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A phenomenological model 
of whole brain dynamics using 
a network of neural oscillators 
with power‑coupling
Anirban Bandyopadhyay 1, Sayan Ghosh 1, Dipayan Biswas 1, V. Srinivasa Chakravarthy 1* & 
Raju S. Bapi 2

We present a general, trainable oscillatory neural network as a large‑scale model of brain dynamics. 
The model has a cascade of two stages ‑ an oscillatory stage and a complex‑valued feedforward stage 
‑ for modelling the relationship between structural connectivity and functional connectivity from 
neuroimaging data under resting brain conditions. Earlier works of large‑scale brain dynamics that 
used Hopf oscillators used linear coupling of oscillators. A distinctive feature of the proposed model 
employs a novel form of coupling known as power coupling. Oscillatory networks based on power 
coupling can accurately model arbitrary multi‑dimensional signals. Training the lateral connections in 
the oscillator layer is done by a modified form of Hebbian learning, whereas a variation of the complex 
backpropagation algorithm does training in the second stage. The proposed model can not only 
model the empirical functional connectivity with remarkable accuracy (correlation coefficient between 
simulated and empirical functional connectivity‑ 0.99) but also identify default mode network regions. 
In addition, we also inspected how structural loss in the brain can cause significant aberration in 
simulated functional connectivity and functional connectivity dynamics; and how it can be restored 
with optimized model parameters by an in silico perturbational study.

An important question in contemporary neuroimaging research is to understand how the relatively static struc-
tural organization of the brain gives rise to brain dynamics and behavior. Structural connectivity (SC) is defined 
as the physical map of the brain represented by the white fiber tracts connecting different brain regions. SC 
graph, formed by brain regions as nodes and fiber tracts connecting them as edges, can be represented as a 
matrix. The elements of the SC matrix are normalized fiber densities across pairs of regions. The resulting SC 
graph/matrix can be analyzed using measures from graph theory to investigate small worldness and how the 
pattern of connectivity constrains the information flow and communication between brain regions. On the 
other hand, functional connectivity (FC) represents the correlation of blood oxygen level-dependent (BOLD) 
signals between brain regions, typically estimated by the standard Pearson correlation coefficient. In order to 
drive home the importance of structural connectivity information and its relation to the function of the brain, 
in 2005, Hagmann, Sporns and others coined the term “connectome”1,2.

The structural information extracted from diffusion tensor imaging (DTI) is useful in detecting aberrations 
in neuroanatomical structures in various neurological disorders. In recent times, resting-state functional MRI 
(rs-fMRI), recorded when participants are not engaged in any task but are resting, has given valuable insights 
into the brain function both in health and disease. It has been shown that the low frequency BOLD oscillations 
in the resting state can be predicted reliably from the structural connectivity  information3. Networks of regions 
co-active during rs-fMRI have been designated as resting state networks (RSN), and it was shown that the core of 
the resting state functional connectivity network corresponds to the nodes of the default mode network (DMN)4.

The characterization of the structure-function relation has been attempted using broadly three strategies. 
According to the first of them, in the case of reaction-diffusion-based models, regional mean firing rates are 
determined with the help of the popular Wilson-Cowan neuron model, and diffusion of mean firing rate is 
mediated by the anatomical pathways constrained by the empirical structural  connectivity5,6. The second broad 
strategy is to construct biologically plausible neural mass models comprising firing patterns of both excitatory 
and inhibitory populations of neurons, with parameters that control local and global interactions among the 
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 populations7. The parameters are estimated by a process of optimization with the objective of matching the simu-
lated FC with the empirical  FC8. The third kind is nonlinear dynamical system-based models that incorporate 
abstract phenomenological models of neuron populations based on oscillators such as - the Kuramoto oscillator 
and the Hopf  oscillator9–12. These types of models are computationally more tractable but pose challenges of 
biological plausibility and validity.

Oscillator models offer an appropriate level of trade-off between complexity and biological plausibility for 
modeling mesoscale data such as resting-state FC and SC. Several example models with Hopf oscillator-based 
dynamical systems are developed that have yielded promising results in explaining the structure-function rela-
tionships, relationships related to cognitive behavior, sleep-wake cycle, Schizophrenia, Alzheimer’s disease, 
 etc11,13–17. Models developed by Deco et al. show that a linearly coupled Hopf-oscillator system, where dynamics 
of every brain region are described by an individual Hopf-oscillator, can explain complex characteristic behav-
iors of the human brain like connectivity, criticality, information processing, and  metastability11,18. The model 
dynamics is varied using several parameters, like - global coupling between different brain regions (G), oscillation 
amplitude in terms of the bifurcation parameter ( µ ), and time delay between  regions11,14,19.

However, one of the major drawbacks of such models is that they cannot accurately capture the empirical 
BOLD signals from multiple ROIs (Regions of interest). For example, the correlation coefficient value between 
simulated and empirical FC in these modeling approaches ranges between 0.72 to 0.8211,20–22. Approximating 
the empirical state of a healthy brain in terms of the measure like predictive power (the correlation coefficient 
between predicted and empirical FC matrix) is necessary for not only achieving the mechanistic understanding 
of the resting-state human brain but also to understand the brain disorders in the terms of breakdown in the 
structure-function relationship. Furthermore, such models enable validating the efficacy of neurorehabilitation 
techniques and suggesting target sites for deep brain stimulation, transcranial magnetic stimulation,  etc21. One 
of the dominant approaches in the above described models is to estimate different parameters controlling the 
dynamics of the system like SC with the scaling parameter (G), the inherent time delay between the brain regions, 
and the amplitude of the oscillation by a cumbersome process of optimization. Table  1 presents a taxonomy of 
different models and compares them on several dimensions.

To address these issues, we propose a network of complex Hopf oscillators coupled by a special form of 
complex coupling called “power coupling”23. The dynamics of Hopf oscillators are described in the complex 
domain, and the complex-valued outputs of the oscillators are passed through a complex feed-forward network 
which predicts BOLD signals from multiple ROIs. The weight-update rule used in the proposed model poses 
high biological plausibility and does not resort to an abstract optimization process.

The contributions of the paper are: (i) hierarchical oscillator neural network model architecture where the first 
layer is constrained by empirical structural connectivity and the last layer predicts functional connectivity among 
ROIs, thereby modelling the structure-function relationship, (ii) model estimation using a variation of complex 
backpropagation algorithm, (iii) modelling static as well as dynamic functional connectivity, (iv) comparison of 
the graph theoretical properties of the predicted FC with empirical FC, and (v) extensive perturbation studies, 
including a study of the impact of the loss of structural information and the impact of various parameters in 
restoring the aberration in function.

This paper is organized into four parts - after the first introductory section, the results section describes the 
outcomes of various simulation studies; the discussion section outlines the similarities and differences of the 
proposed model in comparison to the earlier models, and highlights the superior predictive power of the pro-
posed model; and finally, the methods section describes the learning algorithm and in-silico perturbation studies.

Results
Model abstract
In this paper, we propose a general trainable oscillatory neural network for modelling the relation between FC 
and SC. The proposed network uses Hopf oscillators whose dynamics are described in the complex domain. 
A distinctive feature of the model is the manner of coupling among the Hopf oscillators. Instead of the linear 
coupling between two oscillators explored in earlier works, we use a form of coupling known as power coupling. 
Oscillatory networks based on power coupling have been shown to be able to learn arbitrary multi-dimensional 
 signals23. The network consists of a layer of oscillators, followed by a layer of sigmoidal neurons, and finally, 
the output layer that captures the BOLD activity of various ROIs. Training is done by a variation of a complex 
backpropagation  algorithm24,25, which can train the hybrid network of oscillators and sigmoid neurons. The 
objective of the training is to find the best fit between the empirical and simulated BOLD signal for individual 
ROIs. The proposed model not only emulates the empirical FC, but also investigates if the model can simulate 
the dynamic FC and matches graph theoretical measures. A more detailed account of model architecture and 
function is presented in the Methodology section.

Reconstruction of the BOLD signal with novel network architecture
Figure 1a and b reveal that after the simulation, the reconstruction of the BOLD signals matches the empirical 
ones. Each simulation is done for 10,000 epochs, and the number of hidden nodes for each ROI is fixed at 30. 
Note that only two ROI’s simulated and empirical BOLD signals for the second participant from HCP dataset 
are shown in Fig. 1. Like the first two ROIs, all the other empirical BOLD signals from 160 parcellated regions 
can be reconstructed with this model for all the participants.

The effect of various parameters on the performance of the network has already been described  earlier25. 
It has been found that the network-performance is a function of both the number of hidden neurons and the 
number of epochs, where the correlation coefficient between empirical and simulated FC increases monotonically 
with the number of epochs and the number of hidden neurons. First, the Human Connectome Project (HCP) 
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dataset is used to reconstruct the BOLD signal extracted from the total of 160 ROIs. Note that the model keeps 
the individuality of the structural connectivity of each participant, preserving the “structural biomarker” of each 
subject, and that is the reason why the model architecture is different for different subjects.

Functional connectivity, and functional connectivity dynamics
The FC Matrix presents itself as a powerful tool for revealing the brain dynamics underlying fMRI data, classify-
ing brain networks, and extracting the hierarchical organization in such  networks27,28. The novel network archi-
tecture can also emulate significant biomarkers like FC and functional connectivity dynamics (FCD). Analyzing 
the FC matrix and comparing simulated and empirical FC is a promising benchmark for inspecting a model’s 
 capacity11,21,29,30. The correlation coefficient between the simulated and empirical FC matrix approximates 0.99 
(from the first participant’s data), accurately capturing the empirical FC matrix. A set of fourteen simulations for 
fourteen subjects are performed, and the “grand average” empirical FC and simulated FC are shown in Fig. 1c 
and d , and the individual correlation coefficient between the simulated and empirical FC matrix is displayed 
in Fig.  1e.

Several earlier works postulate that understanding the static FC matrix may not be the ideal approach to 
validate the  model11,12. FCD is investigated with the procedure outlined in the Methodology section. How the 
dynamic functional connectivity changes with sliding windows is shown in Fig. 2a. Figure  2b shows how the 
correlation coefficient measuring the model’s performance on dynamical nature of empirical FC, alters with the 
shifting window, which ranges between 0.980 to 0.995, and reveals the dynamic mean of FCs between simulated 
and empirical BOLD signals. This shows the dynamic nature of FC can be captured by the model. Note that the 
results shown here are derived from the simulated and empirical BOLD signal output from the first participant’s 
data. Results for the “brain-states” are divulged in Section S3 and Fig. S2 in supporting documents online. Four 
different FC matrices, as described by “brain states”, are concatenated as per the procedure outlined in the Meth-
odology section. The Pearson correlation coefficient between two large FCD matrices is estimated to be 0.99.

Brain graph theory, and default mode network
As described in the Methodology section, Newman’s community detection algorithm is chosen for performing 
the segregation and analysis of the default mode network (DMN). The modularity (Q) value for the network 
derived from empirical data is estimated to be 0.33, and for the simulated network, it is 0.34. Four modular 
structures are found in both the empirical and simulated graph, as shown in Fig.  2c and d; and also in Fig. S3 in 
Section S4 in the supporting document online. The posterior cingulate cortex is a well-known region in DMN, 
positioned in the 9th and 10th index in the parcellation table given in Table S2 in the supplementary document 
online, segmented in cluster  131,32. It is found that some important regions of DMN are in the similar community, 
like- the anterior cingulate cortex, posterior cingular cortex, medial prefrontal cortex, angular gyrus, parahip-
pocampal regions, Precuneus, superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, temporal 
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Figure 1.  (a) and (b) represent the comparison between simulated and empirical time-series signals for ROI-1 
and ROI-2, respectively. Yd and Yp represent empirical and simulated signals, respectively. (c) and (d) represent 
the “grand-average” simulated and empirical FC respectively of fourteen participants. (e) shows the individual 
correlation coefficient between simulated and empirical FC for each of the fourteen participants from the HCP 
dataset.
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pole, temporal inferior gyrus,  hippocampus33–37. However, some of the ROIs are also present in the community, 
which are not typically regarded as a part of the DMN network.

Effect of information loss and recovery
The dysfunction of structural connectivity in the brain is observed in various neurological  disorders38,39. The cur-
rent section describes the results of in silico perturbation and rehabilitation studies. The simulations are done on 
different SC matrices, which are randomly pruned, resulting in anomalous FC matrices. The next objective is to 
retrieve the FC matrix prior to the structural pruning process by altering the different parameters governing the 
Hopf oscillator dynamics. Note that the pruning process is not a targeted attack but a random one. Both targeted 
and random attack on SC and their effects on simulated FC are reviewed in earlier  works38,40.

After the absolute thresholding process, as shown in Fig. 3a, the correlation value between simulated and 
empirical FC (predictive power) decreases monotonically with the increasing threshold. Similarly, in the case of 
proportional thresholding, where a certain percentile of stronger connections are retained, the predictive power 
increases with the percentile of stronger weights (Fig. 3b). The correlation coefficient between simulated and 
empirical FC is lower for five percentile retained weights than for twenty percentile retained weights. We can 
compare our oscillatory model with the temporal kernel model developed by Surampudi et al.5, where a similar 
pruning exercise was done.

In the rehabilitation process, it is intended to restore the FC, which is imbalanced due to structural loss. In 
order to achieve this, as discussed in the Methodology section, the dynamics of the Hopf oscillators are altered, 
where the SC matrix is scaled with global coupling parameter G; and the amplitude of the periodic oscillation of 
the Hopf oscillator ( µ ) is increased. Note that only proportional threshold is taken for this in silico rehabilita-
tion study. It is noted that with the increase of G, the predictive power or the correlation coefficient increases 
monotonically. The results are shown in Fig. 3c and d, where the analysis of restoring the predictive power is 
performed on two different pruned structural connectivity data sets – five percentile, and the ten percentile 
proportional threshold applied to the SC matrix. Note that the first point in both cases is the initial point where 
the G is kept at 1. It should be noted that µ is kept constant in this case. It is also found that when µ is increased, 
the model’s predictive power increases; however, G is kept constant in this case, as shown in Fig. 3e and f , reveal-
ing that restoration of the model’s predictive power or correlation coefficient is possible. µ is increased up to 
µ = 4 for the five percentile, and the ten percentile proportional threshold applied to the SC matrix as shown in 
Fig. 3e and f. It is to be noted that the nodes are assumed to be homogeneous in nature, meaning all the Hopf 
oscillators have the same amplitude of oscillation, µ . A detailed description of the impact of structural loss and 
its possible compensation is given in Section S5 of the supporting document online. In the future, we intend to 
study node heterogeneity to inspect how the node parameters are crucial for fitting the model to clinical data. 
For example, increased amplitude of oscillation can be linked to invasive and non-invasive brain stimulation 
methods, deep-brain stimulation (DBS), Transcranial Direction Current Stimulation (tDCS), and Transcranial 
Magnetic Stimulation (TMS). One instance of such an effort is the study by Iravani et al.21, where the model 

Figure 2.  Functional connectivity dynamics (FCD) with sliding window analysis(SWA). (a) in the upper panel 
shows the procedure of sliding window analysis, and (c) and (d) in the lower part show the ROIs as nodes of the 
brain network. (b) shows that dynamic correlation between simulated and empirical FC; and the dynamic mean 
of functional connectivity for each sliding window. The lower panel in (c) and (d) refer to the virtual brain view 
to identify different communities marked by individual colour, where the node’s size corresponds to the node’s 
degree. This is developed using Brainnet  Viewer26.
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accounts for the effects of focal stimulation in ADHD participants. Model’s performance on FCD analysis, for 
in silico perturbational study, is done in terms of dynamic correlation, where each element denotes the Pearson’s 
correlation coefficient between the upper-triangular elements of the simulated and empirical FC matrix at indi-
vidual time-window defined by the sliding window analysis. A similar strategy is applied to inspect the impact 
of structural loss and recovery on FCD analysis, as shown in Fig. 4, where the variation of correlation with time 
is given for different pruning conditions and the subsequent recovery process, as outlined in the "Methodology" 
section. Figure 4a shows the dynamic correlation obtained from structural connectivity without threshold, and 
structural connectivity with five, ten, and twenty percentile threshold values. Figure  4b–e reveal the impact of 
regulatory parameters, G, and µ to restore FCD after perturbation to the prior pruning stage. A closer look will 
reveal that the ranges of dynamic correlation increase with the increase of the regulatory parameters. It will be 
more conspicuous from Fig. 4f, where the dynamic correlation obtained from different perturbation and reha-
bilitation strategies, as outlined earlier, is compared with the dynamic correlation obtained from SC without 
pruning (Fig. 2b) with the help of the Kolmogorov-Smirnov distance ( Dks ). In Fig. S12 in the online document, 
we have shown the distribution of dynamic correlation value for each perturbation condition. It should be noted 
that, though the result shown here is for a single participant, the general trend is true for all other participants.

Validation dataset
We now check if our model can capture the whole brain dynamics in a different dataset, other than the HCP 
dataset, having a different repetition time (3.29 seconds) with nearly 200 time points.

As in the case of previous analysis with the HCP dataset, our model can reconstruct the BOLD signal extracted 
from 160 ROIs of each participant from the Paris dataset. The architecture is kept constant, and the model archi-
tecture is identical to the one used for the HCP dataset. The simulated results after 30,000 epochs with thirty 
hidden neurons in the hidden layer are shown in Fig. 5a and b. As per the methods developed earlier, the capac-
ity of the model is described in terms of the correlation coefficient between the empirical and the simulated FC 
(see 5c and d). The correlation coefficient value after 30,000 epochs with 30 hidden neurons is estimated to be 
0.97 for the first indexed participant from the Paris dataset. Figure 5e reveals the correlation coefficient between 
simulated and empirical functional connectivity between all the fourteen participants from the Paris dataset. 
Note that the window size for FCD analysis is kept at 40 TR. Both the mean FC and the dynamics correlation 
coefficient across the windows are estimated, as shown in Fig. 5f and g.
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Figure 3.  How the correlation coefficient between simulated and empirical static FC varies with several model 
parameters is shown here. The threshold parameter shown in (a) is the absolute threshold. In (b), the threshold 
parameter indicates the percentile of the stronger weights in the SC matrix, which are retained after pruning. 
Both (c) and (d) show how the global coupling strength (G) can restore the correlation coefficient between 
simulated and empirical FC matrix, when five, and ten percentile threshold on SC is applied, respectively. 
(e) and (f) show how the increase in oscillation amplitude µ , can compensate for the information loss due to 
structural lesions incurred due to five, and ten -percentile threshold.
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Figure 4.  (a) denotes the dynamic correlation in case of no proportional threshold (referred to as ’original’), 
five-percentile threshold, ten-percentile threshold, and twenty-percentile threshold. (b) refers to the dynamic 
correlation, when G is increased monotonically for five percentile pruned SC. (c) refers to when µ is increased 
from µ = 2 to 4; the dynamic correlation value is increased in the case of SC matrix with five percentile 
threshold; (d) reveals the FCD in the case of ten percentile threshold, where increased G is used. (e) depicts 
the alteration in dynamic correlation for various values of the oscillation amplitude µ , and when the SC matrix 
is pruned with ten percentile threshold. (f) reveals the Kolmogorov-Smirnov(Dks ) distance to underpin the 
difference in dynamic correlation distribution between before and after perturbation (pruned SC and pruned SC 
with regulatory parameters).

Figure 5.  Simulated Outcome for validation dataset. (a) and (b) individually represent the first and second 
ROI’s BOLD signal approximation with our model. (c) and (d) reveal the simulated and experimental functional 
connectivity; (e) presents the predictive power of the model for the fourteen participants of Paris dataset. (f) and 
(g) represents the dynamic functional connectivity for the first participant of the Paris dataset.
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Discussion
Recent reviews have highlighted the importance of building large-scale brain models, their significance to brain 
theory, and their applications in clinical  neuroscience10,12,30. Large-scale models validated by whole brain BOLD 
signals present a theoretical framework which can be used to predict the underlying neurophysiological events, to 
serve as a platform for developing effective neuro-rehabilitation techniques. Prior works in such direction show 
promising results that can relate the parameters in model dynamics with the external perturbations, and normal 
and disease conditions. Vattikota et al. showed in their work that a virtual focal lesion can be rehabilitated by a 
re-balancing of the excitatory and inhibitory  dynamics40. Such a perturbation study is also done in our work to 
check whether our model can also probe into such information of perturbation transferred from SC to FC, and 
whether any local and global level alteration can cause any difference in the FC reconstruction after perturba-
tion. Here the increase of oscillation amplitude ( µ ) signifies local level alteration, and the pruning of structural 
connectivity, or its scaling using global coupling factor (G) refers to global level perturbation. However, in the 
current work significance of the oscillatory power analysis is restricted, where the amplitude of oscillation is 
increased homogeneously for all nodes instead of selective one. Note that a change in the number of connections, 
or connection properties or the number of neurons, or neural activity, in selective areas of the connectome is a 
dominant pattern in neurological disorders, like “disconnection” in Schizophrenia, stroke, Parkinson’s disease 
 etc39,41,42. It has been observed that such perturbations can sometimes be restored by either a self-reorganization 
of the structural connectivity or by modulation of synaptic  plasticity43–45. Our work shows that the increase in 
the global coupling factor (G) can ameliorate the anomalous FC derived from the disconnection in SC. Prior 
simulation studies of the effect of deep brain stimulation (DBS) in Parkinson’s Disease patients reveal that by 
varying the single global coupling factor, G, it is possible to estimate global segregation and integration meas-
ures in pre-DBS, post-DBS, and healthy  conditions13. Work done by Cabral et al. shows that by lowering the 
G, the dynamic system model can match the global integration (GI) value derived from the empirical BOLD 
signals extracted from patients suffering from Schizophrenia  diseases45. On the other hand, the importance of 
the increase in oscillation amplitude is apparent in DBS intervention in Parkinson’s disease, where the thalamus 
and global pallidus may be associated with a higher amplitude of  oscillation46. Another work done by Iravani 
et al. shows the implication of an increase in the amplitude of oscillation resulting from the increase in µ shows 
promising results for Attention-deficit/hyperactivity disorder (ADHD) subgroup-1 patients, where the left-medial 
orbitofrontal cortex and right posterior cingulate cortex are found to be the most promising sites for focal brain 
 stimulation21. In an in silico study (Deco et al. 2018), the perturbational landscape of the linearly coupled Hopf 
oscillator model of Deco et al.’s points out the impact of µ , in terms of periodic and noisy behaviour of Hopf 
oscillator, in  synchronization47. These works substantiate the importance of the Global coupling factor (G), and 
the oscillation amplitude ( µ ) in modeling clinical conditions, which is reinforced by the results obtained from 
the proposed model.

We now discuss the proposed model and compare it with previous models that have been proposed to work 
out the mapping between structural and functional  connectivity15. As discussed earlier, the characteristic behav-
ior of the Hopf oscillator in the supercritical regime renders a powerful tool for understanding the underlying 
dynamics of BOLD signals elicited by the different brain regions captured with imaging techniques, like rs-fMRI. 
Several earlier studies have explored the effectiveness of the Hopf oscillator in elucidating the temporal dynam-
ics of BOLD signals as well as whole brain dynamics. The model proposed by Deco et al. (2017), also based on 
Hopf oscillators, relies on a linear coupling strategy between oscillators, and the optimal fit to the brain dynam-
ics was found near the bifurcation point ( µ ≈ 0 ), determined by the maximum correlation coefficient between 
the simulated and empirical FC  matrix11. In subsequent studies, Deco et al. (2017, 2021) computed the intrinsic 
frequency of the oscillator based on the strongest frequency component of the empirical BOLD signal, and µ 
is optimized based on the strength of that frequency  component50,51. Later this model was also optimized with 
swarm particle parameter optimization  technique14. A similar nature of model was described by Iravani et al.
(2021), where a similar Hopf oscillator-based model is employed; however, Monte-Carlo optimization process 
was applied for parameter optimization, and it was found that the parameter distribution can discriminate 
between the healthy and ADHD  brain21.

The strength and appeal of the proposed model lie in the nonlinear coupling mechanism adopted, viz., power-
coupling, the Hebb-like learning of lateral connection and the complex backpropagation algorithm for training 
the forward connections. A comparison between the earlier models and the proposed model is given in Table  1. 
Note that the models shown in the table are performed on different datasets. A comparison between different 
whole-brain models with the aforementioned Paris dataset has already been done, which allows us to compare 
our model with the earlier  models48. A total of six models are compared, viz. Rate coded model, Wilson-Cowen 
model, neural mass model, phase oscillator model (Kuramoto oscillator), spike attractor model (dynamic mean 
field model), and Fitzhugh- Nugmo model. The correlation coefficient between the simulated and empirical 
FC matrix for all the competing models is shown in Fig. 6d, which demonstrates that our model significantly 
improves the predictive power and approximately emulates the empirical functional connectivity. For details 
of those models, readers may refer to the work of Messe et al.48. The proposed model is similar to the model 
proposed by Deco et al.11 as mentioned earlier. The major difference is that in the model of Deco et al. (2017), 
the Hopf-oscillators are coupled via linear coupling, where the global coupling factor (G) is iteratively selected 
in order to achieve the best approximation with empirical FC. In order to compare the proposed modeling 
approach with that of Deco et al. (2017), we took two models based on different network paradigms as follows. 
The characteristic features of the networks are given in the table in Fig. 6e. As shown in Fig. 6a, the model of 
Deco et al. is employed for Paris dataset to get the simulated output, where the best simulated outcome is found 
at G = 2.6, and µ is set to near zero. To make it comparable, the nodes are assumed to be homogeneous in nature, 
and the µ is not updated. In Fig. 6b, the oscillatory layer is similar to Deco et al.’s model, and the complex-signal 
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Model Network feature Correlation

coefficienttypes Coupling type Hidden layer

Model 1a Linear-coupling × 0.35

Model 1b Linear-coupling
√

0.78

Proposed Power-coupling
√

0.98

Model

(e)

Figure 6.  Comparison between different models. (a), and (b) refer to different models developed based on 
the linearly coupled Hopf-oscillator model developed by Deco et al. (2017), as shown in (a), and an induced 
hidden layer with a complex back-propagation rule where the first layer is a linear-coupled Hopf-oscillator 
system which is shown in (b). (c) indicates the correlation value between simulated, and empirical FC (for first 
participants’ data) deduced from the three different types of models as described in (e), which deciphers the 
contrasts and performance of different models. (d) refers to the comparison of our model with other models. 
The result (for fourteen participants’ data) is reproduced from earlier work submitted in online  repository48,49.

Table 1.  Discussion between Different Models with the current  model5,11,20,21.

Model Hopf-oscillator model Structural connectivity Correlation coefficient (approx) Model description Clinical importance

Model  111 √ √
0.75

Structural Connectivity dependent 
Hopf oscillator model with linear 
coupling system

Default mode network identifica-
tion

Model  25 ×
√

0.80
Multiple kernel learning model 
with modified Wilson-Cowan 
based neuron activation

Mapping from FC to SC, and 
inspecting FC aberration due to 
structural loss

Model  321 √ √
0.82

Hopf oscillator based model with 
parameter optimization with 
Monte-Carlo simulation

Difference in parameter distribu-
tion of ADHD and healthy brain, 
and target location for TMS

Model  420 √ √
0.82 Hopf scillator based model with 

rigorous parameter optimization
Analysis of sleep, awake, and anas-
thesia condition of healthy brain in 
human and monkey

Current model
√ √

0.99
Fourier like decomposition, and 
retrieved with oscillatory neural 
network with complex backpropa-
gation strategy

Structural, and functional loss 
along with possible rehabilitation 
underpinned by model parameter
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output from the first oscillatory layer is transferred to a sigmoidal neuron layer, and the lateral connections of 
the oscillatory layer are constrained by the SC matrix as in the second phase of learning model of our model. 
Figure 6c reveals the correlation coefficient (predictive power) between simulated functional connectivity and 
empirical one for different network paradigms. This outcome vindicates the implication of both the hidden layer 
and the power-coupled oscillator system.

In future development, we propose to extend the current model to simultaneously model EEG and fMRI 
signal, by representing each ROI not by a single oscillator but by a cluster of oscillators. This cluster will have a 
high frequency subcluster which will primarily model EEG data and a low frequency subcluster which will model 
fMRI data. In such a model, hidden coupling features between high-frequency bands and low frequency bands 
are expected to be reflected in the lateral connections between the two subclusters.

Methodology
Databases used
We have taken the structural and functional MRI data from online repositories. Two sets of pre-processed fMRI 
data are used - the popular HCP  dataset52 , and the Paris  dataset49. The HCP dataset has forty participants and 
a total of 4896 (58 minutes) time points with TR (Time of repetition) = 0.72 seconds. We have taken only the 
first session data for the first fourteen subjects. Subsequently, we have taken the Paris dataset with TR (Time 
of repetition) = 3.29 seconds for validation. The first fourteen participants are taken for the simulation. The 
parcellation is done using FreeSurfer software; the eighty parcellated regions for the left hemisphere are listed 
in Table S1 in online supplementary documents. For a more detailed description of the data extraction process, 
the readers are referred to Marrelec et al.49.

Basic mathematical model
The proposed network model consists of two stages: (1) an oscillatory stage and (2) a feedforward stage. The 
oscillatory stage consists of a fully connected network of Hopf oscillators. The dynamics of a single Hopf oscilla-
tor can be described in terms of two real variables in cartesian form (x and y), in polar form (r, φ ) or in complex 
form ( Z = x + iy ). We use the complex form because, in this model, the oscillators are coupled using power 
 coupling23, which is more elegantly expressed in complex form. The dynamics of a single Hopf oscillator in the 
complex domain may be expressed as:53—

The second stage, which is a feedforward network, consists of a complex-valued multilayer perceptron with a 
single hidden layer. The outputs of the oscillator layer are presented as inputs to the feedforward network. The 
entire model consisting of the two stages is trained such that the output of the feedforward network approximates 
the fMRI data. The dynamics of the network of Hopf oscillators in the supercritical regime, which constitutes 
the oscillatory stage, are described below –

where, Zi is the complex state of ith Hopf oscillator which is in limit-cycle oscillation, µ is the bifurcation 

parameter, and G is the global coupling factor, a scalar constant. Wij ( Aije
i
θij
ωj  ) is the complex coupling coefficient 

between ith and jth oscillator. Note that the coupling term in Eq.  (2) above involves raising Zj to the real power 
given by ωi/ωj . This form of coupling is known as “power coupling” and has useful properties discussed in our 
earlier  work23. However, A brief summary is given as follows for the convenience of the readers. One of the major 
concerns about a Hopf oscillator-based coupled system is that of phase synchronization. Several types of coupling 
strategy between a set of Hopf oscillators have been proposed earlier, like real-valued coupling and complex 
 coupling11,54. In these schemes, synchronization is enabled by maintaining constant phase difference. In the earlier 
models, constant phase difference is achieved when intrinsic frequency of the coupled oscillators is identical. 
Identical intrinsic frequency is an unreasonable and unrealistic constraint. To address this, in our recent work, we 
proposed normalized phase difference between two or more Hopf oscillators using power coupling. In the case 
of power coupling, it has been shown that irrespective of the difference in intrinsic frequencies of Hopf oscilla-
tors, the normalized phase difference attains a steady state value and produces a unique phase locked  system23.

In the whole brain model, every Hopf oscillator is positioned at the parcellated Brain regions or region of 
interests (ROI), acting as a node. The nodes are assumed to be homogeneous meaning parameters like oscilla-
tion amplitude, µ , which is kept constant for all the nodes. The second stage of the network, the feedforward 
network, is used in two alternative forms, depending on the stage of learning. The 1st stage of learning is a single 
linear stage, or a perceptron, with complex weights. In the 2nd stage of learning, it is a complex-valued multilayer 
perceptron with a single hidden layer (Fig. 7). End-to-end training of the entire network is described below.

First stage of learning
The objective of the first stage of learning is to train the oscillatory stage, which consists of training the two sets 
of parameters of the oscillatory stage, viz, the intrinsic frequencies, ωi , and the coupling weights Wij . To this 
end, we use the training scheme depicted in Fig.  7a. To train the oscillatory stage, we must cast the learning 
in a supervised learning scheme. In Fig.  7a, we train the network such that a weighted sum of the oscillators 
approximates a desired signal. Therefore, in this stage of learning, the feedforward stage comprises of the linear 

(1)Ż = Z(µ+ iω − |Z|2) in polar form (r,φ), ṙ = µr − r3; φ̇ = ω;

(2)Żi = Zi(µ+ iωi − |Zi|
2)+ G

N
∑

j=1,j �=i

Aije
i
θij
ωj Z

ωi
ωj

j ,
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stage. There is only one output signal in this stage of learning, which can be the fMRI time-series signal from any 
one of the ROIs. The primary goal is to extract the frequency components of the ROI signals, with the implicit 
assumption that the spectral components of all the ROI signals are nearly the same. The learning rule for updat-
ing the frequencies, ωi , is followed as Eq.  (3), where e(t) is the error between the empirical signal, D(t), and the 
simulated signal, P(t)23,25.

The lateral connections, which are complex in nature, Wij are partly trained and partly predetermined using 
experimental data. While the magnitude, Aij , of the lateral connections is set using structural connectivity 
information, the angle ( θij ) of the lateral connections are trained using a Hebb-like learning rule shown in 
Eq.  (4) below.

The values of learning rates like—βω , τw are set as 104 , and 10−4 . Since the goal of this stage of learning is to 
train the oscillatory stage alone, after this stage, the linear feedforward weights are discarded, and replaced by a 
multilayer perceptron which is trained in the second stage.

Second stage of learning
In the second stage of learning, we take the trained parameters of the oscillator layer from the previous stage. The 
linear feedforward network, used earlier, is replaced by a complex-valued multilayer perceptron with a single 
hidden  layer24,25. However, unlike the previous stage, wherein all the oscillators are connected to all the output 
neurons, in this stage of learning, oscillators are coupled to the neurons in the hidden layer more selectively. 
Note the SC network is not a fully connected network; it is a sparse one since every brain region or ROI is not 
connected to every other ROI in the brain. Therefore, each ROI is associated with a separate network which 
consists of a single (say, ith ) oscillator, a single output neuron, the ith output neuron, and a separate hidden 
layer of size K, mediating between the two. The oscillator corresponding to a given ROI is connected to all the 
K neurons in the associated hidden layer. In addition, all the oscillators to which the ith oscillator is connected 
by non-zero structural connectivity rendered by the empirical SC matrix, also project the same set of K hidden 
neurons corresponding to the ith ROI (see Fig.  7b).

Note that, only real value of the network output is taken as a simulated BOLD signal, where the imaginary 
part represents the hidden state of the scanner.The governing equations for constructing the network are given 
in Section S1B in the supplementary document online. Also the parameters associated with the model has been 
provided in Section S1 in the supplementary document online. For more information about the network hyper-
parameters (number of epochs and hidden neurons) as a function of network efficiency, readers can refer to 
our previous  work25.

Analysis of fMRI signal‑ FC, FCD
The element at (i, j) in FC is basically the Pearson Correlation Coefficient between the signals from the ith and 
jth ROIs. FC can be viewed as an adjacency matrix, where different brain regions act as nodes, and the edges 
are the correlation coefficients. Functional connectivity dynamics analysis (FCD) is done for analyzing both 
simulated and empirical BOLD  signals55–57.

(3)ω̇i = βwe(t) sin φi where, e(t) = D(t)− P(t) and, P(t) =

N
∑

i=1

αi cosφi .

(4)τwẆij = −Wij + ZiZ
∗
ωi
ωj

j where, Wij = Aije
iθij/ωj .

Figure 7.  Schematic diagram of the model. (a) depicts the network architecture used in the 1st stage of 
learning. It consists of the oscillator layer and a linear stage connecting the oscillators with the output layer. (b) 
shows the proposed feedforward network model architecture for 2nd stage of learning involving one hidden 
layer consisting of 30 hidden neurons. Figures are adapted from our previous  study23,25.
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However, there is no singular, universally accepted protocol to perform FCD. For FCD analysis, the following 
steps are taken : (1) For the sliding window analysis (SWA), window size and slide length are kept constant at 
120 TR (83.60 seconds) and 2TR (1.44 seconds). (2) A total of 538 windows are found. For estimating dynamic 
correlation, the correlation coefficient between mth simulated and empirical FC is calculated individually for 
mth sliding window, and the dynamic mean at mth position is computed by taking the mean of upper-triangular 
elements of mth simulated and empirical FC. Another way of understanding the FCD can be done by “brain 
state” analysis, where the protocol outlined by Menon et al.58 is adopted. The steps are as follows: (1) K -means 
clustering algorithm is used to classify the FCs derived from SWA into different states, and the centroids of the 
states are identified. (2) The states are sorted according to the number of elements in each cluster in ascending 
order to avoid the problem of random initialization in the K- means algorithm in MATLAB. (3) Finally, all the 
states are concatenated, and the distance between them in terms of the correlation coefficient is noted. The same 
process is repeated for both simulated and the empirical fMRI signals.

Brain graph analysis, and default mode network
The theoretical measures of the brain network can be computed both with simulated and empirical FC. Recent 
advances in the brain-graph theory reveals that the brain works in a highly modular but integrated fashion; 
where some ROIs are clustered with high connectivity among themselves, and low connectivity with others. 
We use modularity (Q) as a quality function for segregating different  communities59. The modularity (Q) can 
be defined by -

where, Aij is the adjacency matrix, KiKj

2m  represents the expected number of edges within group S. Ki , and Kj are 
the degrees of the nodes. Si represents if the current node is in the community or not.

The procedure for identifying DMN nodes is given below- (1) The adjacency matrix is created from the 
“grand average” simulated and empirical FC. (2) The self-connections and the negative connections are set to 
zero. (3) Later, Newman’s community detection algorithm is used to identify the cluster or module (set of highly 
connected nodes) with the help of the modularity score, determining the segregation level in the network. The 
MATLAB code for the algorithm is already available in the Brain connectivity  toolbox27. And finally, the com-
munity affiliation vector and the corresponding nodes in the specific community are noted to determine the 
ROIs belonging to DMN regions.

Perturbation study and rehabilitation strategy
Structural damage or a lesion is a common underlying pathology in neurological disorders like stroke, Parkin-
son’s, and Alzheimer’s  disease41,60. Here an in silico study is done to determine the effect of loss of structural 
information on functional information in terms of correlation coefficient (predictive power) estimated by the 
correlation coefficient between simulated and empirical FCs. Two methods of pruning structure are taken: (1) 
SC is pruned based on absolute strength (the value below a certain strength would be omitted from the structural 
connectivity), ranging from the value between 0.02 to 0.08. (2) SC is pruned by percentile threshold, where a 
certain percentile of stronger edges or connections are kept, and others are omitted (set to zero). Four values 
of percentile threshold parameters (5, 10, 15, and 20 percentile) are selected, and only the connections that lie 
above a certain threshold are kept intact. How the structure changes with perturbation is presented in terms 
of the degree distribution in Fig. S4, along with the virtual view in Fig. S5 in the online supporting document.

For rehabilitating the FC from structural aberrations, both the Global coupling factor (G) and the oscillation 
amplitude µ are used to restore the FC after the structural pruning process. Global coupling factor (G) is altered 
from 10 to 40 (in case of without perturbation, it was set at 1), and the oscillation amplitude µ is increased from 
2 to 4, where all the nodes are homogeneous in nature. Prior works also show that both parameters are important 
for restoring the aberration of the resting state FC incurred due to structural  loss11,14,21,45. Note that for the rest-
ing state, the Hopf oscillators are assumed in a self-excitatory periodic oscillatory phase where the amplitude of 
the oscillation is defined by µ as given in equation 2. Similarly, increased G represents the increased structural 
connection, increased conduction velocity, and also lowering of it emulates the diminution of plasticity, which 
was explored  earlier38,45,61.

Data availability
The datasets used and/or analysed during the current study are available in the Figshare online repository, https:// 
figsh are. com/ artic les/ datas et/ Paris_ HCP_ brain_ conne ctivi ty_ data/ 37495 95/1.
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