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A multimodal radiomic machine 
learning approach to predict 
the LCK expression and clinical 
prognosis in high‑grade serous 
ovarian cancer
Feng Zhan 1,2,6, Lidan He 3,6, Yuanlin Yu 4, Qian Chen 1, Yina Guo 1* & Lili Wang 5

We developed and validated a multimodal radiomic machine learning approach to noninvasively 
predict the expression of lymphocyte cell‑specific protein‑tyrosine kinase (LCK) expression and clinical 
prognosis of patients with high‑grade serous ovarian cancer (HGSOC). We analyzed gene enrichment 
using 343 HGSOC cases extracted from The Cancer Genome Atlas. The corresponding biomedical 
computed tomography images accessed from The Cancer Imaging Archive were used to construct 
the radiomic signature (Radscore). A radiomic nomogram was built by combining the Radscore and 
clinical and genetic information based on multimodal analysis. We compared the model performances 
and clinical practicability via area under the curve (AUC), Kaplan–Meier survival, and decision curve 
analyses. LCK mRNA expression was associated with the prognosis of HGSOC patients, serving as 
a significant prognostic marker of the immune response and immune cells infiltration. Six radiomic 
characteristics were chosen to predict the expression of LCK and overall survival (OS) in HGSOC 
patients. The logistic regression (LR) radiomic model exhibited slightly better predictive abilities than 
the support vector machine model, as assessed by comparing combined results. The performance 
of the LR radiomic model for predicting the level of LCK expression with five‑fold cross‑validation 
achieved AUCs of 0.879 and 0.834, respectively, in the training and validation sets. Decision curve 
analysis at 60 months demonstrated the high clinical utility of our model within thresholds of 0.25 
and 0.7. The radiomic nomograms were robust and displayed effective calibration. Abnormally 
high expression of LCK in HGSOC patients is significantly correlated with the tumor immune 
microenvironment and can be used as an essential indicator for predicting the prognosis of HGSOC. 
The multimodal radiomic machine learning approach can capture the heterogeneity of HGSOC, 
noninvasively predict the expression of LCK, and replace LCK for predictive analysis, providing a new 
idea for predicting the clinical prognosis of HGSOC and formulating a personalized treatment plan.

Ovarian, endometrial, and cervical cancers are the three most prevalent gynecological malignancies in medi-
cal obstetrics and gynecology that endanger women’s health and  lives1–3. High-grade serous ovarian cancer 
(HGSOC), the most prevalent histological subtype of ovarian cancer (OC), has the worst  prognosis4, 5. Despite 
the remarkable achievements of surgery, chemotherapy, targeted therapy, and immunotherapy, the overall sur-
vival (OS) rate of OC remains  poor6. This is due to the considerable heterogeneity between patients and within 
tumors, which is linked to adverse clinical outcomes in  OC7. The clinical requirements of precision medicine 
cannot be satisfied by traditional prognostic indicators, such as clinicopathological features and serum markers, 
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as well as traditional imaging indicators. Therefore, it is necessary to explore new prognostic markers that can 
be used to predict individualized precision therapy.

Tumors are comprised of a heterogeneous population of cells with distinct genetic and molecular  profiles8. 
The analysis of specific classes and subclasses of the tumor immune microenvironment (TIME) within a patient’s 
tumor can enhance the ability to predict and guide the effectiveness of immunotherapy, as well as identify 
new therapeutic  targets9. Lymphocyte cell-specific protein-tyrosine kinase (LCK) is a 56 kDa protein found in 
lymphocytes, specialized cells of the immune  system10. Bioinformatic analysis of core immune escape-related 
genes identifies LCK as a prognostic biomarker capable of modulating the tumor microenvironment (TME)11. 
LCK plays a role in the intracellular signal transduction of lymphocytes through phosphorylation and may 
serve as a potential biomarker for distinguishing primary central nervous system lymphoma from glioblastoma 
 multiforme12. High expression of LCK in OC can better predict progression-free survival and OS than a cytolytic 
activity  score13. Several clinical trials targeting LCK are currently underway due to its prominent role in the regu-
lation of immunity, involving  cancers8, 14, inflammatory  diseases15, etc. LCK is a downstream molecule in T-cell 
receptor signaling pathways in several cancer types. It is positively linked to both T-cell-mediated and B-cell-
mediated antitumor immune responses. Although the detection of LCK is important, its invasive nature presents 
a challenge, and non-invasive methods for predicting the level of LCK expression in OC are currently lacking.

Medical imaging techniques, including ultrasound, computed tomography (CT), and magnetic resonance 
imaging, are widely used for diagnosis and evaluation OC due to their non-invasive and convenient nature. 
However, traditional imaging methods are limited to their ability to discern the intra- or inter-tumoral het-
erogeneity of  OC16. In recent years, radiomics is a rapidly developing method that enables medical imaging to 
access mineable high-dimension semantic features; it combines qualitative and/or quantitative imaging data 
for clinical diagnosis and prognosis and is a non-invasive, dynamic-detection, quantitative approach for tumor 
 characterization17–19. Furthermore, radiomics, combined with machine learning, has demonstrated its efficacy 
in predicting the OS of  patients20, 21. Previous studies have shown that radiomics can be employed for the early 
identification, classification, and diagnosis of OC as well as for the evaluations of the tumor microenviron-
ment, lymph node load, residual disease, and tumor  heterogeneity22–24. However, to the best of our knowledge, 
no research has examined how well a radiomic model predicts the level of LCK expression and enables non-
invasive prognosis in the clinical setting. In this study, we propose a novel diagnostic method to address the 
abovementioned technical challenges of traditional techniques. Additionally, we employ bioinformatics analysis 
to investigate the potential molecular mechanisms underlying LCK expression and its interaction with the 
immunological microenvironment. Moreover, we construct a radiomic model for non-invasive prediction of 
LCK expression, and investigate its relationship with the clinical prognosis of HGSOC patients. Furthermore, 
we assess the feasibility of radiomics as a non-invasive approach for predicting the mRNA expression of LCK in 
HGSOC tissue. Finally, we compare the performance of our predictive radiomic model with established clinical 
features and prognosis. The development of predictive models for clinical outcomes has the potential to serve as 
a valuable tool in the clinical environment.

Materials and methods
Data retrieval and analysis
We accessed data for patients with HGSOC from The Cancer Imaging Archive (TCIA) and The Cancer Genome 
Atlas (TCGA) public  repositories25. In the TCGA database, we used the Research Network tool (https:// portal. 
gdc. cancer. gov/) to retrieve complete transcriptome sequencing data and clinical information for these patients 
(such as clinical and follow-up information). Data for available phenotypic variables (age, sex, and OS) were 
also downloaded from TCGA. Biomedical CT images were accessed from the TCIA website (https:// www. cance 
rimag ingar chive. net/)26. A workflow chart is summarized in Fig. 1. The TCIA-TCGA public portal’s data usage 
guideline was followed when using the public datasets.

Our study included 343 HGSOC cases retrieved from TCGA. We excluded cases lacking survival data, those 
in which the survival time was less than one month, and those in which HGSOC was not the primary solid 
tumor. The 343 samples were used to identify critical molecules as significant prognostic markers and to carry 
out enrichment analysis. Our HGSOC CT image dataset included 91 samples from TCIA data. Samples were 
included if the patient had yet to receive any treatment before the CT examination. Exclusion criteria comprised 
images with incomplete accompanying clinical information. Among the 91 samples, 57 intersected with the 
bioinformatics information in TCGA data (used to predict LCK expression by radiomics), and 89 intersected 
with the clinical information in TCGA data (these were used to explore the association between radiomics and 
actual prognosis). The gene threshold was selected as 1.322, corresponding with the threshold employed during 
the bioinformatics analysis. All qualified sample groups were dichotomized into high- and low-LCK-expression 
groups depending on the cutoff value using the survMisc package in R programming language.

Bioinformatics analysis of LCK
Inter‑group differences in LCK expression
HGSOC tissue data were extracted from TCGA, and healthy tissue data for comparative purposes were extracted 
from The Genotype–Tissue Expression (GTEx) dataset (https:// gtexp ortal. org/ home/)27. The University of Cali-
fornia Santa Cruz Xena (https:// xenab rowser. net/ datap ages/) RNA-sequencing (RNA-seq) dataset was universally 
transformed with the Toil procedure into transcripts per million format for the TCGA and  GTEx28, 29. Then, the 
RNA-seq data were  log2-transformed for comparison of gene expression between samples.

Changes in the survival rates of various groups were displayed using the Kaplan–Meier (K–M) survival curve. 
The median survival time was defined as a 50% survival rate. The importance of different survival rates between 
groups was examined using the log-rank test.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
https://gtexportal.org/home/
https://xenabrowser.net/datapages/
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Multiplex Cox regression analysis
The Cox proportional hazards model can assess the association between single or multiple factors and survival 
 outcomes30. To investigate the variables affecting OS, we performed a correlation coefficient analysis using 
univariate Cox regression. To determine the relative importance of various contributing factors and whether 
any particular component could significantly impact the OS, multivariate Cox regression analysis was used. The 
independent variable was considered as a potential risk factor when the hazard ratio (HR) exceeded 1. When the 
HR was less than 1, the independent variable was considered as a protective factor.

To determine the impact of high and low LCK expression on the prognosis of patients in various subgroups 
of each covariate, exploratory subgroup analysis with univariate Cox regression was carried out. A likelihood 
ratio test was used to evaluate the interaction between LCK and the other covariates.

Analysis of the correlation of LCK with tumor clinical features, immune genes, and immune cell infiltration
The Spearman rank correlation coefficient was used to analyze the relationships between LCK and clinical tumor 
features, immune genes, and immune cell infiltration. Gene expression matrices of HGSOC were uploaded to 
the cell type identification by estimating relative subsets of known RNA transcripts (CIBERSORTx) database 
(https:// ciber sortx. stanf ord. edu/), which was adopted to calculate immune cell infiltration for each  sample31, 32.

Assessment of differentially expressed genes between high‑ and low‑LCK‑expression groups
To explore the molecular mechanisms underlying differential genes between the high- and low-LCK-expression 
groups, we performed gene set enrichment analysis (GSEA) on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Hallmark gene  sets33–35.

Construction of a multimodal radiomic machine learning model
Image interpretation and tumor segmentation
The delineation of the region of interest (ROI) and the volume of interest (VOI) is crucial for quantitative analysis 
of medical image features. Two radiologists, one with 10 years (reader A) and one with 15 years (reader B) of 
professional training in gynecological radiography, independently analyzed all images with a 3D slicer software 
to segment the ROI and VOI of  HGSOC36. The VOIs of all cases were outlined along the tumor contour by reader 
A. To evaluate the between-group consistency of ROI and VOI determination, reader B randomly selected data 
from twenty patients (using the random number table method) to repeat the ROI and VOI determination; irrel-
evant organs and tissues were excluded as much as possible during these assessments. Both radiologists were 
blinded to information on clinical factors and HGSOC status. The two radiologists were made aware that all 
patients had HGSOC because this study did not evaluate the capability of CT to identify HGSOC. They analyzed 
the CT images from multiple planes (including the axial, coronal, and sagittal planes) to achieve a more precise 
assessment of HGSOC.

Radiomic feature extraction/selection and model construction
To determine radiomic expression patterns, we obtained radiomic features from the HGSOC CT dataset. All 
DICOM series were converted to three-dimensional pictures, and an abdominal imaging window was added 
(level 50 and width 400). The SimpleITK image analysis toolbox was used to resample the pictures to isotropic 1 
 mm3 voxels. Radiomics extracts many quantitative features to represent the phenotypic variations among malig-
nancies. PyRadiomics (version 3.0.1) was employed to derive radiomic features from the segmented labels of the 
HGSOC  scans37, as executed in Python (version 3.9). We evaluated the radiomic feature model’s functionality 
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Figure 1.  Workflow chart of the study process on HGSOC. HGSOC high-grade serous ovarian cancer.
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using various feature selection methods. The computation of the radiomic feature precisely followed the Image 
Biomarker Standardization Initiative’s  recommendations38. The inter-reader reproducibility and reliability of 
tumor segmentation and radiomic feature extraction were assessed using intraclass correlation coefficients 
(ICCs). The predictors were sorted before modeling, and the less significant factors were gradually discarded. 
The objective was to identify a subgroup of predictors that could be used to generate accurate models. For this 
purpose, the recursive feature elimination algorithm was used to filter out the best subset of radiomic features.

The radiomic models were generated using support vector machines (SVM) and logistic regression (LR). 
Each linear regression was transformed with the sigmoidal function to obtain output values distributed between 
0 and 1. The selected radiomic features were fitted with the LR algorithm to create a binary classification model 
for forecasting LCK expression.

Radiomic model performance assessment
Cross-validation is a commonly used method for constructing validation  sets39, 40. Cross-validation is an effec-
tive method for avoiding overfitting and underfitting, enhancing the model’s generalization ability, and is more 
suitable for small-sample  datasets41, 42. The performance of radiomic model was evaluated using five-fold cross-
validation. To evaluate the performance of the radiomic model, various indices including the area under the 
curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 
and Brier score were utilized. Receiver operating characteristic (ROC) and precision-recall (PR) curves were 
generated to evaluate the radiomic model. The area under the PR curve (PR-AUC) represented the median of 
the precision computed for each coverage threshold. With the help of the calibration curve and Hosmer–Leme-
show test, our radiomic prediction model was assessed. The clinical utility of the radiomic prediction model was 
evaluated using decision curve analysis (DCA).

We also examined the potential associations of the LR and SVM radiomic models in predicting the probability 
of LCK expression. A radiomic signature (Radscore) was defined as the probability of the model output accurately 
predicting the gene expression level. We used the Wilcoxon test to determine whether the radiomic markers dif-
fered between the high- and low-LCK-expression groups. The AUC values of the LR and SVM radiomic models 
were compared using the Delong test during training and validation within the five-fold cross-validation.

Association of radiomic feature with clinical information
The Radscore of the LR radiomic model was combined with clinical data. The cutoff Radscore value determined 
with the survminer package was 0.254, which was used for classification into high and low Radscore groups.

Prediction of clinical prognosis using the multimodal radiomic nomogram
The performance of the radiomic nomogram was quantitatively evaluated using the C-index. Briefly, a stepwise 
regression algorithm screened the clinical variables according to the Akaike information criterion (AIC), which 
balances model complexity with goodness-of-fit. Clinical and Radscore variables were selected to build a predic-
tive model by choosing the smallest AIC value. We plotted a nomogram of the 36-month and 60-month survival 
probabilities based on Cox regression.

The ROC curve of the predictive model was used to assess a variable’s predictive ability at various time inter-
vals. The abscissa of the calibration chart showed the actual survival rate, the diagonal axis showed the anticipated 
probability equal to the actual probability, and the ordinate represented the predicted survival rate. The clinical 
benefit of the radiomic prediction model was evaluated via DCA.

Statistical analysis
RStudio (version 4.2) software was used to carry out the statistical analysis. The following R packages were 
utilized: the irr package for calculating ICC values; the caret package for feature screening; the stats package 
for radiomic model construction; the ggpubr package for analyzing differences between groups; the survminer 
package for determining the high- and low-expression of radiomic score indicators; and the survival package for 
survival analysis of each variable. Statistical significance was set at p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

Ethical approval
This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by 
the Ethics Committee of the First Affiliated Hospital of Fujian Medical University (No.: IEC-FOM-013-2.0).

Consent to participate
Due to the retrospective nature of this study, the requirements for informed consent were waived by the Ethics 
Committee of the First Affiliated Hospital of Fujian Medical University.

Results
Clinical characteristics of LCK expression
Using a cutoff value of 1.32 for LCK expression, we divided the 343 cases of HGSOC from TCGA data into two 
groups: low LCK expression (n = 233) and high LCK expression (n = 110). The clinical details of the patients 
and tumor characteristics are presented in Table 1. Age, radiation, chemotherapy, lymphatic invasion, venous 
invasion, tumor residual disease, and histologic neoplasm grade were not significantly different between the 
high- and low-LCK-expression groups (p > 0.05). However, the International Federation of the Gynecology and 
Obstetrics (FIGO) stage differed significantly between the two cohorts (p < 0.05).
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Table 1.  Patients and tumor characteristics of the high- and low-LCK-expression groups.

Characteristic
Total (n = 343)
No. (%)

Low (n = 233)
No. (%)

High (n = 110)
No. (%) p

Age (years) 0.743

 < 59 178 (52) 119 (51) 59 (54)

 ≥ 60 165 (48) 114 (49) 51 (46)

Radiotherapy 1

 No 321 (94) 218 (94) 103 (94)

 Yes 22 (6) 15 (6) 7 (6)

Chemotherapy 0.793

 No 22 (6) 16 (7) 6 (5)

 Yes 321 (94) 217 (93) 104 (95)

Lymphatic invasion 0.135

 No 40 (12) 32 (14) 8 (7)

 Unknown 210 (61) 143 (61) 67 (61)

 Yes 93 (27) 58 (25) 35 (32)

Venous invasion 0.971

 No 32 (9) 22 (9) 10 (9)

 Unknown 251 (73) 171 (73) 80 (73)

 Yes 60 (17) 40 (17) 20 (18)

FIGO stage 0.014

 I/II 19 (6) 8 (3) 11 (10)

 III/IV 321 (94) 224 (96) 97 (88)

 Unknown 3 (1) 1 (0) 2 (2)

Tumor residual disease 0.572

 No. Macroscopic disease 58 (17) 39 (17) 19 (17)

 1–10 mm 162 (47) 111 (48) 51 (46)

 Unknown 36 (10) 21 (9) 15 (14)

 ≥ 10 mm 87 (25) 62 (27) 25 (23)

Neoplasm histologic grade 0.711

 G1/G2 42 (12) 31 (13) 11 (10)

 GX/unknown 8 (2) 6 (3) 2 (2)

 G3/G4 293 (85) 196 (84) 97 (88)
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Inter‑group differences in LCK expression
There was a noticeably higher LCK expression in HGSOC tissues than in healthy tissues (p < 0.01) (Fig. 2A). The 
mean survival time of the low-LCK-expression group was 43.8 months, whereas that of the high-LCK-expression 
group was 52.63 months. A high expression of LCK was significantly associated with improved OS, according 
to the K–M curve (p = 0.042) (Fig. 2B).

Multiplex Cox regression analysis of LCK expression
A high expression of LCK was a statistically significant protective factor for OS in univariate Cox regression 
analysis (HR = 0.727, 95% CI 0.535–0.989, p = 0.043) (Fig. 3A). Moreover, a high expression of LCK was a statisti-
cally significant protective factor for OS in multivariate Cox regression analysis (HR = 0.699, 95% CI 0.508–0.961, 
p = 0.028) (Fig. 3B). Elevated LCK expression was a significant protective factor (HR = 0.718, 95% CI 0.516–0.999, 
p = 0.049) for HGSOC in the subgroup that did not receive radiotherapy (Fig. 4A); in contrast, elevated LCK 
expression was not a protective factor (HR = 0.993, 95% CI 0.445–2.213, p = 0.99) for HGSOC in the subgroup 
that did receive radiotherapy (Fig. 4B). There was no significant interaction in terms of LCK between patients 
with and without radiotherapy and association between LCK and the OS of patients.
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Analysis of the correlation of LCK with tumor clinical features, immune genes, and immune cell infiltration
LCK was associated with lymph node invasion (p < 0.05), and radiotherapy was positively associated with FIGO 
stage (p < 0.01) (Fig. 5A). LCK expression was also strongly correlated with that of immune genes, such as CD27, 
CD48, and CD28 (p < 0.01) (Fig. 5B) as well as infiltration of T cells CD8 (p < 0.01) (Fig. 5C). There was a signifi-
cant negative relationship between LCK expression and memory B cells (p < 0.01) (Fig. 5C).

Assessment of differentially expressed genes between high‑ and low‑LCK‑expression groups
The top 25 most enriched pathways in the KEGG gene set were visualized by GSEA, as shown in Fig. 6A. The 
differentially expressed genes in the low-LCK-expression group were significantly enriched in the NOD-like 
receptor signaling pathway, whereas those of the high-LCK-expression group were significantly enriched in 
the peroxisome proliferator-activated receptor signaling pathway. GSEA similarly visualized the top 25 most 
enriched pathways for the Hallmark gene set, as depicted in Fig. 6B. The differentially expressed genes in the 
low-LCK-expression group were highly enriched in the p53 pathway and in DNA repair. In contrast, those of 
the high-LCK-expression group were highly enriched in E2F targets (genes involved in DNA replication) and 
the G2/M damage checkpoint (which prevents cells from entering mitosis when DNA is damaged).
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Construction and assessment of the multimodal radiomic machine learning model
Radiomic signature extraction/selection and model construction
The median ICC value for the radiomic signature was 0.947. There were 84 radiomic features with an ICC ≥ 0.75 
(78.5% of all features), which were entered into the subsequent screening. After feature reduction by recursive fea-
ture elimination, six features were chosen to create the radiomic signature for the prognostic model, comprising 
gray level run length matrix (glrlm)_RunEntropy, gray level size zone matrix (glszm)_GrayLevelNonUniformi-
tyNormalized, glszm_GrayLevelVariance, glszm_SmallAreaHighGrayLevelEmphasis, gray-level cooccurrence 
matrix (glcm)_Correlation, and firstorder_90Percentile. Their important were 0.729, 0.519, 0.531, 0.577, 0.639, 
and 0.648, respectively. The Radscore is defined as follows,

where gRE is the value of glrlm_RunEntropy, gGLN is the value of glszm_GrayLevelNonUniformityNormal-
ized, gGLV is the value of glszm_GrayLevelNonUniformityNormalized, gSAH is the value of glszm_SmallAr-
eaHighGrayLevelEmphasis, gC is the value of glcm_Correlation, and fP is the value of firstorder_90Percentile.

Performance assessment of the radiomic model for predicting the level of LCK expression with five‑fold cross‑validation
Both the LR and SVM radiomic models were generated using the Radscore. In the training set of LR radiomic 
model, the accuracy, sensitivity, specificity, PPV, NPV, and Brier score were 0.825, 0.739, 0.882, 0.81, 0.833, and 
0.139, respectively. In the validation set, the accuracy, sensitivity, specificity, PPV, NPV, and Brier score were 
0.807, 0.739, 0.853, 0.773, 0.829, and 0.169, respectively. As shown in the ROC plot (Fig. 7A), the LR model had 
an AUC value of 0.879 (95% CI 0.791–0.966) in the training set and 0.834 (95% CI 0.727–0.94) in the valida-
tion set. The AUC value of the PR curve reached 0.846 (Fig. 7B). The calibration curve and Hosmer–Lemeshow 
test revealed excellent agreement between the predicted values of the LR model and the actual values in terms 
of whether or not the LCK gene was highly expressed (p = 0.708) (Fig. 7C). The DCA revealed that the model 
had a high clinical utility (Fig. 7D). Furthermore, according to the Delong test, AUC values during training and 
validation within the five-fold cross-validation did not statistically differ (p = 0.521). Therefore, the LR radiomic 
model exhibited a good prediction performance.

In the training set of SVM radiomic model, the accuracy, sensitivity, specificity, PPV, NPV, and Brier score 
were 0.842, 0.783, 0.882, 0.818, 0.857, and 0.157, respectively. In the validation set, the accuracy, sensitivity, 
specificity, PPV, NPV, and Brier score were 0.632, 1.000, 0.382, 0.523, 1.000, and 0.196, respectively. As shown 
in the ROC plot (Fig. 7E), the SVM model had an AUC value of 0.875 (95% CI 0.782–0.968) in the training set 
and 0.751 (95% CI 0.625–0.876) in the validation set. The AUC values of the PR curve reached 0.793 (Fig. 7F). 
The calibration curve and Hosmer–Lemeshow test revealed excellent agreement between the predicted values of 
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the SVM model and the actual values in terms of whether or not the LCK gene was highly expressed (p = 0.297) 
(Fig. 7G). Again, the DCA confirmed that this model had a high clinical utility (Fig. 7H). AUC values during 
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Figure 7.  The performance of the LR and SVM radiomic models for predicting the LCK expression level during 
training and validation within the five-fold cross-validation. (A) ROC curves analysis of the LR radiomic model. 
(B) PR curve analysis of the LR radiomic model. The average accuracy, known as the PR-AUC, is computed for 
each coverage threshold. A more pronounced upper-right convex curve indicates superior model performance. 
(C) Calibration curve analysis of the LR radiomic model. A calibration curve illustrates the agreement between 
predicted and actual LCK expression levels. The ideal prediction performance is depicted by the dotted black 
line at a 45-degree angle, while the solid red line represents the LR radiomic model’s performance. The closer the 
solid red line aligns with the dotted line, the higher the accuracy of the model’s predictions. (D) DCA analysis of 
the LR radiomic model. The net benefit is measured on the y-axis. The purple curve represents the LR radiomic 
model, the gray curve represents the assumption that all patients received treatment, and the straight black line 
at the bottom of the figure symbolizes the assumption that no patients were treated. (E) ROC curves analysis of 
the SVM radiomic model. (F) PR curve analysis of the SVM radiomic model. (G) Calibration curve analysis of 
the SVM radiomic model. The solid green line represents the SVM radiomic model’s performance. (H) DCA 
analysis of the SVM radiomic model. The green curve represents the SVM radiomic model, the gray curve 
represents the assumption that all patients received treatment, and the straight black line at the bottom of the 
figure symbolizes the assumption that no patients were treated.
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training and validation within the five-fold cross-validation  did not statistically differ, according to the Delong 
test (p = 0.365). Therefore, the SVM radiomic model also exhibited a good prediction performance.

The individual differences between the predicted values of the LR and SVM radiomic models for high- and 
low-LCK expression are displayed in Fig. 8. In both the training and validation sets within the five-fold cross-
validation, there were significant differences in the radiomic score distribution between the high- and low-LCK-
expression groups. The radiomic score was higher in the high-LCK-expression group.

As already described, Delong tests indicated no statistical difference in the AUC values during training 
and validation within the five-fold cross-validation for either the LR or SVM radiomic model. However, the 
Hosmer–Lemeshow test and the PR-AUC showed that the LR radiomic model somewhat outperformed the 
SVM model when the AUC values of the training and validation sets were combined. Therefore, the subsequent 
prognostic analysis was performed using the Radscore-predicted value of the LR radiomic model.

Performance assessment of the multimodal radiomic model
Using high and low Radscore as a grouping criterium, a baseline radiomic and clinical data table was constructed 
(Table 2). There was no statistically significant difference in each clinical variable (p > 0.05). The mean survival 
time of patients with HGSOC exhibiting a low Radscore was 46 months, and that of patients with a high Rad-
score was 70 months. A high Radscore was substantially related to a better OS according to the K–M curve 
(p = 0.012) (Fig. 9).

Prognostic significance of the multimodal radiomic nomogram
We developed a radiomic nomogram that combined clinical information with the signature from the radiomic 
score (Fig. 10A). This nomogram showed good calibration, as depicted in Fig. 10B. In the calibration plot, the 
curves at each time point are located near the diagonal line, indicating that the prediction error is small. DCA at 
60 months demonstrated the high clinical utility of our model within thresholds of 0.25 and 0.7. Furthermore, 
time-independent ROC analysis confirmed that the radiomic nomogram had an excellent prognostic value 
(Fig. 10C). The AUC value of the model’s predictive power for patient OS at 60 months was 0.738.

Discussion
Over 75% of women diagnosed with advanced OC have an alarming five-year survival rate of only 15–25%43. 
Patients with HGSOC also face poor prognoses and  outcomes5, making accurate predictions essential for effective 
treatment. While various factors have been associated with HGSOC prognosis, such as patient age, pathologi-
cal stage, tumor recurrence after debulking surgery, and genomic  information44. However, these factors do not 
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Table 2.  Clinical characteristics of patients with HGSOC by high and low radiomic score group from TCIA-
TCGA data.

Characteristic
Total (N = 89)
No. (%)

High (N = 51)
No. (%)

Low (N = 38)
No. (%) p

Age 0.141

 < 59 42 (47.2) 28 (54.9) 14 (36.8)

 ≥ 60 47 (52.8) 23 (45.1) 24 (63.2)

Radiotherapy 1

 No 86 (96.6) 49 (96.1) 37 (97.4)

 Yes 3 (3.4) 2 (3.9) 1 (2.6)

Chemotherapy 0.133

 No 4 (4.5) 4 (7.8) 0 (0)

 Yes 85 (95.5) 47 (92.2) 38 (100)

Lymphatic invasion 0.411

 No/unknown 66 (74.2) 40 (78.4) 26 (68.4)

 Yes 23 (25.8) 11 (21.6) 12 (31.6)

Venous invasion 0.853

 No/unknown 73 (82) 41 (80.4) 32 (84.2)

 Yes 16 (18) 10 (19.6) 6 (15.8)

FIGO stage 0.296

 II/III 47 (52.8) 24 (47.1) 23 (60.5)

 IV/unknown 42 (47.2) 27 (52.9) 15 (39.5)

Tumor residual disease 0.063

 No/unknown 32 (36) 23 (45.1) 9 (23.7)

 Yes 57 (64) 28 (54.9) 29 (76.3)

Histologic grade 0.488

 G1/G2 9 (10.1) 4 (7.8) 5 (13.2)

 G3/GX 80 (89.9) 47 (92.2) 33 (86.8)
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Figure 9.  Correlations between Radscore and OS in patients with HGSOC.
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explain the heterogeneity of clinical outcomes. Tumor heterogeneity in HGSOC is linked to undesirable clinical 
effects. Radiomics, a quantitative analysis of tumor heterogeneity using radiographic images, can provide valuable 
insights. In this study, we applied a novel CT-based multimodal radiomic approach to predict the expression of 
LCK, a key immune-related molecule, and assess its relationship with clinical prognosis in patients with HGSOC. 
Our results, primarily based on patients with advanced HGSOC, revealed significant associations between radi-
omic characteristics, LCK expression levels, and OS in patients with HGSOC. To the best of our knowledge, this 
is the first study to utilize CT-based multimodal radiomics for non-invasive prediction of LCK expression and 
HGSOC prognosis, opening avenues for personalized clinical decision-making and treatment advancements. 
Our findings can be summarized as follows: (1) A high expression of LCK was significantly associated with 
improved OS, as demonstrated by the K–M curve (p = 0.042). (2) We developed a predictive model based on six 
radiomic features, which exhibited AUCs of 0.879 (95% CI 0.791–0.966) in the training set and 0.834 (95% CI 
0.727–0.94) in the validation set according to the ROC curve. (3) Patients with a high Radsocre had better OS 
compared to those with a low Radsocre (p = 0.012).

Recently, there has been increasing interest in the potential application of immune therapy in OC. Key among 
the molecules involved in the immune response is LCK, which not only serves as a crucial component of the 
immune system, but also acts as a prognostic biomarker that regulates the  TME11. Numerous studies have demon-
strated a significant correlation between LCK expression and the prognosis of OC  patients13, 45. Crean-Tate et al. 
Found a positive association between increased LCK expression and poorer clinical outcomes in endometrioid 
 OC46. LCK has been extensively studied in various cancer types as well as normal  tissues47. LCK signaling path-
way has been implicated in intraocular  immunopathogenesis48. Therefore, our study focused on the differential 
analysis of the immune-related components in the tumor microenvironment, and explored their associations 
with LCK expression, survival outcomes, tumor characteristics, and immune cell infiltration in patients with 
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HGSOC. Additionally, we conducted an enrichment analysis of differentially expressed genes between patient 
groups with high and low LCK expression. High expression of LCK was linked to a better prognosis in HGSOC 
patients, according to the results of multiplex Cox regression analyses. Furthermore, lymphatic invasion—a 
clinical tumor characteristic—of immune genes, including CD27, CD48, and CD28, as well as infiltration of 
 CD8+ T cells exhibited a positive and substantial connection with LCK expression (in terms of immune cells). 
Significantly lower LCK levels were inversely correlated with memory B cells. However, the invasive nature of 
LCK detection and the lack of non-invasive techniques for predicting LCK levels in OC pose significant chal-
lenges. Considering the importance of LCK as an immune system molecule, our study sheds light on its link to 
HGSOC prognosis. Consequently, we focused on the examination of immune-related elements in the tumor 
microenvironment.

Accurate survival predictions are crucial for optimal medical decision-making, particularly in the treatment 
of malignant tumors like HGSOC. Several techniques have been employed for survival prediction in HGSOC 
patients, but histological sampling and genetic analysis have limitations. Radiomics, which captures disease 
heterogeneity, has emerged as an optimal  method49. Through the extraction of quantitative information from 
medical images, radiomics coupled with machine learning has become a precise tool in clinical diagnostics and 
 treatment50–53. Chen et al. successfully differentiated between high- and low-risk HGSOC patients using a radi-
omic  nomogram24. Rizzo Stefania et al. demonstrated the significant association between radiomic characteristics 
and prognostic factors such as residual tumors at surgical procedures and disease progression within a year in 
OC  patients54. In our study, we analyzed the prognostic performance of radiomics for assessing HGSOC and its 
correlation with LCK expression to evaluate the utility of radiomic features in capturing phenotypic variations 
of ovarian tumors. By conducting recursive feature elimination screening, we identified six highly correlated 
radiomic features (glrlm_RunEntropy, glszm_GrayLevelNonUniformityNormalized, glszm_GrayLevelVariance, 
glszm_SmallAreaHighGrayLevelEmphasis, glcm_Correlation, and firstorder_90Percentile) that are highly cor-
related with the prognosis of HGSOC. Poor prognosis tumors exhibited characteristics such as larger tumor 
volume, infiltrative margins, and higher  heterogeneity7, 55. The glszm feature describes the number of connected 
voxels in an image with the same gray intensity, while the glcm feature represents the joint probability of specific 
pixel sets with specific gray  values56. The glcm feature demonstrates greater robustness to imaging parameters 
compared to other features in the original  images57. Both glszm and glcm features are commonly used in HGSOC 
research for image-based classification as they capture texture and statistical correlations between pixels, aid-
ing in the characterization of tumor  heterogeneity58. Texture parameters are gaining increased attention from 
researchers due to their potential in diagnosis, treatment prediction, and prognosis  assessment59, 60. Previous 
studies in ovarian cancer have shown predictive value for tumor prognosis and differentiation using glszm and 
glcm  features24, 61. The repeatable and non-invasive nature of radiomics makes them potentially applicable in 
routine clinical practice.

To address the current lack of non-invasive methods for predicting LCK levels in HGSOC, we developed an 
imaging-based radiomic model for non-invasive LCK prediction. Our study found that the LR radiomic model 
outperformed the SVM radiomic model when assessing LCK expression in patients with HGSOC. Combining 
radiomic features with clinical characteristics significantly improved the LR model’s prediction compared to 
using radiomic features alone. Moreover, our DCA at 60 months demonstrated that a high expression of LCK 
was associated with a better survival rate in patients with HGSOC (p < 0.05), demonstrating that a high Radscore 
indicated a higher rate of OS. We deduced that non-invasive LCK expression prediction using radiomics was 
beneficial for clinical decision-making. In our study, we built a multimodal model incorporating bioinformatics, 
radiomics, and clinical characteristics, enabling the prognostic assessment of HGSOC patients. This CT-based 
multimodal radiomic model served as a non-invasive method to predict LCK expression and OS in patients with 
HGSOC, representing a practical means of enhancing clinical prognosis.

The application of machine learning in cancer classification and prediction is expanding and has tremendous 
potential. In this study, we demonstrated the improved predictive accuracy achieved by combining multiscale bio-
medical imaging, clinical information, and genomic data. Our results highlight that radiomic features extracted 
from medical imaging capture distinct phenotypic variations in HGSOC, and validate the prognostic power 
of the developed radiomic model. Therefore, this model holds promise for translation into the clinical setting, 
offering a valuable tool for prognostic assessment of HGSOC.

Conclusion
LCK plays a crucial role as a prognostic marker in HGSOC. Conventionally, tissue samples must be sequenced or 
immunohistochemically analyzed to determine LCK expression. However, our study reveals that radiomics can 
effectively predict LCK expression and prognosis noninvasively, offering significant clinical value. Our model, 
developed primarily using advanced HGSOC patients, demonstrates strong predictive efficacy for LCK expression 
and prognosis. By utilizing radiomics instead of direct LCK measurements, we found that radiomic results align 
with prognosis, further validating the technique’s validity. Radiomics can capture the heterogeneity of HGSOC 
and thereby offer a way to formulate an individualized treatment plan. Combining radiomics with clinical and 
genetic information, our study presents a promising approach to enhancing HGSOC prognosis prediction.

Data availability
The datasets analysed during the current study are available form The Cancer Imaging Archive (TCIA, https:// 
www. cance rimag ingar chive. net/), The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/), The Geno-
type–Tissue Expression dataset (GTEx, https:// gtexp ortal. org/ home/) and The University of California Santa 
Cruz Xena (https:// xenab rowser. net/ datap ages/).
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