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Adaptive structure evolution 
and biologically plausible synaptic 
plasticity for recurrent spiking 
neural networks
Wenxuan Pan 1,2,5, Feifei Zhao 1,5, Yi Zeng 1,2,3,4* & Bing Han 1,2

The architecture design and multi-scale learning principles of the human brain that evolved over 
hundreds of millions of years are crucial to realizing human-like intelligence. Spiking neural network 
based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intelligence 
because of its brain-inspired structure and the potential for integrating multiple biological principles. 
Existing researches on LSM focus on different certain perspectives, including high-dimensional 
encoding or optimization of the liquid layer, network architecture search, and application to 
hardware devices. There is still a lack of in-depth inspiration from the learning and structural 
evolution mechanism of the brain. Considering these limitations, this paper presents a novel LSM 
learning model that integrates adaptive structural evolution and multi-scale biological learning 
rules. For structural evolution, an adaptive evolvable LSM model is developed to optimize the neural 
architecture design of liquid layer with separation property. For brain-inspired learning of LSM, we 
propose a dopamine-modulated Bienenstock-Cooper-Munros (DA-BCM) method that incorporates 
global long-term dopamine regulation and local trace-based BCM synaptic plasticity. Comparative 
experimental results on different decision-making tasks show that introducing structural evolution of 
the liquid layer, and the DA-BCM regulation of the liquid layer and the readout layer could improve the 
decision-making ability of LSM and flexibly adapt to rule reversal. This work is committed to exploring 
how evolution can help to design more appropriate network architectures and how multi-scale 
neuroplasticity principles coordinated to enable the optimization and learning of LSMs for relatively 
complex decision-making tasks.

The brain is a highly heterogeneous and powerful network of tens of billions of neurons possessing unparalleled 
feats of cognitive functions. Traditional artificial intelligence models are predominantly built on networks with 
hierarchical feed-forward architectures, different from the highly recurrent connected biological network in the 
brain 1, making it difficult to match the results of natural evolution in terms of function and efficiency. Macro-
scale reconstruction studies of human brain structure 2 confirmed the existence of a large number of non-hierar-
chical structures in the brain, such as modular structure 3–6, hub structures 7, 8, small-world structures 6, 9. These 
topological properties enable the brain to better coordinate multiple cognitive functions to adapt to complex and 
dynamic environments and are also unconventional structures missing in existing brain-inspired AI models.

Motivated by this, this work focuses on a network structure called Liquid State Machine (LSM) which can 
generate complex dynamics like the brain and facilitate the processing of real-time tasks. LSM 10 is a spiking 
neural network (SNN) structure that belongs to the reservoir, with randomly connected liquid layers and readout 
layers whose weights can be modified, as shown in Fig. 1. Reservoir computing has achieved some progress in 
different fields, such as speech recognition11–13, image recognition14–16, robot control17, 18, etc. Existing hardware 
designs for spiking neural networks can not only carry LSM 19–21, but also adaptively switch synaptic plasticity 20, 
and have been proven to be energy-efficient 22, 23.
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Some LSM models use fixed weights for the liquid layer, probably because its complex recurrent structure 
is difficult to be trained and optimized, which limits the learning capability and wide application of LSM 17, 24, 

25. Most of these existing models used gradient-based approach  26–30 to train the readout layer without training 
the liquid layer, resulting in a gap with the real learning mechanism in the brain. Some approaches 31–34 tried 
to train the liquid layer through local synaptic plasticity such as Spike-Timing-Dependent Plasticity (STDP) 35 
or Hebb 36, which is limited to simple tasks. In summary, there is still a need to explore biologically plausible 
learning rules applicable to LSM to optimize its liquid and readout layers.

In addition, from the structure perspective, the liquid layer is usually fixed after initialization, simply serving 
as a way of high-dimensional encoding. Some methods 30, 33, 37 inspired by deep neural networks superposed 
multiple LSM layers as a deep LSM to solve machine learning tasks. These approaches have not explored the stud-
ies about dynamic LSM’ structure search in order to adapt to the changing tasks. And in fact, the human brain 
evolved rather than followed a specific design, which is different from current common AI algorithms. Evolution 
allows the brain’s nervous system to be continuously optimized and eventually evolve into non-hierarchical, 
highly-efficient structures. Inspired by this, some studies 25, 26, 28, 32, 38 proposed evolutionary methods for optimiz-
ing the parameters and structures of LSM. Previous study 17 assessed LSM according to three LSM’s properties 10, 
and this work encoded the three LSM properties into the chromosome, and optimized the separation property 
(SP) as the objective function. Using SP as fitness is reasonable because it could reflect the role of evolution in 
the network dynamic adjustment. However, this work is limited to simple control tasks. A study 26 developed a 
three-step search method based on the genetic algorithm (GA) to search the network architecture and parameters 
of LSMs. Some researchers 26, 28, 32 directly used the experimental data set as a criterion for evaluating the fitness 
of LSM. These approaches lack effective exploitation of the internal dynamics of LSM.

Considering the various limitations of existing LSM’s studies mentioned above, in this paper, we present 
a brain-inspired LSM with evolutionary architecture and dopamine-modulated Bienenstock-Cooper-Munros 
(DA-BCM) Rule. We consider the optimization of LSM from structure and function respectively. Structur‑
ally, we optimize the architecture of liquid layer according to an evolutionary perspective to obtain a more 
brain-inspired effective structure with a higher separation property. Functionally, instead of the gradient-based 
method, we propose a biologically plausible learning method with the combination of local trace-based BCM39 
synaptic plasticity and global dopamine regulation. The experimental results show that the proposed evolved 
DA-modulated LSM is able to learn the correct strategy faster and flexibly adapt to rules reversal on multiple 
reinforcement learning tasks. As reservoir computation exhibits complex dynamics consistent with activity in 
brain neural circuits, the evolvable LSM based on DA-BCM provides us with a powerful and biologically realistic 
tool to delve deeper into the learning process of complex networks. This work provides new opportunities for 
developing more brain-inspired complex and efficient network models, building adaptive learning frameworks, 
and revealing the evolutionary mechanisms of brain structures and functions.

Methods
In this section, we first introduce the architecture and construction details of LSM. Evolutionary algorithms and 
DA-BCM multi-scale learning rule are sequentially used to optimize the LSM’s liquid layer connectivity patterns 
and all weight strengths.

LSM architecture
Leaky integrate‑and‑fire (LIF) neuron model
Neuron model used in the proposed LSM is implemented with LIF model40, which can be simulated by Eq. 1:

(1)τm
dVm(t)

dt
= I(t)− Vm(t)

Figure 1.   In the traditional definition of the LSM, randomly connected liquid layer neurons receive time-
varying signals from external inputs and other nodes. Recursive connection patterns enable input signals to be 
converted into liquid layer dynamics and then abstracted by the readout layer.
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Vm is the voltage across the cell membrane, I is the external input, and τm = 2.0 is the membrane potential time 
constant. The post-synaptic neuron voltage accumulates from Vreset = 0 exponentially when a current spike is 
received from pre-synaptic neurons, producing an output spike as soon as the threshold Vth = 1.0 is reached.

Liquid layer initialization
In the experiment, the number of neurons in the liquid layer was set to 10*10, totaling 100. Inspired by neuron 
connections in the mammalian visual cortex, we set the connection probability p between neurons i and j to 
exponentially inversely proportional to the Euclidean grid distance d(i, j) 41. The closer the grid distance, the 
higher the connection probability, which is defined as the following:

� is the parameter that controls the average number of synaptic connections and the average distance between 
neurons. To prevent neurons that are too far apart from connecting, a mask matrix Mdis is added, combined with 
p to form the weight matrix Wl of the liquid layer as Eqs. 3 and 4:

Both Mdis and Msparse are binary matrices. Mdis helps to form locally interconnected liquid layer structures. 
Direct self-connection is not allowed but is allowed to connect back after passing through other neurons. Msparse 
describes a sparse binary matrix in which only a randomly selected 1% of the connections have the value Msparse 
equal to 1 (sparser liquid density is to facilitate subsequent evolution operations). Dth is a threshold that limits 
the range of local connections at initialization, and is the furthest neighbor a single neuron can connect to. Here 
is set to 6. α = 4 is a constant.

Readout layer initialization
To construct an effective readout layer structure, preventing many inactive neurons from being read out, we 
formulate the connection weight Wr between the liquid layer and the readout layer according to the state matrix 
S as follows:

wrand indicates a rand weight matrix. Both Mr and S are binary matrices. When the readout layer has Nr neurons, 
all the liquid layer neurons are randomly divided into Nr classes, making each liquid layer neuron connected to 
only one readout layer neuron. The resulting mask matrix Mr specifies which liquid layer neurons are connected 
to which readout layer neurons. 0 in the state matrix S represents that the neuron did not fire, and a 1 represents 
it fired. Therefore, there is no connection between the non-firing liquid neurons and all the readout neurons. 
β = 4 is a constant. The number of liquid neurons connected to each output or input neuron is set to 4.

Evolutionary LSM structure
First, we randomly initialized Nini LSMs to form a population pop with their respective liquid layer connectivity 
matrices as chromosomes. For each chromosome, a population of offsprings is generated, and each offspring is 
mutated. According to the calculated fitness function, the optimal offspring corresponding to each chromosome 
is selected as a new chromosome. Meanwhile, to introduce innovation, the next generation consists of all optimal 
offsprings and partially regenerated random individuals. Evolution continues until the Nopt individuals with the 
highest fitness in Gth generation are selected as the output of the evolutionary algorithm. Figure 2 illustrates the 
detailed evolutionary process.

Initialization
We initialize Nini LSM individuals, each of which is an LSM structure. A chromosome is defined as a matrix 
representing an individual’s liquid layer connectivity patterns:

i is the number of the individual, and Wl is the liquid layer connection weight of the ith individual defined in 
Eq. 3.

Mutation
Each chromosome generates multiple offsprings (collectively a chromosome population) and mutates them: 
randomly select an inactive neuron (firing no spikes) among all liquid neurons and connect it with a surround-
ing active neuron (firing at least one spike).

(2)p =

(

e
−

1

�2

)d2

(3)Wl = α ∗Mdis ∗Msparse ∗ p

(4)M
i,j
dis =

{

1, d(i, j) < Dth

0, d(i, j) > Dth or i = j

(5)Wr = β ∗Mr ∗ S ∗ wrand

(6)Chromi
=

{

1,Wi
l > 0

0,Wi
l = 0, 0 ≤ i ≤ Nini
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Evaluation
The Separation Property (SP) was proposed together with the concept of LSM10 as a measure of performance, 
which calculates the separation between the internal system state trajectories produced by two different input 
streams: a good network has different responses to different stimuli, and the greater the input difference, the 
greater the difference in network firing patterns. There are many methods in current research to measure the 
SP of LSM, here we refer to one of them42 to measure the quality of the liquid layer. We first calculate a state 
matrix S (1 for fired, otherwise 0) of the liquid layer based on input and then compute the SP according to the 
following formula:

rank(S) means the rank of matrix S. The larger the value, the stronger the separation property of LSM. After 
mutation, we calculate the separation property of offsprings obtained by mutation referring to Eq. 7 as the fit-
ness function.

Selection
Based on the fitness of all offsprings Foffs , select the one with the largest fitness in the chromosome population 
to replace the individual. In the first Gth generation, the next generation consists of individuals with high fitness 
and new individuals explored randomly as a proportion of rate of the entire population. After Gth times of evo-
lution, the new generation uses the experience of multiple iterative optimizations to select Nopt individual with 
the highest fitness as the evolution output.

The algorithm process of evolving the LSM architecture is Algorithm 1.

(7)SP = rank(S)

Figure 2.   The procedure of evolutionary LSM structure.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16924  | https://doi.org/10.1038/s41598-023-43488-x

www.nature.com/scientificreports/

DA‑BCM for training evolved LSM
After evolving LSM, we incorporated multi-scale biological-inspired learning rules such as local synaptic plastic-
ity and global dopamine regulation for optimizing synaptic strength. As shown in Fig. 3, the learning process 
updates the connection weights within the liquid layer and between the readout layers according to local BCM 
plasticity 39 and global dopamine regulation. Finally, the readout neuron with the most firing rates is selected 
as the action.

Local BCM synaptic plasticity
Since gradient-based learning rules are inconsistent with biological reality, we employed a more biologically 
plausible mechanism of synaptic plasticity: BCM rules39, combined with dopamine (DA) global regulation to 
simulate the effects of reward and historical memory on behavior, encoding readout neurons target spatio-
temporal dynamics. BCM was first used to explain how cortical neurons simultaneously undergo LTP or LTD 
depending on the different regulatory stimulation protocols applied to pre-synaptic neurons43. According to 
BCM, the activity of the postsynaptic neuron strengthens the connection, and the activity experience of the 
postsynaptic neuron determines the dynamic correction of the threshold. The synaptic strength update rule for 
the activity of pre- and post-synaptic neurons is as follows:

m is the weight between pre- and post-synaptic neurons. ǫ is a coefficient that decays uniformly over time. φ is 
the BCM modification function that adjusts according to the neural spiking trace of the postsynaptic neuron, 
incorporating a sliding activity-dependent modification threshold θm to allow bidirectional synaptic modifica-
tion. etpre is the spiking trace of the presynaptic neuron at time t and etpost is the spiking trace of the postsynaptic 
neuron at time t, which are calculated as:

Where otpre and otpost denote the spikes of pre- and post-synaptic neurons, respectively. τbcm is the time decay 
constant which is set to 3.0. φ is defined as:

The sliding threshold θm is dynamically updated according to the average value of the trace e over a period of 
time 10.

Global dopamine regulation
Previous study44 proposed the “reward prediction error hypothesis” that dopamine neurons encode reward 
and punishment signals during interacting with the environment. Related studies have introduced the learning 
rules of reward regulation into deep spiking neural networks 45 and multi-brain regions coordinated SNNs 46, 47. 
Further, reward-modulated STDP 48–50 integrates dopamine regulation and STDP could solve the problem of 
credit assignment in order to obtain more reward.

Here, inspired by the neural mechanisms of dopamine regulation, we propose a DA-BCM learning rule that 
integrates long-term dopamine regulation and local BCM synaptic plasticity. When receiving an external reward 
signal, dopamine forms a global long-term regulation, combining with BCM plasticity to adaptively adjust syn-
aptic strength for the liquid layer and readout layer. The DA-BCM learning rule is as follows:

(8)
dm(t)

dt
= φ(etpost)e

t
pre − ǫm(t)

(9)etpre = τbcme
t−1

pre + otpre

(10)etpost = τbcme
t−1

post + otpost

(11)φ(e) = e(e − θm)

Figure 3.   DA-BCM optimizes the synaptic weights of the evolved LSM.
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Here, DA stands for dopamine signal. As shown in Fig. 3, the reward information DA in the environment is fed 
back to the local synaptic plasticity mechanism (Eq. 12) in the form of dopamine, forming a global regulatory 
effect.

Results
The evolution and learning process
In this paper, the liquid layer connectivity of LSM is first evolved, and then the liquid layer and readout layer are 
optimized based on DA-BCM to realize the online decision-making of the whole model (including input layer, 
liquid layer and readout layer). Evolution randomly initializes Nini = 100 ) individuals according to the inputs 
of different tasks, and then randomly mutates multiple offspring during the mutation process, finally selecting 
the optimal Nopt = 20 structures for decision making. All experimental results in this work are based on the 
average of the network structures obtained from multiple random evolution to ensure accuracy and fairness.

Experiments show that evolved individuals are superior to randomly generated models in efficiency. Based 
on the evolved structures, the Nopt individuals (agents) are then placed in a specific environment, where the 
next step action is determined according to the LSM’s output. DA-BCM rule dynamically adjusts the strength of 
LSM’s weights through the reward signal fed back by the environment, enabling the agent to learn and survive 
better in the environment. Model performance is evaluated according to the average cumulative reward of Nopt 
individuals within T = 500 steps, which is calculated as follows:

DAi
t represents the reward obtained by individual i at step t. Therefore, R represents the average reward of all 

individuals.

Validation on T‑maze
Experiment configuration
We constructed a T-shaped maze (two ends of the maze are food and poison, respectively). The maze can be 
regarded as the size of 3x5 (the size of three grids in the vertical direction and the size of five grids in the hori-
zontal direction), as shown in Fig. 4d,e. Three input neurons representing the agent’s observations in three direc-
tions (maybe walls, roads, food, poison) feed information into the evolved LSM, and the agent performs actions 
(forward, left, right) based on the output. For example, if walls, roads, food, and poison are represented by 0, 1, 
2, and 3 respectively, then (0, 1, 0) means that the agent sees the wall on the left, the wall on the right, and the 
road ahead. The output (1, 0, 0) means the action taken is left, (0, 1, 0) means forward, and (0, 0, 1) means right.

The distance difference between the agent and the food before and after executing the behavior is defined as 
dism , then the reward function for the T-maze task is:

An energy mechanism is set up to prevent the agent from wandering or standing still (i.e.hitting the wall all the 
time) in the maze. Each round is counted from the starting point to the endpoint, where learning time is limited 
to a certain number of steps, after which the exploration process will be restarted. When the agent receives posi-
tive rewards consecutively (more than ten times), the positive and negative rewards in the maze will exchange 
positions with a certain probability (set to 0.3 here), thus verifying the ability of the model to adapt to reverse 
learning.

Results on T‑maze
The fitness change of the evolved Nopt individuals is shown in Fig. 4a, which can gradually evolve to reach the 
maximum value, verifying the evolutionary algorithm’s effectiveness. Comparing evolved and unevolved mod-
els in Fig. 4c, we could find that structure evolution improves the learning efficiency and performance of LSM 
models. Models’ performance is calculated using the average reward value of Nopt individuals over a period of 
time T = 500 . Figure 4d shows how evolved LSMs with DA-BCM learning rule help the agent to find where the 
food is. Along the way, reward signals of environmental feedback (shown in green and red, respectively) guide 
agent behavior through dopamine modulation.

Reversal Learning During the learning process, the agent showed the ability to flexibly adapt to the reversion 
of the rules. As shown in Fig. 4b, after taking the poison for the first time and being punished, the agent can 
avoid the poison no matter how the positions of the poison and food are changed, which means that agent has 
the ability to reversal learning and can flexibly handle changes in the environment. Simulation results shown in 
Fig. 4e indicate that the agent exhibits the ability of reversal learning.

Ablation analysis Ablation experiments further evaluate the effect of DA-BCM learning rules by applying 
STDP and DA-BCM to the liquid and readout layers to explore the effect of different learning rules on LSM 
performance. As shown in Table 1 and Fig. 4c, the evolved LSM with liquid and readout layers trained by DA-
BCM achieves the best performance and significantly outperforms other models. The worst among all methods 

(12)
dm(t)

dt
= DA ∗ (φ(etpost)e

t
pre − ǫm(t))

(13)R =

∑Nopt

i

∑T
t DA

i
t

Nopt

(14)DA =











3, get food
−3, get poison
1, dism < 0
−1, dism ≥ 0
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is the evolved LSM trained with unsupervised STDP, indicating that the model without any environmental 
feedback to guide LSM dynamics cannot gain knowledge, causing the average reward R to fluctuate over time 
with no cumulative trend. Besides, the none+DA-BCM and STDP+DA-BCM (the front of “+” represents the 
liquid layer learning rule, and the back represents the readout layer learning rule) models achieve similar good 
performance, indicating that the regulation of DA-BCM at the readout layer can help the model to learn the 
rules of the environment. The STDP+DA-BCM and DA-BCM+DA-BCM are superior to the none+DA-BCM, 
which indicates that optimizing the weights of liquid layer is more effective than fixing their weights. Further, 
the outstanding advantage of DA-BCM+DA-BCM illustrates that our proposed biologically plausible DA-BCM 
training method can outperform untrained or STDP-trained models, helping to evolve LSM’s structure and learn 
the environment information more efficiently.

Figure 4.   Experimental results on T-maze. (a) The separation property of evolving LSMs which is calculated 
from the average of all individuals in population. (b) Reversal learning results. Green dots indicate that the agent 
has obtained food, and red dots indicate poison. (c) Performance of LSMs (applying different learning rules). 
Evolved model results are the average performance of Nopt individuals, unevolved model results are the average 
performance of multiple runs. (d) The agent learns to change behavior guided by DA regulation. (e) When the 
rule is reversed, the agent learns to avoid the poison after being punished once.

Table 1.   Results of ablation experiments on T-maze.

Structure Liquid Layer Readout Layer Performance

Evolved STDP STDP − 0.9±5.54

Unevolved DA-BCM DA-BCM 162.0±12.44

Evolved none DA-BCM 399.44±5.99

Evolved STDP DA-BCM 414.75±1.41

Evolved DA-BCM DA-BCM 464.4±5.15
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Validation on Flappy Bird
Experiment configuration
Flappy Bird is a game in which the player controls the bird to move between the gaps of many pipes without 
colliding as much as possible. The settings of state space and action space are shown in the Fig. 5a, the size of 
action space is 2 (i.e. up or down). We divide the state space into 9 parts according to the positional relationship 
between the bird and the pipe. The state of the bird and its action at the next moment are the input and output of 
the evolved LSM. For example, if the agent is in state 2, then the input is (0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Output (1, 0) 
represents action 0, (0, 1) represents action 1. The positive reward is used to encourage the bird to pass the pipes 
(i.e. the gap between the upper and lower pipes), and the negative reward is used to punish the bird for staying 

Table 2.   Reward function for Flappy Bird.

Current state

last state = current 
state last state  = current state

disf < 0 disf ≥ 0

0 or 1 6 6 6

2 or 3 3 −5 −3

4 or 5 3 −8 −5

6 or 7 3 −3 −3

8 −100 −100 −100

Figure 5.   Experimental results on Flappy Bird. (a) The setup of state space and action space. The whole space 
is divided into 9 states, where 6 and 7 are the ultimate goals to be achieved. (b) The final performance of all 
models in the Flappy Bird environment. Evolved model results are the average performance of Nopt individuals, 
unevolved model results are the average performance of multiple runs. (c) Agents avoid mistakes under the 
guidance of reward signals.
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away from the exit of the pipes. The reward is learned by LSM for the adjustment of synaptic strength (based on 
DA-BCM). When the bird collides with the pipe, the game is over.

Table 2 illustrates the definition of reward function (DA) for Flappy Bird. The reward is determined accord-
ing to current state and last state, and the distance difference disf  between the bird and the center of pipe before 
and after executing a selected behavior. The maximum positive reward is given when the bird is in state 0 or 1. 
A slightly smaller positive reward is used to encourage shorter distances ( disf < 0 ) to the target location (i.e. 
empty space between pipes). Correspondingly, if the distance becomes longer ( disf ≥ 0 ), a negative reward is 
given. The largest negative reward is used to punish hitting the pipe. Models’ performance is calculated using 
the average reward value of Nopt individuals over a period of time steps T = 2000.

Results on Flappy Bird
To verify the validity of the proposed model, we compared the unevolved LSM with liquid layer and the readout 
layer both trained by DA-BCM (unevolved model with DA-BCM in Fig. 5b), the evolved LSM with non-trained 
liquid layer and DA-BCM trained readout layer (evolved model with None+DA-BCM in Fig. 5b), the evolved 
LSM with STDP-trained liquid layer and DA-BCM trained readout layer (evolved model with STDP+DA-BCM 
in Fig. 5b), and the evolved LSM with DA-BCM trained liquid layer and DA-BCM trained readout layer (evolved 
model with DA-BCM+DA-BCM in Fig. 5b), respectively. Figure 5b depicts the average reward curves (Gaussian 
smoothed) for different models. It is obvious that evolved model with DA-BCM+DA-BCM achieves the best 
results, while unevolved method is inferior to the evolved methods. Comparing the optimization methods for 
liquid layer, STDP slightly outperforms the untrained method, while DA-BCM can further bring improvements. 
Figure 5c shows that our proposed model can guide the bird to fly smoothly through the pipe via dopamine 
modulation.

The detailed final performances (average reward R and its variance) of different methods are listed in Table 3. 
LSM trained only with STDP could not finish this task, failing to get positive feedback from the environment, 
causing the bird to hit the pipe from the start and the game to stop. Each component of the proposed model such 
as evolution, DA-BCM in the liquid layer and readout layer enables the LSM network to learn faster and better. 
Thus, we can conclude that our work brings outstanding superiority to optimizing the LSM from the structural 
and functional perspectives.

Discussion
Evolution has not only designed the brain’s general connectivity patterns but has also optimized a multi-scale 
plasticity coordinated learning rule, endowing the brain with the ability to flexibly adapt to reversal learning and 
enabling efficient online learning. Inspired by this, this paper proposed a structurally and functionally optimized 
LSM model that incorporates adaptive structural evolution and biologically plausible DA-BCM learning rule. 
Experimental results demonstrated that the structural evolution of the liquid layer and the DA-BCM regulation 
of the liquid layer and the readout layer significantly improved multiple decision-making tasks.

Most existing works 26–34 used backpropagation-based methods (which are suitable for hierarchical networks) 
to optimize the readout layer without considering the optimization of the liquid layer, or only adopted unsuper-
vised STDP to optimize the liquid layer. Our model proposed a DA-BCM learning rule for both the liquid layer 
and the readout layer, which shows more biologically plausible. In addition, unlike existing structural search 
methods that directly search for the highest-performing structure, we took inspiration from the evolutionary 
mechanism and optimized the structure of the LSM according to its internal properties. Here, we would like to 
compare our approach with other reinforcement learning models, including the classical Q-learning 51 ,DQN 52, 
and LSTM 53 (learning via policy gradient algorithm) with recurrent structure.

In LSTM configuration, the network consists of one layer of LSTM with 128 hidden neurons and one fully 
connected layer. The Bellman equation Q-learning uses as Eq. 15, where γ = 0.9 , α = 0.1 . Agent’s action is 
selected according to the ǫ-greedy algorithm ( ǫ = 0.8 ), which means that there is a probability of 0.2 for each 
selection to explore the action space randomly. The reward discount value γ and learning rate α are set to 0.99 
and 0.1, respectively, in DQN. The loss function of the Q network is constructed in the form of mean square 
error, as shown in Eq. 16. The DQN network, which is fully connected, consists of three layers, the input layer, 
the hidden layer (with a size of 50), and the output layer. In Eq. 16γ is set to 0.86. Learning rate in the used adam 
optimizer is set to 0.1.

For fairness, multiple experiments are performed for each comparison algorithm, and the performance is 
averaged. The results for LSTM, Q-learning, and DQN are averaged over multiple runs ( n = 20 ), where LSTM 
and DQN run 1000 episodes each.

Table 3.   Results of ablation experiments on Flappy Bird.

Structure Liquid layer Readout layer Performance

Evolved STDP STDP − 54.77±59.7

Unevolved DA-BCM DA-BCM 4.97±0.04

Evolved none DA-BCM 5.29±0.00

Evolved STDP DA-BCM 5.36±0.02

Evolved DA-BCM DA-BCM 5.43±0.03
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Figure 6 shows policy maps of the agent under the four models in the T-maze experiment. It can be seen that the 
well-performing model (Fig. 6a, our model) learns to avoid poison and obtain food faster. And poorly performing 
models not only get more poison, but hang around along the way.

Table 4 and Fig. 7 compare the average reward of the evolved Nopt individuals under different learning rule 
applications in detail. From the results, it can be seen that the efficiency of our proposed model is better than 
the comparison algorithms in terms of both mean and stability (variance). In fact, by combining Table 3 and 
Table 4, it can be found that three evolutionary LSMs (DA-BCM+DA-BCM, STDP+DA-BCM, none+ DA-BCM) 
outperform LSTM and Q-learning in two tasks. We can also see that on the T-maze task, the performance of 
LSTM and DQN are significantly weaker than other models, and the variance of LSTM is very large, which may 
be caused by too many parameters that bring overfitting in a small sample learning task. In Flappy Bird, although 
DQN performance is better than LSTM and Q-Learning, the variance is very large. The overall efficiency is not 
as good as our model.

Computational cost analysis We also consider the impact of the computational cost of the model on fairness. 
Take T-maze for example. In our experiments, the three-layer LSTM needs to take into account the weights 

(15)Q(s, a) = Q(s, a)+ α

[

R(s, a)+ γ max
a′

Q′
(

s′, a′
)

− Q(s, a)

]

(16)ω∗
= argmin

ω

1

2N

N
∑

i=1

[

Qω(si , ai)−

(

ri + γ max
a′

Qω

(

s′i , a
′
)

)]2

Figure 6.   Policy maps in T-maze of four models. The value in the figure represents the number of times the 
agent reaches a certain state within T = 500 steps (average of multiple experiments).

Figure 7.   Comparative experimental results on two tasks. (a) Comparison results of four models in T-maze. (b) 
Comparison results of four models in Flappy Bird.
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of 4 gates, so the total number of trainable weights is 68483. For Q-learning, only a state-action table of size 
28 ∗ 3 = 84 needs to be stored. The number of trainable weights of the fully connected network inside the three-
layer DQN is 4 ∗ 50+ 50+ 50 ∗ 3+ 3 = 403 . As for the LSM model we proposed, considering that the connec-
tion density of the evolved model is less than 2%, the number of connections of the liquid layer is up to about 
64 ∗ 64 ∗ 0.02 = 81.92 . Including the number of connections between the liquid layer and the input and output, 
the total number of parameters is about 109.92 on average, of the same magnitude as Q-learning. Therefore, the 
computational cost of our proposed model belongs to a low level compared to DQN and LSTM.

To sum up, this work breaks through the fixed deep hierarchical network structure that relies on BP optimiza-
tion used in AI, and develops a multi-scale biological plasticity coordinated learning rule (instead of BP) and an 
efficient structure evolution for LSM. Because the proposed model borrows the information processing mecha-
nism of the brain from the structure and function, it is more biologically plausible, more flexible and efficient, 
and naturally more suitable for developing human-like cognitive intelligence. Although this paper demonstrates 
the superiority of our proposed evolutionary LSM model in terms of model efficiency and computational cost, 
there are still some limitations. For instance, while reservoirs trained with gradient methods 26–34 are typically 
limited to the readout layer, applying them to the liquid layer remains challenging. Further exploration of gra-
dient-based approaches suitable for the reservoir architecture may be a direction to improve efficiency. There is 
still more room for exploration for developing brain-inspired models in learning algorithms, and many neural 
mechanisms are waiting for us to investigate and fully apply in the AI field. This paper focuses on the small sam-
ple learning environment. Other application scenarios can also be used to further explore more energy-efficient 
self-organizing brain-inspired evolutionary spiking neural networks.

Data availability
All original code has been deposited at https://​github.​com/​Brain​Cog-X/​Brain-​Cog/​tree/​main/​examp​les/​Struc​
ture_​Evolu​tion/​Adapt​ive_​lsm.
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