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The simplified Kirchhoff network 
model (SKNM): a cell‑based 
reaction–diffusion model 
of excitable tissue
Karoline Horgmo Jæger * & Aslak Tveito 

Cell‑based models of excitable tissues offer the advantage of cell‑level precision, which cannot 
be achieved using traditional homogenized electrophysiological models. However, this enhanced 
accuracy comes at the cost of increased computational demands, necessitating the development 
of efficient cell‑based models. The widely‑accepted bidomain model serves as the standard in 
computational cardiac electrophysiology, and under certain anisotropy ratio conditions, it is well 
known that it can be reduced to the simpler monodomain model. Recently, the Kirchhoff Network 
Model (KNM) was developed as a cell‑based counterpart to the bidomain model. In this paper, we aim 
to demonstrate that KNM can be simplified using the same steps employed to derive the monodomain 
model from the bidomain model. We present the cell‑based Simplified Kirchhoff Network Model 
(SKNM), which produces results closely aligned with those of KNM while requiring significantly less 
computational resources.

The bidomain model (BD)1 has become a valuable tool for understanding cardiac electrophysiology. It has been 
used, for instance, to study the effects of electrical  defibrillation2–4, to identify drug effects from microphysiological 
 systems5,6, and to personalize the identification of targets for ablation of atrial  fibrillation7. A recent, comprehensive 
review of mathematical models of whole-heart electrophysiology can be found in Sung et al.8. In many cases, BD can 
be replaced by the somewhat simpler monodomain model (MD) which often yields very accurate approximations 
of the solution of BD, see, e.g., Franzone et al.1, Potse et al.9, and Sundnes et al.10. However, both BD and MD rely 
on homogenizations, and in this process the individual myocytes are removed from the model. The homogenized 
models (BD and MD) are therefore useful at the tissue level (mm), but runs into difficulties at finer scales (e.g., µ
m). Specifically, the homogenized models cannot be used to study electrophysiology in the vicinity of individual 
myocytes. Also, it is worth noticing that the myocytes do not re-appear in the mathematical model by mesh refine-
ments; after homogenization, the myocytes are no longer part of the models regardless of the mesh resolution.

Because of the obvious need to enable analysis close to the myocytes, cell-based models have recently been 
 developed11–16,  applied17–20, and  analyzed21–26. These models are accurate at the level of micrometers at the cost 
of significant increase in computational efforts needed to solve the equations.

In the recent  paper27 we presented the Kirchhoff Network Model (KNM) which aims at balancing the need 
for cell-level accuracy with computational efficiency. The model represents every individual cell and the associ-
ated extracellular space of the tissue under consideration, but does not allow for spatial variation of parameters 
along the individual cell membrane or inside the cell. In other words, KNM allows the properties of individual 
cells to vary and can thus obtain cell-level accuracy, but cannot obtain sub-cellular accuracy. It was demonstrated 
in this  paper27 that KNM required computational efforts comparable to BD and much smaller than the cell-based 
Extracellular-Membrane-Intracellular (EMI) model. For one example the CPU efforts of KNM was about 0.01% 
of the CPU efforts needed to solve the EMI model. This indicates that KNM can both achieve cell-level accuracy 
and be used in simulations with a large number of myocytes.

It is well known that BD reduces to the simpler MD under the assumptions of equal anisotropy ratios, see, 
e.g., Franzone et al.1, Potse et al.9, and Sundnes et al.10.  Furthermore, it is well known that the solutions of MD 
generally approximate the solutions of BD very well even if the assumption of equal anisotropy ratios do not 
hold, see Potse et al.9. Therefore, MD is commonly used as a reasonable approximation of BD. The derivation of 
MD based on BD is straightforward, and in the present report we will show that the same steps can be used to 
derive a simplified version of KNM. The simplified KNM will be referred to as SKNM. We will show that SKNM 
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is significantly faster than KNM and we will discuss how well the solutions of SKNM approximate the solutions 
of KNM. Furthermore, we will compare the computational efforts needed to solve BD, MD, KNM and SKNM, 
and conclude that, when cell level accuracy is need, SKNM is the fastest model.

Methods
Below, we will show numerical solutions using the bidomain model (BD), monodomain model (MD), the Kirch-
hoff network model (KNM) and the simplified Kirchhoff network model (SKNM). For readability, we repeat the 
formulation of BD, MD and KNM, and then we present the derivation of SKNM.

The bidomain model (BD)
Let Cm be the specific membrane capacitance (in μF/cm2 ), χ be the membrane area to volume ratio (in cm−1 ), 
Mi and Me be intracellular and extracellular BD conductivity tensors (in mS/cm), Iion be the current density at 
the cell membrane (in μA/cm2 ) and F be a function governing the dynamics a number of state variables s, mod-
eling the membrane dynamics. Then, the bidomain model (see, e.g., Franzone et al.1 and Sundnes et al.10) reads

where v and ue are the unknown functions to be found, representing the membrane potential and extracellular 
potential, respectively (both in mV). Here, we consider the two dimensional (2D) version of BD with diagonal 
conductivity tensors,

where Mx
i  and Mx

e  are the BD conductivities in the x-direction, and My
i  and My

e  are the BD conductivities in the 
y-direction.

The Kirchhoff network model (KNM)
KNM was introduced in Jæger et al.27 and consists of a collection of N cells with associated extracellular space, 
see Fig. 1. For cell number k, uki  and uke are the potentials (in mV) of the intracellular and extracellular compart-
ments, respectively. The associated membrane potential is given by vk = uki − uke . We assume that cell number 
k is connected to a collection, Nk , of neighboring cells. The KNM then reads

(1)Cm
∂v
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Figure 1.  Illustration of the Kirchhoff network model (KNM). The model consists of a network of connected 
cells, each with a surrounding extracellular compartment. The model is derived by applying Kirchhoff ’s current 
law for each cell and extracellular compartment.
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Here, Cm is the specific membrane capacitance (in μF/cm2 ), Ak
m is the membrane area of cell k (in cm2 ), Ikion is 

the ionic current density through ion channels, pumps and exchangers on the membrane of cell k (in μA/cm2 ) 
and sk is a set of additional state variables modeling the membrane dynamics of cell k.

Currents between neighboring compartments
If j ∈ Nk (that is, if cell j is electrically coupled to cell k), the current between these cells is assumed to be given by

Similarly, the current flow between neighboring extracellular compartments j and k, are given by

Here, Gj,k
i  and Gj,k

e  are the total intracellular and extracellular conductances (in mS).
By inserting the currents (8) and (9) in the system (5)–(7), we can write the KNM system on the form

KNM equations mimicking the structure of the bidomain model
We we can now rewrite the KNM system to a form that is more similar to the BD equations above. In particular, 
(10) can be written on the form

Similarly, the second equation (11) takes the form

To summarize, the KNM system (5)–(7) can be written in the form
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This form of the KNM system closely resembles the form (1)–(3) of the BD system. We will use this similarity to 
show that a simplified version of KNM can be derived in the same way as MD is derived from BD.

Deriving MD from BD and the simplified KNM (SKNM) from KNM
The monodomain model (MD)
By assuming that the intracellular and extracellular conductivity tensors are related by a constant, BD simpli-
fies considerably, see, e.g., Franzone et al.1 and Sundnes et al.10. To demonstrate this, we assume that there is a 
constant � such that

By using this assumption, it follows that

and inserting this in (2), we get

By inserting this into (1), we obtain the monodomain model,

The simplified KNM (SKNM)
In order to derive a similarly simplified version of KNM, we follow the steps above and start by assuming that 
there exists a constant � such that

From this assumption it follows that

and inserting this in (14), we get

By inserting this into (13), we can formulate the SKNM as follows,

which resembles the form of MD (19)-(20).

Defining the KNM and SKNM parameters
The conductance parameters Gj,k

i  and Gj,k
e  in KNM are defined as in Jæger et al.27,

where δj,ke  (unitless) is the mean extracellular volume fraction of cell compartments j and k, and δj,ki = 1− δ
j,k
e  

(unitless) is the associated intracellular volume fraction. Furthermore Aj,k (in cm2 ) is the mean cross sectional 
area between the centers of cell compartments j and k, lj,k (in cm) is the distance between the centers, Gj,k

g  (in 
mS) is the conductance through the gap junctions connecting cells j and k, and σi and σe (both in mS/cm) are 
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the conductivities of the intracellular and extracellular spaces, respectively. The derivation of the definitions 
(26)–(27) is described in the Supplementary Information.

Defining � in SKNM based on KNM parameters
Considering (26) and (27), the assumption

for a constant value of � clearly does not hold in general. Below, we will consider cases where the gap junction 
resistances ( Gj,k

g  ) vary randomly while keeping the extracellular conductance constant, and in such cases, the 
assumption (28) is clearly violated. In addition, we will consider cases of anisotropic cell geometry, also violating 
(28). However, as shown in Potse et al.9, MD often serves as a very good approximation of BD even if the MD 
assumption does not hold.

In order to define � in cases where (28) is violated, we seek a weighted least square approximation. To this 
end, we define the function

whose minimum is given by

Defining � in MD based on BD parameters
In order to define the MD parameter � from the BD parameters, we similarly seek a least squares approxima-
tion, and define

where � is the computational domain and Mx
i  , My

i  , Mx
e  and My

e  are components of the BD conductivity tensors 
as defined in (4). In our computations, we use the minimum of (31),

to define � for MD.

Numerical methods and software
All simulations reported in this paper are performed in C++ using the MFEM library for finite element 
 methods28,29. The system of equations for each model is solved using standard operator splitting of the non-
linear membrane system and the remaining linear system (see, e.g., Sundnes et al.30). The non-linear membrane 
equations are solved using the first-order Rush-Larsen  method31,32 with code generated using the Gotran code 
 generator33 and applying OpenMP  parallelization34. The linear systems are solved using BiCGSTAB. For KNM 
and BD, we use a standard block Jacobi  preconditioner35, whereas no preconditioner is used for SKNM and MD. 
We use meshes generated by  Gmsh36 with a target mesh size of �x = 10 μm and a time step of �t = 0.01 ms for 
the BD and MD simulations. For KNM and SKNM, we use �t = 0.02 ms. The choice of discretization parameters 
are based on convergence investigations reported in the Supplementary Information. All computations are run 
on a Dell Precision 3640 Tower with an Intel Core processor (i9-10900K, 3.7 GHz/5.4 GHz) with ten kernels 
with two threads each.

Simulation set‑up and parameter values
We consider two examples of potential areas of application for KNM and SKNM. The first example is a collec-
tion of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and the second example is 
a collection of pancreatic β cells. The model parameterizations for the two cases are described below.

Collection of hiPSC‑CMs
In the simulations of hiPSC-CMs we consider a sheet of 40× 40 connected hiPSC-CMs, unless otherwise stated. 
The cells are assumed to have a surface area of Am = 1.8× 10−5 cm2 , and a volume of about 4 pL, based on 
measurements from Hwang et al.37. In the default case, we assume that each cell extends 16 μm in each spatial 
direction, and we assume that the default extracellular volume fraction is δe = 0.2 . More specifically, we let 
lx = ly = 16 μm and lz = (1+ δe) · 16 μm. The membrane dynamics (F and Iion ) are modeled using the wild-
type hiPSC-CM model from Jæger et al.38. The default gap junction conductance, Gg , is set to 2× 10−4 mS, in 
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order for the conduction velocity to be about 4 cm/s, motivated by conduction velocities observed in sheets of 
hiPSC-CMs in Kadota et al.39, Kawatou et al.40, and Shinnawi et al.41.

Collection of pancreatic β cells
In the simulations of a collection of pancreatic β cells, we consider a sheet of 15× 15 cells. The cells are assumed 
to be shaped as spheres with a diameter of lx = ly = lz = 13 μm, based on Félix-Martínez et al.42 and Camunas-
Soler et al.43. The membrane surface area is Am = 5.3× 10−6 cm2 , and the default extracellular volume fraction 
is δe = 0.5 . The membrane dynamics (F and Iion ) are modeled using the phantom bursting β cell model from Ber-
tram and  Sherman44,45. The default gap junction conductance, Gg , is set to 2× 10−7 mS, based on Loppini et al.46.

Boundary conditions
In the BD and KNM simulations, we apply homogenous Neumann boundary conditions for ue on the entire 
boundary, except in the lower left corner of the domain, where we apply a homogenous Dirichlet boundary con-
dition for ue to ensure a unique solution of the system. Furthermore, we apply homogenous Neumann boundary 
conditions for v in all simulations. Note that since the extracellular potential is eliminated from the system in 
MD and SKNM, we only need to specify boundary conditions for the membrane potential for these models.

Parameter variations
In order to investigate how well SKNM approximates KNM in cases where the assumption (21) does not hold, 
we consider some selections of parameter variations described below.

Varying the geometrical anisotropy of hiPSC‑CMs
One case in which the assumption (21) may not hold is when the cell geometry is anisotropic. The shape of 
hiPSC-CMs have been reported to vary greatly, ranging from circular to elongated to  triangular37. In our default 
case, we consider cells with the same extension in all spatial directions. However, we will also consider some 
cases of more elongated cells. More specifically, we introduce the cell length to width ratio, α , defined such that 
lx = αly and increase α gradually from the default value of 1 to a value of 4 while maintaining an intracellular 

cell volume of approximately 4 pL. More specifically, we set ly ≈ 3

√

4000 µm3

α
 , lx = αly , and lz = (1+ δe) · ly , 

where δe is the extracellular volume fraction. Note that the ≈ is used to indicate that the value of ly is rounded 
to the nearest 0.5 μm.

Inhomogeneous gap junction cell connections in KNM and SKNM
Another case in which the assumption (21) will not hold is if the gap junction conductance, Gj,k

g  , varies randomly 
for each cell connection (j, k). In that case, Gj,k

e  is the same for all cell connections, whereas Gj,k
i  obtains different 

values for each connection (j, k). Therefore, no common � can be defined such that Gj,k
e = �G

j,k
i .

We consider a gradual increase in the gap junction conductance variation by introducing the gap junction 
variation parameter, γ , that is allowed to vary from 0 to 1, where γ = 0 represents no spatial variation and γ = 1 
represents the maximal degree of spatial gap junction variation. Furthermore, we draw a random number, θj,k , 
between 0 and 1 for each cell connection and let

where Ḡg is the default value for the gap junction conductance. To ease the comparison of the results, the same 
collection of random numbers, θj,k , are used in all simulations and for both KNM and SKNM.

Inhomogeneous gap junction strength in BD and MD
 In BD and MD simulations, the individual cell connections are not as straightforwardly present in the model as 
in KNM and SKNM. However, in order to set up a similar test case for BD and MD, we let the value of Gg vary 
in the same manner as for KNM and SKNM (following (33)) in different areas of the domain. More specifically, 
the domain is separated into areas of the size corresponding to one cell, and the value of Gg is set up to vary in 
each such area. The bidomain conductivity tensors were set up as described in Jæger and  Tveito25, i.e., by

and we observe that when Gg varies in space so does Mx
i  and My

i  , whereas Mx
e  and My

e  remains constant.
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Varying the extracellular volume fraction
In order to investigate how the differences and similarities between KNM and SKNM depend on the amount of 
extracellular space in the tissue, we consider four different values of the extracellular volume fraction, δe = 0.5 , 
δe = 0.2 , δe = 0.1 , and δe = 0.02 , corresponding to 50%, 20%, 10% and 2% extracellular space. The intracellular 
volume fraction is correspondingly updated so that δi + δe = 1 . It could be noted here that if the cells are shaped 
as spheres with radius r and organized in a structured manner, the intracellular volume is 4π

3
r3 , whereas the 

volume containing both a cell and an associated part of the extracellular domain could be (2r)3 . In that case, the 
intracellular volume fraction is δi ≈ 0.5 , which also gives δe ≈ 0.5 . Furthermore, in rat, rabbit and dog cardiac 
tissue, the extracellular volume has been estimated to be about 10–25% of the tissue  volume47–49. The case of 2% 
extracellular space could therefore be regarded as a relatively extreme case, included mostly to illuminate the 
potential for model differences between KNM and SKNM.

Definition of conduction velocity (CV)
hiPSC‑CMs
In order to compute the conduction velocity (CV) for the collection of hiPSC-CMs we stimulate an area corre-
sponding to the center 10 cells on the left boundary of the domain by a stimulus current of strength 20 μA/cm2 . 
Then, the CV is computed by recording the two points in time, ta and tb , when the membrane potential crosses 
a threshold value of −20 mV in the two cells a and b defined as cells number 10 and 35 in the x-direction and in 
the center of the domain in the y-direction. The CV is defined as

where xa and xb are the spatial x coordinates of the center of cells a and b, respectively.

β cells
For the collection of pancreatic β cells, we stimulate the center 5 cells on the left boundary of the domain, by 
setting the value of gKATP in the membrane model to half of its default value. This immediately starts rapid depo-
larization of the cells with a lower value of gKATP and initiates an excitation wave originating from these cells. 
Without this stimulation, rapid deploarization would not occur before about 100 seconds after the simulation 
started for the applied initial conditions and the default value of gKATP . The CV is computed using (37), where 
cells a and b are cells number 5 and 13 in the x-direction and in the center of the domain in the y-direction, and ta 
and tb are the points in time when the membrane potential in these points crosses the threshold value of − 50 mV.

Results
In this section, we compare the results of SKNM to those obtained from KNM, first for a collection of hiPSC-
CMs, and then for a collection of pancreatic β cells. We also compare the CPU efforts required to run simulations 
of the two models. In addition, we perform BD and MD simulations to observe how the differences and similari-
ties between SKNM and KNM compares to the differences and similarities between MD and BD.

KNM and SKNM for a collection of hiPSC‑CMs
We first run KNM and SKNM simulations of a sheet of hiPSC-CMs. Figure 2 shows snapshots of the KNM and 
SKNM membrane potential solutions for this cell collection at three points in time. We observe that a traveling 
wave solution is generated moving from the left to the right side of the domain. Furthermore, we observe that 
the KNM and SKNM solutions appear to be identical. This is as expected because for this default case, the SKNM 
assumption (21) holds, and SKNM should be equivalent to KNM and provide the same solutions. However, the 
SKNM assumption (21) is not expected to hold in all cases, and we will now compare the KNM and SKNM 
solutions in some cases when the assumption is violated.

Comparison of KNM and SKNM solutions for hiPSC‑CMs with anisotropic cell geometry
We consider the case of an anisotropic cell geometry as explained in the  “Parameter variations” section. Figure 3 
reports the CV computed for SKNM and KNM as the cell length to width ratio, α , is increased from the default 
value of 1 (corresponding to equal cell length and width) to the value of 4 (corresponding to a cell length that 
is 4 times longer than the cell width). Furthermore, we consider the cases of 50%, 20%, 10% or 2% extracellular 
volume to investigate how the similarities or differences between SKNM and KNM depends on the extracellular 
volume fraction. In Fig. 3, we observe that even though the SKNM assumption (21) only holds for α = 1 , the 
CVs computed using SKNM seem to provide very good approximations for the CVs computed using KNM.

Comparison of KNM and SKNM solutions for hiPSC‑CMs with inhomogeneous gap junction coupling
Next, we consider the case of an inhomogeneous gap junction coupling between cells. In this case, Gj,k

e  is the 
same for all cell connections, but Gj,k

i  given by (27) will vary for each cell connection. Since Gj,k
e  is constant and 

G
j,k
i  varies, the assumption (21) cannot hold. The degree of variability is represented by the gap junction variation 

parameter, γ , as explained in the “Parameter variations” section. In short, γ = 0 represents no spatial variation 
of the gap junction conductance and γ = 1 represents a randomly varying gap junction conductance ranging 
from 0 to 2Ḡg , where Ḡg is the default gap junction conductance value.

In Figure 4, we compare the CV computed using the KNM and SKNM solutions as the gap junction conduct-
ance variation γ is increased for the four different values of the extracellular volume percentage. We observe that 

(37)CV =
xb − xa

tb − ta
,



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16434  | https://doi.org/10.1038/s41598-023-43444-9

www.nature.com/scientificreports/

the KNM and SKNM solutions appear to be very similar in most cases. The exception is when the extracellular 
volume is very small. In that case, there is a considerable difference between the CVs of the two models and the 
difference increases as the gap junction variation, γ , is increased.
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Figure 2.  Traveling wave solutions of KNM and SKNM for the default model set-up for a collection of 40× 40 
hiPSC-CMs. The figure displays snapshots of the membrane potential solution at three points in time during the 
simulation. In this case, the SKNM assumption (21) holds, and the solutions of the two models appears to be 
identical.
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Figure 3.  Comparison of the conduction velocity (CV) computed using KNM and SKNM for a collection of 
hiPSC-CMs with an increasing cell length to width ratio, α (see the “Parameter variations” section). We consider 
the cases of 50%, 20%, 10%, and 2% extracellular space as indicated in the panel titles.
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Sources of difference between KNM and SKNM
In Fig. 4, we observed that the difference between KNM and SKNM increased as the gap junction conductance 
variation, γ , was increased and as the size of the extracellular space, δe , was decreased. In order to examine the 
potential sources of these effects, we recall the SKNM assumption, (21)

which was used to get (22)

which was inserted into the KNM equations to derive SKNM. In the case when (38) is not fulfilled, neither is 
(39), and introducing (39) into KNM represents an approximation. The error of this approximation for each 
cell connection j, k is given by

As explained above, when gap junction conductance variation, γ > 0 , is introduced, the assumption (39) can-
not hold for all j, k since Gj,k

e  is constant in space while Gj,k
i  varies. This makes the first factor in (40) non-zero. 

Furthermore, in Fig. 5, we illustrate that the size of this factor increases as the value of γ increases, illustrated 
by showing that the minimum value of F(�) defined in (29) to measure the difference between Gj,k

e  and �Gj,k
i  

increases for an increased value of γ . This indicates that the first term in (40) and thus the difference between 
SKNM and KNM should increase when γ is increased, as observed in Fig. 4.

In addition, Fig. 5 shows the difference between the maximum and minimum values of the extracellular 
potential, ue , during the simulation for different values of the extracellular volume fraction. We observe that 
this difference decreases as the size of the extracellular space increases, indicating that the second factor in (40) 
decreases. This indicates that the difference between KNM and SKNM might decrease for an increased size of 
the extracellular space, consistent with what is observed in Fig. 4.

(38)G
j,k
e = �G

j,k
i ,

(39)(G
j,k
i + G

j,k
e )(u

j
e − uke ) = (1+ �)G

j,k
i (u

j
e − uke ),

(40)Ej,k= |(G
j,k
e − �G

j,k
i )(u

j
e − uke )|.
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Figure 4.  Comparison of the conduction velocity (CV) computed using KNM and SKNM for a collection of 
hiPSC-CMs with an increasing gap junction conductance variation, γ (see the “Parameter variations” section). 
We consider the cases of 50%, 20%, 10%, and 2% extracellular space as indicated in the panel titles.
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the SKNM approximation (40) increases as the gap junction conductance variation, γ , increases, while the 
right panel illustrates that the second factor of (40) decreases as the extracellular volume fraction, δe increases, 
explaining the SKNM and KNM differences observed in Fig. 4. In the left panel, the extracellular space is 20% 
( δe = 0.2 ) and F(�) and � are defined as in (29) and (30), respectively. In the right panel, γ = 0.5.
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Comparison of CPU efforts for KNM and SKNM for hiPSC‑CMs
In Table 1, we report the CPU time required for a 10 ms long simulation of hiPSC-CMs using KNM and SKNM. 
The table reports the CPU time as the number of cells, N, included in the simulation increases, as well as the 
required CPU time per cell. We observe that the CPU time per cell appears to be close to constant for SKNM. 
For KNM, the CPU time per cell increases as the number of cells increases, and the CPU time appears to be 
approximately proportional to N1.5 (see the fourth column of Table 1). Furthermore, we observe that the CPU 
time required for SKNM is significantly shorter than the time required for KNM. For instance, for 50,625 cells, 
the required CPU time is about 90 times longer for KNM than for SKNM.

BD and MD for a collection of hiPSC‑CMs
As SKNM was derived from KNM in the same manner as MD can be derived from BD, it is interesting to observe 
whether the differences and similarities in model solutions (Figs. 3 and 4) and CPU requirements (Table 1) 

Table 1.  CPU time for 10 ms simulation of KNM and SKNM for a collection of N hiPSC-CMs.

N TKNM (sec) TKNM/N  (ms) TKNM/N1.5 (ms) TSKNM (sec) TSKNM/N  (ms)

400 0.4 0.9 0.04 0.04 0.11

1600 1.9 1.2 0.03 0.15 0.09

6400 33.0 5.2 0.06 0.88 0.14

25,600 231.7 9.1 0.06 3.43 0.13

50,625 600.5 11.9 0.05 6.68 0.13
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Figure 6.  Traveling wave solutions of BD and MD for the default model set-up for a collection of hiPSC-CMs. 
The figure displays snapshots of the membrane potential solution at three points in time during the simulation. 
In this case, the MD assumption (21) holds, and the solutions of the two models appears to be identical.
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between SKNM and KNM are similar to those between BD and MD. In this subsection we therefore perform 
BD and MD simulations similar to those performed for KNM and SKNM in the previous subsection.

First, in Fig. 6, we show snapshots of the BD and MD solutions for the default model set-up for a collection 
of hiPSC-CMs, similar to what was shown for KNM and SKNM in Fig. 2. As expected, the MD and BD solutions 
appear to be identical in this case when the MD assumption (16) holds.

Comparison of BD and MD solutions for hiPSC‑CMs
In Figs. 3 and 4, we observed that the CV computed using SKNM seemed to approximate that computed using 
KNM very well in most cases, but for a very small extracellular volume fraction and a large degree of spatial 
variation in the gap junction coupling, some significant differences were observed. In Figs. 7 and 8, we report 
similar comparisons for the bidomain model (BD) and the monodomain model (MD). Comparing Figs. 3 and 
7 and comparing Figs. 4 and 8 we observe that the differences and similarities between SKNM and KNM resemble 
those between MD and BD. In particular, MD seems to approximate BD very well for an anisotropic cell geom-
etry, but a considerable difference between the two models is observed for a large degree of spatial variation in 
the gap junction coupling and a very small extracellular volume fraction.

Sources of difference between BD and MD
Like for KNM and SKNM, the difference between the BD and MD solutions appears to increase for an increased 
gap junction conductance variation, γ , and a decreased extracellular volume fraction, δe . In order to examine 
these effects, we use the same approach as in the SKNM case and recall the monodomain assumption (16),

which was used to get (17)

which was inserted into BD to derive MD. In the case when (41) is not fulfilled, neither is (42), and introducing 
(42) into BD represents an approximation. The size of the error of this approximation is given by

Like for SKNM, when gap junction variation is introduced, the MD assumption (41) cannot hold everywhere 
because Me is constant in space while Mi varies in space. This would make the first factor in (43) non-zero. 

(41)Me = �Mi ,

(42)(Mi +Me)∇ue = (1+ �)Mi∇ue ,

(43)E = �(Me − �Mi)∇ue�.

1 2 3 4
4

5

6

7

8

C
V 

(c
m

/s
)

50% E

1 2 3 4
4

5

6

7

8
20% E

1 2 3 4
3

4

5

6

7

8
10% E

1 2 3 4
3

4

5

6
2% E

BD
MD

Figure 7.  Comparison of the conduction velocity (CV) computed using BD and MD for a collection of hiPSC-
CMs with an increasing cell length to width ratio, α (see the “Parameter variations” section). We consider the 
cases of 50%, 20%, 10%, and 2% extracellular space as indicated in the panel titles.
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Furthermore, Fig. 9 shows that the minimum value of F(�) increases as γ is increased, indicating that the first fac-
tor in (43) and thus the difference between MD and BD should increase when γ is increased, as observed in Fig. 8.

In addition, Fig. 9 shows the difference between the maximum and minimum values of the extracellular 
potential, ue , during the simulation for different values of the extracellular volume fraction. We observe that 
this difference decreases as the size of the extracellular space increases, indicating that the second factor in (43) 
decreases. This indicates that the difference between MD and BD might decrease for a increased size of the 
extracellular space, consistent with what is observed in Fig. 8.

Comparison of CPU efforts for BD and MD for hiPSC‑CMs
Table 2 shows the CPU times for a 10 ms simulation using BD and MD as the number of cells, N, included in the 
simulation increases. The increasing cell number is incorporated by adjusting the size of the spatial domain so 
that there is room for the considered number of cells. Like for KNM and SKNM, we observe that the CPU time 
for MD increases approximately linearly with the number of cells, whereas the time to solve BD increases as the 
number of cells increases by a rate of approximately N1.5 . Furthermore, the CPU time is considerably smaller 
for MD than for BD. For instance, for 50,625 cells, the CPU time is about 60 times longer for BD than for MD.

KNM and SKNM for a collection of pancreatic β cells
In addition to the collection of hiPSC-CMs considered so far, we will also apply KNM and SKNM for a second 
example application; a collection of pancreatic β cells.

Comparison of KNM and SKNM solutions for β cells with inhomogeneous gap junction coupling
In Fig. 10, we show snapshot solutions of an excitation wave traveling through a collection of β cells, computed 
using KNM and SKNM. In this case, all cell connections are the same and the SKNM assumption (21) holds. 
Therefore, we expect the KNM and SKNM solutions to be the same, and this is confirmed in the figure. In Fig. 11 
we consider a similar example where the KNM assumption do not hold because Gj,k

e  is constant, but Gj,k
i  varies for 

each cell connection as described in the “Parameter variations” section. In addition, we have set the extracellular 
volume fraction to 2%, since this appeared to give the largest discrepancy between SKNM and KNM in Fig. 4. 
Nevertheless, the KNM and SKNM solutions appear to be very similar for this example as well.

In Fig. 12, we have computed the conduction velocity for several choices of the gap junction variation, γ 
(see the “Parameter variations” section), and the extracellular volume fraction like we did for hiPSC-CMs in 
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Figure 9.  Sources of difference between BD and MD. The left panel illustrates that the first factor of the MD 
approximation (43) increases as the gap junction conductance variation, γ , increases, while the right panel 
illustrates that the second factor of (43) decreases as the extracellular volume fraction, δe increases, explaining 
the MD and BD differences observed in Fig. 8. In the left panel, the extracellular space is 20% ( δe = 0.2 ) and 
F(�) and � are defined as in (31) and (32), respectively. In the right panel, γ = 0.5.

Table 2.  CPU time for 10 ms simulation of BD and MD for a collection of N hiPSC-CMs.

N TBD (sec) TBD/N  (ms) TBD/N
1.5 (ms) TMD (sec) TMD/N  (ms)

400 18.6 46.5 2.3 2.5 6.3

1600 133.4 83.4 2.1 10.5 6.5

6400 874.9 136.7 1.7 35.1 5.5

25,600 7484.5 292.4 1.8 140.0 5.5

50,625 18552.2 366.5 1.6 297.4 5.9
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Fig. 4. We observe that for the collection of β cells, KNM and SKNM provide identical solutions in terms of 
conduction velocity. In fact, for the β cell examples considered in this section, it turns out that a version of the 
SKNM based on a negligible extracellular potential also provides virtually identical solutions to KNM (see the 
Supplementary Information).

Discussion
Our aim is to derive a fast and accurate model for small collections of excitable cells. Homogenized models like 
BD and MD are often considered to be reasonable in terms of computational demands, but lack representation of 
the very building block of the excitable tissue: the cell. On the other hand, the recently developed Extracellular-
Membrane-Intracellular (EMI) model allows detailed representation of every cell at the expense of a very high 
computational cost. In the recent  paper27, an alternative cell-based model was developed based on Kirchhoff ’s 
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Figure 10.  Snapshots of the membrane potential, v, computed using KNM and SKNM for the default 
pancreatic β cell collection set-up.
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current law. The model was referred to as the Kirchhoff Network Model (KNM) and allows representation of 
every cell, but not spatial representation of sub-cellular properties. Here, we have presented a simplification of 
KNM referred to as SKNM. The simplification follows the steps used to derive MD based on BD.

Simulating microphysiological systems (MPS)
Traditionally, cardiomyocyte analysis has been conducted using animal cells. However, this approach to under-
standing human cardiomyocytes presents significant challenges due to the intrinsic differences between human 
and animal cells. The advent of human induced pluripotent stem cells (hiPSCs), created by reprogramming 
somatic cells, such as skin  cells50, opens a substantial advancement in biological  research51. These hiPSCs can be 
differentiated into cardiomyocytes (hiPSC-CMs), which can be examined within microphysiological systems, 
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Figure 11.  Snapshots of the membrane potential, v, computed using KNM and SKNM for a collection of β 
cells with a variable gap junction coupling, γ = 1 (see the “Parameter variations” section), and 2% extracellular 
volume.



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16434  | https://doi.org/10.1038/s41598-023-43444-9

www.nature.com/scientificreports/

often referred to as organs on a  chips52,53. Specifically, these systems hold considerable potential for detecting 
undesirable side effects of emerging drug  compounds54–56.

To use measurements from an MPS for identifying potential side effects of a drug, it is essential to establish 
a precise mathematical model capturing the dynamics of hiPSC-CMs within the MPS. Several mathematical 
models have been developed to describe the action potential of hiPSC-CMs, see, e.g., Kernik et al.57, Paci et al.58, 
and Jæger et al.58,59 Additionally, the issue of modeling hiPSC-CMs as interconnected tissue has been addressed 
using the BD  framework6,60,61. Within an MPS, the quantity of cardiomyocytes is typically relatively modest, 
ranging from thousands to  millions52,55,62. The task of simulating these cells aligns well with the capabilities of 
KNM and SKNM. These models provide the flexibility of representing individual cells and are especially well-
suited given the relatively low cell count when compared to whole animal or human hearts.

The inverse problem of multi‑well facilities
 Multi-well experimental facilities have recently been utilized to facilitate simultaneous measurements of hiPSC-
CMs exposed to varying drugs at different dosages. In these facilities, each well houses several thousand cells. 
Rapid simulation of such cell collections is critical, as the simulation software will be employed to solve an 
inverse problem: given the measurements of the membrane potential and the cytosolic calcium concentration, 
deduce the properties of the ion  channels6,59,63. Specifically, if a drug is introduced and it perturbs the membrane 
potential and the cytosolic calcium concentration, the inverse problem involves tracing back the source of these 
changes to the drug’s influence on the ion channels. This inverse problem is commonly resolved by minimizing 
a cost function iteratively, see, e.g., Jæger et al.38. Therefore, the simulation tool must be used repeatedly, making 
computational efficiency paramount.

Computing efforts
Tables 1 and 2 present the CPU efforts required for KNM/SKNM and BD/MD, respectively. Analyzing this data, 
we estimate that the computational time needed to simulate a complete action potential of approximately 500 ms 
for 50,625 cells is 8.3 h for KNM, 5.6 minutes for SKNM, 10.7 days for BD, and 4.1 h for MD.

Clearly, if the simulator is employed iteratively for minimizing a cost function – a process that could entail 
numerous iteration – the computational efforts for all models except for SKNM would be prohibitively large. 
Consequently, SKNM emerges as the most promising alternative for such a task.

It should be noted that the CPU efforts depend on the computational set-up in terms of discretization param-
eters and solution methods. Here, we have used a much finer mesh than is common for BD and MD. Our dis-
cretization parameters are based on convergence analysis reported in the Supplementary Information. To reach 
convergence in the sense that the error is smaller than 2%, we need to have spatial resolution of about �x = 10 
μm. This is a much finer mesh than is often used in computational BD/MD analysis of large tissues. A mesh 
with �x = 0.25 mm is applied by many  authors64–67. With such a resolution, almost 1,000 adult cardiomyocytes 
can be placed within each computational  block13 and this is clearly too coarse for simulation of a few thousand 
hiPSC-CMs.

It should also be noted that the computational costs of both SKNM and MD are proportional to the number 
of cells under consideration, N, which is optimal. For both BD and KNM we found that the computational cost 
increased in proportion to N1.5 which is not optimal. Since optimal O(N) solvers have been developed for  BD68–70, 
it is reasonable to assume that it is possible to similarly improve the computational cost of KNM. This will be of 
importance in the case of large values of N.

Finally, it is worth emphasizing that our primary aim has not been to provide an exhaustive analysis of CPU 
efforts for each model, but rather to report our observations. A comprehensive comparison would necessitate a 
detailed examination of all implementation aspects, which we consider beyond the scope of this work. Our focus 
has been on presenting a cell-based model that strikes a balance between accuracy and computational efficiency.

Simulation of large tissues
It should be noted that the considerations presented here holds for small cell collections. For both KNM and 
SKNM, the individual cells represent the only discretization in space, and simulation of large tissues requires 
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Figure 12.  Comparison of the conduction velocity (CV) computed using KNM and SKNM for a collection 
of pancreatic β cells with an increasing gap junction conductance variation, γ (see the “Parameter variations” 
section). We consider the cases of 50%, 20%, 10%, and 2% extracellular space as indicated in the panel titles.
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the use of a very large number of cells. Under such conditions, the traditional BD and MD models are faster as 
these models can use a much coarser mesh than is defined by the cell size. The application of KNM and the faster 
SKNM should be considered in cases where it is of importance to represent the cells individually. Furthermore, 
if spatial representation at the sub-cellular level is needed, the EMI  model11–13 should be applied.

Pancreatic β cells
The problem of simulating a collection of hiPSC-CMs is, in mathematical terms, very similar to simulating a 
collection of pancreatic β cells, and we have demonstrated that the KNM and SKNM modeling approaches are 
applicable for pancreatic β cells, see Figs. 10, 11 and 12. Furthermore, we found that using a version of SKNM 
where the extracellular potential is assumed to be negligible, SKNM(ue = 0 ), provided a very good approxima-
tion of the full KNM set-up (see the Supplementary Information). This version of SKNM has been applied in 
a number of computational studies of collections of pancreatic β cells, e.g.71–76. In these studies, an additional 
modeling simplification is often included by setting Gj,k

i = G
j,k
g  . Recalling the formula for Gj,k

i  given in (27),

we observe that this simplification amounts to ignoring the first of the two terms in the denominator of (44). For 
the default parameters used for β cells in our study, this first term, lj,k

δ
j,k
i Aj,kσi

 , is about 10,000 times smaller than 

the second term, 1

G
j,k
g

 , so this additional simplification appears to be warranted in the β cell case. For hiPSC-CMs, 

on the other hand, the second term is only about 6.5 times larger than the first term, suggesting that both terms 
should be included in the denominator of (44) for hiPSC-CMs. Moreover, as observed in the Supplementary 
Information, the assumption of a negligible extracellular potential only appears to be applicable for hiPSC-CMs 
if the extracellular volume percentage is quite large (e.g., 50%).

Can the solutions of BD, MD, KNM and SKNM all coincide?
Because of the similarity of BD and KNM and of MD and SKNM, it is tempting to ask whether there are exam-
ples where the algebraic equations defining all four models can coincide completely. We demonstrate that this is 
indeed the case for a special case presented in the Supplementary Information. Note however, that the BD and 
KNM are fundamentally different in the sense that the cell is removed for the BD formulation whereas it is the 
very building block of the KNM approach. The same holds for MD and SKNM. The BD and MD models always 
require the choice of a specific numerical mesh whereas the cells define the spatial resolution of the KNM and 
the SKNM. Therefore, these models coincide only for very specific choices of meshes and parameters.

Conclusion
In this study, we present the Simplified Kirchhoff Network Model (SKNM), designed as a computationally effi-
cient approximation to the Kirchhoff Network Model (KNM). The SKNM’s theoretical basis is similar to the man-
ner in which the monodomain model (MD) is derived from the bidomain model (BD). Similar to the KNM, the 
SKNM is constructed to represent each individual cell within the tissue. This feature enables the model to account 
for variations in membrane properties for individual cells and in the electrical coupling between adjacent cells.

Data availibility
 The data and code generated in this study are publicly available at Zenodo: https:// doi. org/ 10. 5281/ zenodo. 
83402 0177.
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