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Cells solved the Gibbs paradox 
by learning to contain entropic 
forces
Josh E. Baker 

As Nature’s version of machine learning, evolution has solved many extraordinarily complex 
problems, none perhaps more remarkable than learning to harness an increase in chemical entropy 
(disorder) to generate directed chemical forces (order). Using muscle as a model system, here I 
describe the basic mechanism by which life creates order from disorder. In short, evolution tuned the 
physical properties of certain proteins to contain changes in chemical entropy. As it happens these 
are the “sensible” properties Gibbs postulated were needed to solve a paradox that has intrigued and 
challenged scientists and philosophers for over 100 years.

Text
In 1876  J.W. Gibbs identified a paradox in his chemical thermodynamic treatment of  entropy1 that has 
confounded scientists from Boltzmann to Einstein and that remains an intriguing puzzle to this  day2–5. There 
is presently no one explicit solution to the paradox, and it has been suggested that “the multiplicity of solutions 
proposed…[implies] that there are different ways of conceiving the foundations of thermodynamics”2. Biological 
systems that have evolved to contain entropic  forces6,7 provide a model system for studying this paradox, which 
I use here to show that the multiplicity of proposals are not distinct concepts but rather elements of a single 
explicit solution.

The paradox applied to a two‑state chemical reaction
A version of the Gibbs paradox is illustrated in Fig. 1. Figure 1A is a kinetic scheme for a chemical reaction in 
which a molecule reversibly isomerizes between two chemical states, B and Y, differing only in color. In state 
B, the molecule is blue, and in state Y, the molecule is yellow. The molecule switches between these states with 
forward, f+, and reverse, f–, rates. If at time t = 0 a system contains 10 such molecules all in state B (Fig. 1B, left), 
then at a later time t > τ =

1
f++f−

 the system will equilibrate with molecules distributed (equally if f+ = f− ) 
between states B and Y (Fig. 1B, right). In a solution containing many molecules, this reaction appears as a blue 
solution that irreversibly turns green (Fig. 1C, left to right).

Figure 1C resembles experiments in which two drops of different colored dyes are placed into a glass of water 
and mix spontaneously and irreversibly through diffusion; only here the spontaneous change in color occurs 
through a two-state chemical reaction. Because in both cases, an irreversible mixing of colors is energetically 
driven by an increase in system entropy, here I refer to the equilibration of the chemical reaction in Fig. 1C as 
“mixing”.

The spontaneous change in color in Fig. 1C is energetically driven by the entropic contribution, �S , to 
the free energy for the reaction in Fig. 1A, where �S is defined independent of the colors of the two states so 
long as the difference, d, between them (here a wavelength) is distinguishable. When the two states become 
indistinguishable (d = 0), the reaction no longer occurs because there is only one state (one color). At this point 
�S abruptly vanishes. The paradox is that a subtle change in the difference between states (from d being barely 
detectable to d = 0) has unexplained, discontinuous energetic consequences.

Most proposed solutions to this paradox are based on arguments invoking a mutable �S2 . Maxwell argued 
that �S is defined by the mind that perceives molecular differences (e.g., Maxwell’s demon). Gibbs argued that 
�S is only defined by sensible properties. Not surprisingly, Planck argued that �S requires finite differences, 
dcrit, between molecular states, claiming “Chemical differences between… two substances in general cannot be 
represented by a continuously variable quality; and that we instead have to do with discrete distinctions… This 

OPEN

University of Nevada, Reno School of Medicine, Reno, NV 89521, USA. email: jebaker@unr.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43532-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16604  | https://doi.org/10.1038/s41598-023-43532-w

www.nature.com/scientificreports/

circumstance creates a principal opposition between chemical and physical properties since the latter must always 
be regarded as continuously variable”2.

The common assumption, made here by Planck and elsewhere by others, that entropic changes must be 
continuously variable is the basis for the infamous arbitrary division by N! employed by Boltzmann in his 
analysis of the Gibbs paradox (see below)2. However, for small ensembles of proteins in biological systems neither 
chemical nor physical properties are continuous, and as shown here, by considering the discrete changes in 
system entropy associated with discrete chemical steps, Boltzmann’s N! term cancels, and both Gibbs’ sensible 
properties and Planck’s dcrit are explicitly defined.

Biological systems like muscle have evolved to contain entropic forces within cells by tuning proteins to 
optimize their sensible properties and dcrit ; as such, they serve as model systems for formally developing these 
concepts. Using muscle as a model system, I define the energy of mixing for the reaction in Fig. 1, which is 
extensive over the reaction (see below). Next, I describe a mechanism for un-mixing (a mechanistic difference, 
d, between states) inspired by the chemistry of muscle contraction. Finally, I calculate the d-dependent energy 
required for un-mixing, providing a unifying description of molecular mechanics and emergent thermodynamics.

The energy of mixing
According to Boltzmann, the entropy, S, of a system is kB ln , where Ω is the number of microstates accessible to 
the system. Within a given state, {NB, NY}, of the system in Fig. 1B, the number of microstates is = N !

NB!NY !
 , where 

NB and NY are the number of molecules in states B and Y, and N = NB + NY. With a single chemical step from blue 
to yellow, the number of microstates within this new state {NB − 1,NY + 1} becomes = N !

(NB−1)!(NY+1)! . The change 
in system entropy, ΔS, with a chemical step from {NB, NY} to {NB − 1,NY + 1} is

(note the N! terms cancel), and according to Boltzmann

According to Gibbs, the entropic contribution to the free energy that drives the mixing reaction (Fig. 1) is then

kB ln
NB!NY !

(NB − 1)!(NY + 1)!

�S = kB ln
NB

NY + 1
.

Figure 1.  Entropy of mixing in a two-state chemical model. (A) A chemical scheme of a molecule that 
isomerizes with forward, f+, and reverse, f–, rates between two states that differ only in color. State B is blue, 
and state Y is yellow. (B) At t = 0, a closed system contains 10 such molecules all in state B (left panel). With a 
relaxation time constant, τ, the entropic contribution to the free energy for the reaction in panel A irreversibly 
(single right arrow) drives the system to a state characterized by an equilibrium mixture of states B and Y (right 
panel). (C) In a bulk solution, the reaction in panel B appears as a solution that irreversibly changes color from 
blue to green.
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Summed over multiple chemical steps, the change in entropy is extensive over the reaction.
Because a color change has little physical impact, here I consider a version of the two-state scheme in Fig. 1 

in which the difference between states is mechanical. Specifically, I consider a two-state chemical reaction where 
the difference between states is a measurable displacement, d (Fig. 2A).

A binary mechanical system
Figure 2 describes a binary mechanical system that accounts for many mechanical, chemical and energetic 
aspects of muscle  contraction7,8. In Fig. 2A, actin filament binding induces a conformational change in myosin 
(a structural lever arm rotation) that displaces the actin filament a distance d9,10. For continuity with Fig. 1, a 
hypothetical fluorophore bound to myosin changes color from blue to yellow when myosin binds actin (Fig. 2A). 
Focusing on entropic forces, here I assume that the actin-myosin binding free energy, �G◦ , is zero (i.e., f+  = f–).

Figure 2B is the same mixing reaction illustrated in Fig. 1B, only here myosin molecules that are attached to 
a fixed surface move an actin filament attached to a moveable surface a distance, d, with each discrete chemical 
step from B to Y. In other words, an increase in system entropy generates directed movement. This entropically-
driven system contraction can be reversed by physically pulling on the system to expand it. The change in external 
force, �Fext , required to mechanically pull the system from green (a mixture of yellow and blue) back to blue, 
can be calculated from changes in both molecular, �F1 , and entropic, �FS , forces.

In single molecule mechanics studies, we have shown that a single chemical step from B to Y displaces a 
spring of stiffness κsys, generating force, κsysd,10–12 where d can be experimentally measured and controlled by 
genetically engineering different myosin lever arm  lengths13. We have also  shown10,14 that a chemical reversal 
of this step decreases force

A single system spring of stiffness κsys provides a useful construct for uniting molecular force generation and 
system forces. As illustrated in Fig. 2C, one end of a system spring is extended or shortened by reversible chemical 
steps, d (bottom), while the other end (top) of the spring equilibrates with a macroscopic (e.g., entropic)  force7.

When the system in Fig. 2B (right) is pulled to generate force �Fext = −�F1 (Fig. 2C, left), the system 
responds with a single molecule step from state Y to B (Fig. 2C, left to right) that reverses �Fext (Eq. 2). This 
decrease in system force, �F1 , with a single molecule step is the driving force for the un-mixing step. However, 
the system does not equilibrate with a single molecule step; it equilibrates with a chemical relaxation of the 
system. Upon equilibration the increase in entropy associated with an ergodic transition from {5,5} to {4,6} is 
balanced against an increase in entropic force, F, that is defined by the equilibrium free energy equation for the 
reaction in Fig. 2A:

Here Fd is the work performed by a single step d against the system force, F, and T �S is defined by Eq. (1). 
Assuming �G◦ = 0, the equilibrium entropic force is

Consistent with Eq. (4), we have shown  experimentally15 that when a force, F, is applied to an equilibrium 
muscle system in which the actin-myosin binding affinity is chemically diminished, the observed distribution 

of states changes with F as NY
NB

= e
−

Fd
kBT , demonstrating that, consistent with Eq. (4), an equilibrium mixture of 

force generating myosin molecules can be unmixed by increasing F. According to Eq. (4), the change in entropic 
force with a change in system state from {NB, NY} to {NB + 1,NY − 1} is

which ranges at large N from approximately zero when fully mixed (NB = NY) to approximately kBTd ln 2 when 
fully unmixed (NB = N − 1 and NA = 1). Equation 4 describes the force, F, at which the system in state {NB, NY} is 
at equilibrium, which occurs when the reaction free energy is zero Eq. (3). Because the reaction free energy is 
defined as the change in system free energy with a change in the extent of the reaction, F in Eq. (4) is defined by 
a change in entropy with the extent of the reaction, or a reaction entropy, � S. The system equilibrates in state 
{NB + 1,NY − 1} at a different F and a different reaction entropy, � S. The difference between these forces, �FS , is 
described by a difference between reaction entropy � S values, and thus is a change in the reaction entropy, ��S.

According to continuous, near-equilibrium definitions of entropic changes, small external increments in 
the system force, �Fext = �FS (Eq. 5), reverse the mixing reaction along a smooth isotherm (Eq. 4). However, 
in a discrete physical chemical analysis, a transient change in mechanical force, −�F1 (Eq. 2), physically drives 
the un-mixing step. Combined, the change in external force required to drive the un-mixing reaction forward, 
−�F1 , against the increased entropic force, �FS , is �Fext = �FS −�F1 , or

(1)T�S = kBT ln
NB

NY + 1
.

(2)�F1 = −κsysd.

(3)�G◦
− T�S+ Fd = 0.

(4)F =
kBT

d
ln

NB

NY + 1
.

(5)�FS =
T��S

d
=

kBT

d
ln

(NB + 1)(NY + 1)

(NB)(NY )
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Figure 2.  Entropy of mixing in a binary mechanical system. (A) A chemical scheme of a molecule that 
isomerizes with forward, f+, and reverse, f–, rates between two states that differ by a mechanical displacement, 
d. State B is a myosin detached from actin. State Y is a myosin bound to actin. The transition from state B to Y 
displaces actin relative to myosin. (B) At t = 0, a closed binary mechanical system contains 10 such molecules 
all in state B (left panel). With a relaxation time constant, τ, the entropic contribution to the free energy for the 
reaction in panel A (single right arrow) drives the system to a state characterized by an equilibrium mixture of 
states B and Y (right panel). The net increase in the number of molecules in state Y results in a net displacement 
of the actin filament (attached to a freely movable wall) relative to myosin (attached to a fixed wall). (C) An 
equilibrium binary mechanical system in state {5,5} at F = 0 (panel B, right) is pulled in a direction that reverses 
the displacement in panel B, generating force �Fext = −�F1 in a system spring of stiffness κsys . The system 
responds with an average transition of one molecule from Y to B that reverses �Fext resulting in F = 0. Entropic 
force generation follows with ergodicity.
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Figure 3A illustrates this tripartite sequence of mechanochemical events for a system containing N = 11 
molecules. When the system force is increased, �Fext , by externally pulling on the system (Fig. 3A, up arrow), the 
system responds with a chemical step from state {8,3} to {9,2}, which occurs with both a decrease in molecular 
mechanical force, −κsysd (Fig. 3A, blue arrow), and an increase in entropic force, T��S

d  (Fig. 3A, red arrow), 
resulting in a new equilibrium force along the isotherm (Eq. 4, red line). The chemical reversal of the above 
process (Fig. 3A, gray arrows and text) defines a finite minimum work loop around a single chemical step.

The total driving force for un-mixing is κsysd − T��S/d , which means that when κsysd = T��S/d , un-
mixing is physically not possible. This defines a finite minimum difference between states of

Equation 7 is more than simply an equilibrium condition. It describes the point at which a chemical equilib-
rium is unaffected by work performed on the system, �Fext . Beyond this point, when �Fext exceeds that defined 
by Eq. (6), �Fext becomes a passive force that is uncoupled from chemistry (it has no effect on Eq. (7) and inca-
pable of further unmixing the system. While pulling on the system harder to generate forces beyond �Fext (Eq. 6) 
might forcibly detach molecules or even tear the system apart (chemically irreversible processes), the reversible 
un-mixing reaction is not mechanically driven by �Fext ; it is mechanically driven by −κsysd , which is defined 
by finite molecular parameters. In other words, the finite molecular difference, dcrit , postulated by Planck, is 
related to the sensible property, −κsysd , postulated by Gibbs through a discrete change in system entropy (Eq. 7).

Because T��S/d increases from 0 to kBTd ln 2 with unmixing, Eq. (7) indicates that a reaction can be unmixed 
to some extent even with a relatively small d. This is illustrated in Fig. 3B where increments of �Fext unmix the 
reaction along the isotherm (Eq. 4) until d = dcrit (Fig. 3B, asterisk) beyond which point the reaction cannot 
physically be further unmixed.

(6)�Fext =
T��S

d
+ κsysd.

(7)d = dcrit ≡

√

T��S

κsys
.

Figure 3.  Forces required to unmix a binary mechanical system (κsys = 0.125 pN/nm and d = 4 nm). (A) A 
binary system like that in Fig. 2C only with N = 11 molecules is pulled to generate the force, �Fext , required 
to unmix the system from equilibrium state {8,3} to {9,2}. The system responds with a decrease in mechanical 
force, �F1 = −κsysd (blue arrow) and an increase in entropic force, �FS = T��S/d (red arrow) associated with 
that step. The overall transition starts and ends along the isotherm (Eq. 4, red line) (B) A series of unmixing 
steps like that in panel A illustrates how mixing stalls (asterisk) when the finite molecular driving force −κsysd 
(maroon bar) equals the entropic resistive force T��S/d (horizontal dashed lines).
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When d < dcrit entropic force dominates and mixing occurs spontaneously and unstoppably against a rela-
tively small mechanical force, κsysd . At the other extreme, when d ≫ dcrit , there is no chemical contribution to 
mixing or unmixing (Eq. 6), and at this molecular mechanical limit the reaction is driven forward and backward 
by external mechanical steps alone, �Fext = �F1.

Conclusion
The above analysis provides a solution to the Gibbs paradox as it pertains to a binary mechanical system (Fig. 2B). 
The analysis implies that only at the discrete finite limit of chemical steps can we define changes in both molecu-
lar and entropic forces (Fig. 3A) that together unify molecular mechanics (top descending limb) and emergent 
thermodynamics (bottom ascending limb). Only at this discrete limit can we define the molecular mechanical 
force, −κsysd , (Fig. 3A, negative slope) that drives a chemical step against the entropic force of mixing, T��S/d , 
(Fig. 3A, positive slope). And only at this discrete limit do we recognize that un-mixing is physically not possible 
when −κsysd (the driving mechanical force) is less than T��S/d (the resistive entropic force).

Equivalently, un-mixing is physically not possible when the mechanical energy, −κsysd
2 , is less than the 

entropic energy, T��S ; as such −κsysd
2 can be viewed as a finite physical (sensible) container of T��S . When 

the container is large, it can hold large amounts of T��S . When the container is small, only small amounts of 
T��S can be held in a system with the excess irretrievably spilling out into the universe. In Fig. 3B, the maxi-
mum extent of unmixing changes with the size of the container (Fig. 3B, maroon bar). Here, the approach to 
indistinguishable states (as d becomes small) is continuous. The container (the capacity to physically measure, 
use or reverse T��S ) becomes infinitesimally small ( κsysd2 gets small) as the two states become infinitesimally 
similar, and when d becomes zero, there is at once both no container and nothing to contain.

Through all processes and at all scales across the universe entropy increases, and this increasing disorder can 
be locally ordered (measured, used, or reversed) only when placed in a proper container. The primordial soup 
consisted of chemical reactions dominated by thermal energy and increasing entropy, and despite the exacting 
physical relationships required (Eqs. 6 and 7), biological systems have evolved highly effective mechanisms for 
containing within cells the T��S for certain reactions. Thus, it is no surprise that the chemical reaction that 
drives muscle contraction informs us of these relationships.

Large containers (  d ≫ dcrit  )  that  dominate entropy f l ip the agency of  a  react ion 
( �Fext = �F1, with no chemical forces) . Because the primordial soup contained a paucity of directed external 
forces, �Fext , available to order cells but an abundance of increasing entropy, T��S/d , available to be ordered 
by them, catabolic reactions evolved as unidirectional chemical forces 

(

e.g., T��S
d

)

 that drive unidirectional 

changes in surrounding forces, �Fext (d ≈ dcrit) not the other way around ( d ≫ dcrit ). This emergent perspective 
is the antithesis of the molecular (corpuscular) mechanic  myth16,17 that gears and springs from the primordial 
soup were pieced together using rational mechanics (�Fext = �F1) . Paraphrasing Gibbs, we will never find in 
molecular biology an a priori foundation for the principles of biological function.

The arguments above are clearly not limited to muscle force. Biological forces exist on many different scales 
(filaments, organelles, cellular, multi-cellular) and in many different forms (ion gradients, cell tension, cell crow-
ing, osmotic pressure, surface tension), and any one of these forces has the potential to contain entropy in 
many different forms within biological systems. The above thermodynamic relationships (Fig. 3A) transform 
our understanding of how muscle  works7,8 and have broad implications for both natural and mimetic biology.
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