.0702 ± 0.0025 − 0.0687 ± 0.0035 − 0.0684 ± 0.0049 − 0.0664 ± 0.0053 − 0.0654 ± 0.0074

Fer regression coefficient 0.0025 ± 0.0001 0.0028 ± 0.0003 0.0031 ± 0.0004 0.0033 ± 0.0005 0.0037 ± 0.0007 0.0040 ± 0.0007

UIBC regression coefficient 0.0119 ± 0.0004 0.0129 ± 0.0010 0.0136 ± 0.0015 0.0145 ± 0.0017 0.0153 ± 0.0023 0.0165 ± 0.0028

F-statistics 38.41 ± 0.66 35.00 ± 2.43 31.54 ± 2.92 28.96 ± 3.31 25.45 ± 3.41 23.17 ± 3.83

Root mean square error 0.6239 ± 0.0024 0.6221 ± 0.0094 0.6206 ± 0.0128 0.6162 ± 0.0163 0.6144 ± 0.0197 0.6012 ± 0.0247

Explained variance R2 [%] 46.04 ± 0.42 46.61 ± 1.62 46.75 ± 2.20 47.95 ± 2.75 48.61 ± 3.28 50.92 ± 4.04

Pearson correlation (y1 vs yp1) 0.643 ± 0.000 0.646 ± 0.012 0.648 ± 0.017 0.656 ± 0.021 0.663 ± 0.026 0.677 ± 0.031

Non-seizure/seizure separating threshold 0.5744 ± 0.0317 0.6853 ± 0.0793 0.7355 ± 0.1091 0.8442 ± 0.1372 0.9531 ± 0.1674 1.0655 ± 0.2197

Training: sensitivity 95.49 ± 1.61 93.90 ± 4.98 95.51 ± 4.60 92.68 ± 5.92 91.39 ± 6.18 93.40 ± 6.53

Training: specificity 69.43 ± 1.15 70.90 ± 4.15 68.95 ± 5.25 72.24 ± 6.39 73.91 ± 7.31 71.25 ± 8.07

Testing: sensitivity 87.32 ± 15.00 89.65 ± 12.12 84.72 ± 12.09 80.26 ± 13.38 83.27 ± 12.29

Testing: specificity 67.36 ± 18.25 65.29 ± 14.61 66.71 ± 10.79 67.45 ± 10.67 66.43 ± 9.29

Model2

Model detection rate [%] *100.0 *72.0 *50.9 *24.9 14.2 6.8

Total number of identified models 1 44 64 127 160 209

Age regression coefficient − 0.0050 ± 0.0002 − 0.0052 ± 0.0007 − 0.0056 ± 0.0009 − 0.0060 ± 0.0010 − 0.0064 ± 0.0011 − 0.0072 ± 0.0014

Height regression coefficient 0.0036 ± 0.0002 0.0036 ± 0.0005 0.0038 ± 0.0006 0.0040 ± 0.0007 0.0043 ± 0.0008 0.0048 ± 0.0010

satFe regression coefficient − 3.2236 ± 0.0455 − 3.1911 ± 0.2123 − 3.1108 ± 0.2796 − 3.0829 ± 0.3491 − 2.9630 ± 0.3964 − 2.8432 ± 0.4344

UIBC regression coefficient 0.0093 ± 0.0003 0.0094 ± 0.0011 0.0098 ± 0.0015 0.0100 ± 0.0016 0.0108 ± 0.0019 0.0113 ± 0.0020

F− statistics 28.82 ± 0.63 25.12 ± 2.25 22.85 ± 2.59 21.00 ± 3.00 19.20 ± 3.24 17.28 ± 3.37

Root mean square error 0.3620 ± 0.0019 0.3638 ± 0.0076 0.3642 ± 0.0097 0.3601 ± 0.0123 0.3558 ± 0.0150 0.3509 ± 0.0175

Explained variance R2 [%] 47.38 ± 0.54 47.47 ± 2.10 48.01 ± 2.69 49.13 ± 3.41 51.02 ± 4.08 53.10 ± 4.60

Pearson correlation (y2 vs yp2) 0.660 ± 0.000 0.662 ± 0.015 0.667 ± 0.020 0.674 ± 0.026 0.691 ± 0.031 0.704 ± 0.034

Non− seizure/seizure separating threshold 0.3495 ± 0.0261 0.3657 ± 0.0899 0.3779 ± 0.1170 0.4135 ± 0.1332 0.4652 ± 0.1607 0.4906 ± 0.1730

Training: sensitivity 83.53 ± 1.04 81.15 ± 4.19 83.30 ± 4.35 80.72 ± 5.91 82.28 ± 6.42 85.87 ± 6.79

Training: specificity 82.89 ± 0.92 86.06 ± 4.14 84.81 ± 4.94 88.90 ± 5.16 89.72 ± 5.66 88.30 ± 7.02

Testing: sensitivity 75.60 ± 18.66 75.50 ± 13.62 71.20 ± 12.15 70.69 ± 10.81 72.76 ± 10.10

Testing: specificity 81.14 ± 15.07 78.56 ± 12.53 81.53 ± 9.97 79.77 ± 10.16 77.35 ± 11.19

Model3

Model detection rate [%] *51.5 28.4 10.4 4.6 2.0 1.1

Total number of identified models 15 73 203 293 383 506

Height regression coefficient − 0.0072 ± 0.0005 − 0.0070 ± 0.0007 − 0.0079 ± 0.0011 − 0.0080 ± 0.0012 − 0.0083 ± 0.0012 − 0.0088 ± 0.0012

HGB regression coefficient 0.0129 ± 0.0009 0.0136 ± 0.0013 0.0153 ± 0.0022 0.0158 ± 0.0024 0.0171 ± 0.0028 0.0179 ± 0.0028

satFe regression coefficient 6.1796 ± 0.5323 6.1236 ± 0.8455 6.8889 ± 1.3212 7.0798 ± 1.4197 7.8790 ± 1.7529 9.1360 ± 2.7797

F-statistics 8.24 ± 0.83 7.41 ± 1.30 8.79 ± 2.07 8.48 ± 2.31 8.60 ± 2.54 10.17 ± 3.67

Root mean square error 0.4182 ± 0.0055 0.4130 ± 0.0095 0.4068 ± 0.0148 0.3917 ± 0.0178 0.3799 ± 0.0218 0.3615 ± 0.0300

Explained variance R2 [%] 26.04 ± 1.93 26.37 ± 3.35 32.33 ± 4.90 35.13 ± 5.75 40.08 ± 6.62 47.23 ± 8.58

Pearson correlation (y3 vs yp3) 0.441 ± 0.005 0.457 ± 0.033 0.495 ± 0.046 0.533 ± 0.053 0.577 ± 0.057 0.630 ± 0.067

Non-recurrent/recurrent seizure separating 
threshold 1.4001 ± 0.0999 1.4947 ± 0.1410 1.6849 ± 0.2406 1.7372 ± 0.2945 1.9210 ± 0.3366 2.0830 ± 0.3144

Training: sensitivity 83.86 ± 7.67 86.15 ± 10.19 88.11 ± 11.57 91.45 ± 10.93 92.50 ± 8.92 92.03 ± 9.59

Training: specificity 58.44 ± 6.69 60.50 ± 6.80 64.23 ± 9.26 66.54 ± 10.81 69.81 ± 10.25 76.00 ± 10.77

Testing: sensitivity 73.33 ± 44.24 69.80 ± 30.16 74.70 ± 28.62 74.29 ± 26.08 69.81 ± 24.57

Testing: specificity 45.18 ± 27.23 44.85 ± 19.98 42.13 ± 17.47 46.57 ± 14.52 49.61 ± 12.24
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may manifest immediately or arise later in life in the form of epilepsy18,19, neurodevelopmental problems such as 
memory problems, learning deficit, poor attention span, intellectual disability, behavioral disturbance15,19,20, or 
even as various psychiatric disorders6,20,21. Although the peak onset of FS is concurrent with this time period8, 
the impact of altered blood iron status on brain iron status, and consequently on brain structure and function, 
is unclear.

The previous literature on the blood iron status and FS mainly reported the association of ID and FS1,8,11,22, 
with some studies demonstrating non-existing or even opposite association8–10. Our findings showed a strong 
association between blood iron status and FS. Lower serum Fe levels and higher UIBC were in febrile children 
with seizures compared to those without seizures or afebrile healthy controls. The sensitivity of the serum iron 
measures to distinguish between the group with and without FS was high. Still, the specificity of these tests was 
relatively low, limiting their applicability in the clinical setting. Therefore, we generated multivariate mixture 
models for the group separation to increase the specificity. The models yielded the equations using specific vari-
ables such as ferritin and UIBC, iron concentration, and saturation. But also, body height and age were factors 
applied in the model to predict FS, despite the comparable and non-significantly different distribution across 
groups. Body height, age, and iron are interrelated with increased iron requirements in infancy and early years of 
life23–25. ID usually associates with faster growth whenever iron demands for growth exceed intake26. In the first 
two years of life, the risk of negative iron balance and organ prioritization may negatively affect brain develop-
ment. The prioritization of iron distribution, which favors RBC (i.e., erythropoiesis) over the brain, heart, and 
skeletal muscles15,16, implies that ID may result in impaired neurodevelopment presenting with various degree 

Figure 4.   Increased specificity of the case group separation and receiver operating characteristics while 
combining model1 and model2. (a) Visualization of the mutual model1 (x-axis)—model2 (y-axis) projection 
for all investigated groups. Right panel shows the zoomed-in area (delimited by dashed grey line) of the upper-
right quadrant. The bi-linear classifier represents the thresholds of each separate model1 and model2 derived 
from data distributions shown in Fig. 3a,b. Thresholds are visualized as black solid lines. (b) Receiver operating 
characteristics and Euclidean distance (E) between an ideal “gold standard” classifier and the optimal classifier 
fit for the corresponding model/variable. Fe serum iron concentration, satFe iron saturation, Height height 
percentile, Age age at the first febrile seizure attack, UIBC unsaturated iron-binding capacity, HGB hemoglobin, 
thr threshold, SE sensitivity, SP specificity, ROC receiver operating characteristics.
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of intellectual disability. Moreover, the elevated ferritin accompanying inflammation as an acute phase reactant 
is sequestered and, thus, not available for erythropoiesis and other organ systems. This defense mechanism, 
which aims to restrict serum iron from utilization by pathogens or tumors27, may lead or further contribute to 
ID, resulting in an increased risk of FS. Therefore, blood screening with an eventual iron-rich diet or iron sup-
plementation may be warranted to prevent FS and neurodevelopmental sequelae.

We demonstrated that the bi-linear classifier consisting of two multivariate mixture models for the group 
separation provided high sensitivity and much improved specificity compared to univariate assessments or the 
models applied separately. Thus, carefully weighing the study limitations, we consider that the bi-linear classifier 
based on the presented models may represent a practical screening tool to determine the FS risk in febrile chil-
dren. However, the robustness of the bi-linear classifier needs to be verified with a larger and more geographically 
and racially diverse cohort providing updated model coefficients or an extended variable list, which may result 
in the SE and SP at the proximity of the gold-standard classifier.

None of our models identified sex as a significant variable, although we observed higher FS incidence in 
males, which further confirms the findings of previous studies1,2,6,11. Significant sex effects were not observed 
in iron status and demographics in the febrile group without seizures and FS subgroups. In the healthy con-
trol group, lower iron concentration and saturation were noted in males compared to females. In analogy, the 
male sex represents a risk factor for ID or ID anemia in infants and young children23,24,26,28. Moreover, sex may 
determine seizure susceptibility and type, as demonstrated in the animal model20,21. The sex difference or male 
overrepresentation in FS human studies is well documented1,2,6,11. In the Japanese population, the male sex was 
identified as one of the major predictors of FS recurrence2. Our study showed more frequent RFS in males. Sex 
hormones control many molecular and cellular processes in brain differentiation, including the modification of 
the neural response to stress or brain injury. Thus, the increased FS susceptibility in males is likely influenced 
by multiple factors, including iron status alteration.

Regarding FS recurrence, the unique trivariate model consisting of HGB concentration, body height percen-
tile, and Fe saturation was derived. The model’s reasonable separation (i.e., SE + SP) and model reproducibility 
were suboptimal, requiring further improvement and additional variables to define a model with optimal FS 
recurrence predictive power.

We only utilized linear mixture modeling between investigated variables. It is possible that the proposed 
analysis may benefit from a non-linear transformation of some variables before the regression analysis. However, 
we consider that strategy of a lower potential for a marginal improvement on the current dataset as we have 
not observed any non-linear relationships between variables. When the dataset is enlarged, the training of a 
non-linear classifier in the space of the orthogonal model1-model2 projection may lead to an improved models’ 
prediction.

Study limitations
A small and geographically limited Caucasian sample size represented the primary study constraint. Thus, using 
the full dataset for model regression with the subsequent classifier evaluation may lead to classifier overfitting 
in all derived and tested models. Therefore, a re-test of fixed models will be necessary at a fully independent and 
larger dataset that will enumerate and validate true models’ SE and SP.

Body height or weight percentile tables normalized for the Czech population may differ across nations, and 
slightly varying regression coefficients may be derived (i.e., β coefficients in Eqs. (2), (3), or (4)). Future multi-
center experiments with diverse pediatric populations may re-test or derive regression coefficient expectations 
with a specific variance and define more generalizable models’ normative values.

Imbalanced sex distribution in case groups may bias our findings. The employed adaptive synthetic sampling 
was performed in an effort to minimize such a dataset effect. Future research needs to collect vitamin D samples 
in all investigated cases to rightfully determine its role.

Similar to the previous FS studies, Refs.1,11 the serum Fer levels may be elevated in various inflammatory con-
ditions as ferritin is an acute phase reactant and marker of acute and chronic inflammation. Reference26 Although 
the ferritin levels were not significantly different across febrile groups of children with or without seizures, the 
influence on overall iron status during inflammatory conditions, mainly restricted serum iron utilization26, is 
noteworthy and may contribute to the FS development.

Conclusion
We confirmed the relationship between iron status and FS with a higher incidence in males. More importantly, 
we proposed a novel approach to evaluate the FS risk in infants and young children with fever. First, multivari-
ate linear mixture models were derived based on blood iron status and demographic variables. The approach 
emphasized between-group separation properties when height percentile and age were included in the iron sta-
tus observation. Next, a bi-linear classifier consisting of two multivariate mixture models provided the optimal 
SE + SP for FS risk. Finally, we have designed an innovative trivariate model sensitive to FS recurrence, utilizing 
height percentile, hemoglobin, and Fe saturation. We also hypothesize that a future extension of the novel FS 
recurrence model about the vitamin D variable can substantially improve its sensitivity and specificity. Future 
multi-center studies with a larger and more geographically and racially diverse cohort will re-test and validate 
the robustness of derived models to prove or disclaim them as classifiers with predictive power to FS risk or 
recurrence.
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