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Establishment 
of the microstructure of porous 
materials and its relationship 
with effective mechanical 
properties
Kangni Chen , Hongling Qin * & Zhiying Ren 

In this study, a porous structure for a porous liquid storage medium is generated, and the 
homogenization theory based on displacement boundary conditions is used to predict the effective 
mechanical properties. The relationship between the porous material’s macroscopic mechanical 
properties and microstructure is next analyzed. In order to establish the relationship between the 
microstructure of porous materials and their macroscopic mechanical properties, assuming that the 
pores grow along the z direction, a method is proposed to generate 3D open-cell porous materials 
based on six design parameters (i.e., the number of pores, porosity, irregularity of pore distribution, 
the randomness of pore growth in the x and y directions, and randomness of pore size). Since the 
porosity of oil-bearing materials ranges from 20 to 30%, the porosity of the RVE (Representative 
Volume Element) was kept under control at about 25%, and the effect of the six design factors on the 
mechanical properties of the RVE was investigated. Utilizing SLA 3D printing technology, specimens 
were produced, and compression tests were used to show how useful the results of the numerical 
analysis were. The results demonstrated that after the number of RVE pores reaches 9, the numerical 
results have good repeatability. The irregularity of the initial pore distribution has little effect on 
the effective mechanical properties of the RVE. At the same time, the increase in the randomness of 
pore growth and the randomness of pore size increases the degree of weakening of the mechanical 
properties in the z-direction, while reducing the degree of weakening in the x and y directions, but the 
latter has a smaller impact. Furthermore, there is a superimposition effect of design parameters on the 
RVE.

The porous fluid storage medium is a solid–liquid biphasic complex inspired by biological articular cartilage, 
which can self-compensate for lubrication by precipitating fluid through the pores under the synergistic effects 
of external loads, frictional heat and siphoning. It is widely employed in the domains of oil-bearings, porous 
bionic bones, and self-lubricating ball linear guides due to its low manufacturing cost and self-circulating lubri-
cation  properties1. The solid phase of porous fluid storage media is typically made using techniques like cold 
pressing, hot sintering, and 3D  printing2, and the part is also known as porous material. Studies have shown that 
increasing the porosity of porous materials improves their ability to store fluid, which improves their lubrication 
 performance3, but it weakens the mechanical properties of the material, such as compressive  strength4–6. As the 
requirements for equipment service life and reliability increase, oil-bearings need to optimize the internal pore 
microstructure to balance the contradiction between their load bearing and lubrication  performance7, and self-
lubricating ball linear guides need to control the direction of pore openings to improve lubrication performance 
and lengthen service  life8. Therefore, the solution lies in determining the mapping relationship between the pore 
microstructure and its macro mechanical properties and designing the microstructure of porous materials based 
on the service conditions of porous fluid storage media.

This line of research has its roots in the investigation of the mechanical properties of typical porous structures 
found in nature. Typically, the elastic strut network model created by Gent and Thoma in their investigation of 
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the elastic deformation of  foams9, the orthogonal cube constitutive model developed by Gibson and  Ashby10. 
Later, Gibson and Ashby also developed the model’s elastic bending deformation and plastic yielding mecha-
nisms based on the hexagonal honeycomb structure’s elastic modulus and Poisson’s ratio under two mutually 
perpendicular loads. For open-cell aluminum foam materials, other researchers have developed a constitu-
tive model and proposed a tetrakaidecahedral  model11–13. These models are better suited to determining how 
the mechanical properties of uniformly regular thin-walled porous materials with high porosity relate to their 
microstructure. The effective mechanical properties of porous materials can also be calculated using a variety of 
numerical computational  methods14–16. Typical examples include the Mori–Tanaka model (M–T) for calculat-
ing the effective mechanical properties of a material based on the pore slenderness  ratio17 and the Three-Phase 
Model (TPM) for calculating the effective shear modulus of a material based on  porosity18. All these numerical 
models take into account the irregularity of porous materials to some extent, but most studies only characterize 
the pore characteristics in terms of porosity and the constants associated with the pore shape. The relationship 
between the microstructural features of porous materials and their macroscopic mechanical properties cannot 
be adequately described by these parameters. The microstructural can, however, be accurately represented by 
the finite element method (FEM), which is based on a model structure.

Finite element analysis based on RVE (Representative volume element) is an effective method for predicting 
the effective mechanical properties of porous materials. And among them, how to generate the RVE of porous 
materials becomes the key to the problem. Due to its ability to generate random and irregular polygons, the 
Voronoi diagram method is frequently used to generate random geometry models of porous materials. This 
method was proposed by Silva et al.19 to generate a 2D Voronoi random model with uniform wall thickness using 
pore shape irregularity and porosity as design parameters, and discovered that the mechanical properties of high 
porosity porous materials were less dependent on pore shape irregularity. They then looked into the model more 
thoroughly and discovered that the removal of some cell walls, which had little impact on porosity, resulted in a 
sharp decrease in the material’s useful mechanical  properties20. Chen et al.21 considered six cells (pore particle) 
random defects based on the 2D Voronoi model, namely cell size variation, cell wall fracture, cell wall misalign-
ment and cell absence, and found that cell edge fracture had the greatest effect on the yield strength of 2D foam 
materials. The random geometry models used in the above studies are based on the stochastic nature of one type 
of porous material (e.g., irregularities in pore shape and wall thickness). The microstructure of a porous mate-
rial typically involves two or more random elements. Li et al.22 discovered that the effective elastic modulus of 
2D foams was affected by the irregularity of pore shape and wall thickness, and that this effect increased as the 
porosity decreased. They did this by using porosity, cell shape irregularity, and wall thickness inhomogeneity 
as design parameters based on the Voronoi diagram method. Guo et al., investigated the degree of anisotropy 
of 2D porous materials based on the 2D Voronoi model and the 2D randomly distributed circular pore model, 
using porosity and pore number as design parameters. According to the findings, 2D porous materials’ degree 
of anisotropy decreases as the number of pores increases and increases as the porosity  increases5. However, it 
is obvious that 2D RVE is insufficient to adequately describe the intricate microstructure of porous materials. 
As a result, it is still necessary to develop a 3D RVE that considers the microscopic random characteristics of 
porous materials. Shen et al.23 investigated the dependence of random open-cell foam models on relative den-
sity by using the Voronoi tessellation technique to generate 3D random porous models using porosity and cell 
shape irregularity as design parameters. Porosity, cell shape irregularity, strut cross-sectional area, and strut 
cross-sectional shape were used as design parameters by Li et al., to generate a 3D Voronoi porous model based 
on the Voronoi tessellation technique. They then examined the effect of the design parameters on the effective 
mechanical properties of the open-cell foam  material24. Unlike the previous approach of generating 3D RVEs by 
assigning a cross-sectional area to each edge of a Voronoi polygon, Yang et al.4 propose to reduce the volume of 
a Voronoi polygon by using porosity as a design parameter and combine it with Boolean operations to generate 
3D random porous RVEs. According to studies, the microstructure of porous materials has a significant effect 
on the mechanical properties of materials. By using specific parameter settings, the Voronoi diagram method 
can reflect the microscopic random structure of porous materials. However, the irregularity of pore shape is 
always correlated with the pore distribution of 3D RVE generated by traditional Voronoi diagram. By generat-
ing pore shapes and then utilizing a random technique to locate each pore’s center points, this problem can be 
resolved. Li et al., generated a 2D square random porous model by using porosity and pore size irregularity as 
design parameters and a double-normal distribution algorithm to control the pore distribution and pore size, 
respectively. According to the findings, the effective Young’s modulus of porous materials rises as the average 
distance between pores increases, while the randomness of pore size has little bearing on the material’s Young’s 
 modulus25. Generatingrandomly distributed closed-cell spherical pore RVEs with random dimensions using the 
RSA (Random Sequential Adsorption) algorithm, Tarantino et al. discovered that the model is  isotropic26. The 
degree of anisotropy of the RVEs was discovered to be correlated with the pore aspect ratio by Anoukou et al.27, 
who improved the RSA algorithm to generate randomly distributed non-overlapping ellipsoidal pore RVEs with 
random shapes and sizes. There are numerous studies that are similar to this  one28–30, but this type of modeling 
primarily generates pores with regular shapes (spherical, square, ellipsoidal, etc.) and regulates the random dis-
tribution of pore particles by regulating the minimum distance between them. It is difficult to impose constraints 
on a randomly distributed collection of points based on pore shape size in order to create an open-cell random 
porous model with low porosity. Therefore, this method is mostly used to generate RVEs with a closed-cell 
structure, but for porous reservoir self-lubricating media such as oiled bearings, the open porosity is particularly 
important to enhance the lubricating properties of the  material5, 31, and a closed-cell structure is not suitable to 
describe the solid phase structure of oiled  bearings3. Additionally, it was demonstrated that the irregularity of 
the cell shape has a negligible impact on the mechanical properties of porous materials at low  porosity4, 24. The 
majority of studies have only looked at how porosity, pore morphology (shape, size, and orientation), and cell 
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wall morphology (wall thickness and cross-sectional area) affect the mechanical properties of porous materials, 
but they have not looked into how random the pore distribution is.

To that end, this study proposes a new modeling method for porous solid-phase structures used in oil-bearing 
porous fluid storage self-lubricating media based on the Voronoi diagram method. Six design parameters, includ-
ing porosity, number of pores, and pore morphology, are defined to generate fully open-cell, 3D porous materials 
with random distribution. The study divides pore morphology into pore size and pore distribution. To establish 
the relationship between the microstructure and macroscopic mechanical properties of porous materials and 
to discuss the effects of microstructure such as pore size and pore distribution on the mechanical properties of 
porous materials, the effective mechanical properties of RVEs with different design parameters were predicted 
using a computational homogenization method. Finally, specimens were produced using SLA 3D printing tech-
nology, and uniaxial compression tests were run to ensure the accuracy of the numerical calculations.

RVE generation
The RVE is the smallest volume of a material at the microscopic level and must contain enough microstruc-
tural information while being sufficiently smaller in size than the macroscopic structure in order to accurately 
represent a material’s properties at the macroscopic level. There are two common definitions of RVEs: (a) as a 
single cell in a periodic microstructure; and (b) as having enough microscopic components to satisfy statistical 
homogeneity and  ergodicity32. The study makes the assumption that the material has a periodic structure. The 
steps involved in generating an RVE and the corresponding control parameters are as follows.

The initial pore distribution
This study generates 2D Voronoi diagrams using the Voronoi irregularity α and the number of pores N. Then, 
the Voronoi diagrams that meet the requirements are screened using the number of pores N. Finally, the Voronoi 
polygons are scaled using the porosity ρ to generate the initial pore distribution. The specific steps are as follows. 
First, the model is generated based on the Voronoi diagram. Voronoi diagrams are generated by setting a speci-
fied number of random points in the plane, i.e., nucleation points, then taking the vertical bisector of the line 
connecting two adjacent random points and trimming the resulting vertical bisector according to the principle 
of non-intersection of lines, thus dividing the plane into a series of convex polygons. In this case, the random-
ness of the distribution and shape of the Voronoi polygons is controlled by the minimum permissible distance 
d0 between the nucleation points. Defining the distance between adjacent nucleation points of a perfectly regular 
two-dimensional Voronoi fovea as ds . The definition of the irregularity of a 2D Voronoi diagram is shown in 
Eq. (1). At the same time, to reduce the number of mesh and their singularity, the minimum side length of the 
Voronoi polygon is controlled to be 0.375d0.

As shown in Fig. 1, the smaller α means, the more regular the 2D Voronoi diagram.
Second, In order to reduce the restriction of the plane edge on the shape of the Voronoi polygon at the edge, 

the plane area set when generating the Voronoi diagram was expanded, and the number of nucleation points 
was increased proportionally. 2D Voronoi diagrams were continuously generated until the number of nuclea-
tion points within the desired range was equal to the required number of pores. Then take the Voronoi polygons 
whose nucleation points are within the expected range and use them to generate the RVE. For instance, if there 
are 25 nucleation points and the expected plane size is 1*1100 nucleation points are set up in the 2*2 plane to 
create the Voronoi graph, which is then used to extract the Voronoi polygons with nucleation points that fall 
within the middle of the 1*1 range.

Finally, the Voronoi polygons are scaled with the nucleation points as the center according to the given 
porosity, as shown in Eq. (2), so that the pore volume can meet the porosity requirements. Figure 2 represents 
the process of obtaining the initial pore coordinates used to generate the RVE from the Voronoi diagram. 

(1)α = 1− d0

ds
, (0 ≤ α ≤ 1)

Figure 1.  Voronoi diagram generated by different irregularities. (a) α = 0.2 . (b) α = 0.5 . (c) α = 0.8.
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Considering that the porosity of oiled bearings is generally 20–30%, the porosity of the RVEs generated in this 
paper is controlled to be around 25%.

 where √ρ is the porosity design parameter and ρ denotes the material porosity; i = x, y denotes the reference 
axis of the Cartesian coordinate system; j = 1, 2, . . . , n , n denotes the number of vertices of the Voronoi poly-
gon; χij represents the coordinates of the vertices of the Voronoi polygon that is ultimately used to generate the 
RVE.;pi0 , pij denotes the coordinates of the nucleation points and vertices of the Voronoi polygon, respectively, 
while specifying pz0 = χzj = 0.

Design parameters in the x, y direction
The pores of porous materials used to make porous fluid storage self-lubricating bearings can be visualized as a 
collection of overlapping, irregularly shaped curving pipelines that are each composed of a number of stacked 
pore particles. In this investigation, the pores were divided into various pipes. Assuming that each pipe is made 
up of a stack of ten irregular prismatic pore particles and that the porous material grows linearly along the posi-
tive z-axis depending on the initial pore shape, let the governing equation for its growth trajectory be as stated 
in Eq. (3).

(2)χij =
√
ρ
(

pij − pi0
)

+ pi0

(3)pℓ+1
i0 = pℓi0 + ωℓ

i l
e
z , i = x, y

(4)pℓ+1
i0 = (ℓ+ 1)lez , i = z

(5)χℓ+1
ij = χℓ

ij + ωℓ
i l
e
z , i = x, y

Figure 2.  The process of generating the initial pore coordinates ( ρ = 0.25, N = 25, α = 0.25 ). (a) Voronoi 
diagram generated by scaling the planes according to the randomness of the pore distribution and the number 
of pores (where the red square indicates the desired plane range); (b) Voronoi polygon with the nucleation 
points within the desired plane range; (c) initial pore distribution obtained by scaling the Voronoi polygon 
according to the target porosity.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18064  | https://doi.org/10.1038/s41598-023-43439-6

www.nature.com/scientificreports/

 where ℓ = 0, 1, . . . , 9,and χℓ+1, pℓ+1 denotes the coordinates of the vertex and nucleation of the ( ℓ+ 1)th pore 
particle(from the bottom to the top of the RVE); lz , lez denotes the size of the RVE in the z direction and the 
height of the pore particles respectively; ̟ i denotes the design parameters in the x and y directions, the larger 
̟i , the greater the randomness of the spatial distribution of the pore; ai is a set of random numbers uniformly 
distributed on (− 1, 1) ; while the corresponding coordinates of the pipe for ℓ = 0 are:p0i0 = pi0, χ

0
ij = χij . The 

entire pore pipe model can be generated by connecting the corresponding points once each pore particle’s top 
surface coordinates have been generated, as illustrated in Fig. 3.

Design parameters in the z direction
Considering that each section of each pore in a random porous material has a different radius, the vertex func-
tion of each pore particle can be determined by taking the nucleation point of each pore particle as the pole, 
setting up a local polar coordinate system, selecting the pole diameter rℓj0 corresponding to χℓ

ij as the initial pore 
diameter, and varying the initial pore diameter within a specific range in accordance with the z directional 
design parameters.

̟r is the z directional design parameter, with a larger ̟ r indicating greater randomness in the pore size of the 
pore pipe; ar is a set of random numbers that are evenly distributed on (− 1, 1) . As seen in Fig. 4, this reconstructs 
the pore wall to generate a pore pipe model that accounts for the z direction design parameters.

Periodicity of RVE
As previously mentioned, the directional design of the pore can be accomplished and, using Boolean operations, 
the target RVE can then be obtained given the RVE dimensions and the design parameters N ,α, ρ,̟x ,̟y ,̟r . 
However, because the porous material in this study is assumed to be periodic, the RVE boundary must adhere 

(6)χℓ+1
ij = (ℓ+ 1)lez , i = z

(7)lez =
lz

10

(8)ωℓ
i = ̟ia

ℓ
i , i = x, y

(9)rℓj = rℓj0 + ωℓ
r r

ℓ
j0, ℓ = 0, 1, . . . , 10

(10)ωℓ
rj = ̟ra

ℓ
r

Figure 3.  Examples of pipes that have been produced using various x, y design parameters. The dark purple 
line depicts the growth curve of the pore nucleation points when the pipe is generated using the specified x 
and y design parameters; the dark purple points are the nucleation points, the lavender points are the vertices 
of each pore particle determined by the aforementioned equation, the lavender surface is the pore cross-
section enclosed by the resulting vertices, and the nearly transparent lavender surface is the pore wall. (a) 
̟x = 0,̟y = 0 ; (b) ̟ x = 1,̟y = 1 ; (c) ̟ x = 2,̟y = 2.
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to the same standards for continuity and relative surface structure. The portion of a pore outside the RVE that 
passes through the RVE’s boundary must be transferred to the relative boundary of the RVE without changing 
orientation. As a result, the RVE’s period types are split into two categories, which are detailed below.

Periodicity in the x, y direction
The pore may go through four faces as it crosses the RVE boundary (positive x, negative x, positive y, and nega-
tive y faces). As shown in Fig. 5a, the portion of the pore beyond the RVE will enter the neighboring RVE by 
the negative x face as it passes through the positive x face of the RVE. As a result, the portion of the pore that is 
outside the original RVE is cut off and moved to the original RVE’s negative x plane (as illustrated in Fig. 5b). 
The portion of the pores that extends past the RVE is transferred to the negative y plane as they pass through 
the positive y plane, as seen in Fig. 6.

Similarly, as the pores cross the RVE’s edge, the pore simultaneously enters three adjacent RVEs. Trimming 
and transfer to the corresponding opposite face are done with the portion that extends past the RVE. For instance, 

Figure 4.  (a–c) Examples of pipes that have been produced using various x, y design parameters 
( ̟ x = ̟y = 1 ). The dark purple line depicts the growth curve of the pore nucleation points when the pipe is 
generated using the specified x and y design parameters; the dark purple points are the nucleation points, the 
lavender points are the vertices of each pore particle determined by the aforementioned equation, the lavender 
surface is the pore cross-section enclosed by the resulting vertices, and the nearly transparent lavender surface is 
the pore wall. (a) ̟ r = 0 ; (b) ̟ r = 0.3 ; (c) ̟ r = 0.6.

Figure 5.  Pores pass through the boundary surface in the x direction. (a) Two RVEs share a pore, with Cube1 
denoting the initial RVE and Cube2 denoting the adjacent RVE; a is the portion of the pore that lies within 
the initial RVE; b denotes the portion of the pore that lies within the adjacent RVE; (b) the pore beyond the 
boundary is transferred to the corresponding relative surface of the initial RVE.
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when the pore traverses the negative x–y edge, the portion of the pore that traverses the positive x, positive y, 
and positive the x–y edge is clipped and moved to the respective negative x, negative y, and negative x–y edges, 
as shown in Fig. 7.

Periodicity in the z direction
The positive z plane and the negative z plane of the RVE must both have the same pore distribution in order for 
the RVE to achieve periodicity in both the positive z plane and the negative z plane. As a result, the following 
constraint is placed on ax , ay , and ar in this study. Figure 8 illustrates the pores once the constraint is in place.

Corrected porosity
Although the single pore model is obtained by volume scaling based on a given porosity, the staggering and over-
lapping of pores, the randomness of pore size, and the realization of periodic structures will all have an impact 

(11)
10
∑

ℓ=1

aℓi = 0, i = x, y

(12)a10r = 0

Figure 6.  Pores pass through the boundary surface in the y direction. (a) Two RVEs share a pore, with Cube1 
denoting the initial RVE and Cube2 denoting the adjacent RVE; a is the portion of the pore that lies within 
the initial RVE; b denotes the portion of the pore that lies within the adjacent RVE. (b) The pore beyond the 
boundary is transferred to the corresponding relative surface of the initial RVE.

Figure 7.  The pore passes over one edge and two faces. (a) Four RVEs share a pore. Cube1 denotes the initial 
RVE; Cube2, Cube3, and Cube4 denote adjacent RVEs; a is the portion of the pore located within the initial 
RVE; b, c, and d denote portions of the pore located within adjacent RVEs, respectively; (b) the pore beyond the 
boundary is transferred to the corresponding relative surface of the initial RVE.
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on the volume of the overall pores generated. Therefore, after generating the overall pores, the pore model is 
reconstructed according to Eq. (13) to achieve the purpose of correcting the porosity of the RVE.

 where r̂ℓj  represents the polar radius corresponding to the pore vertex after correction.

Calculation implementation
This study uses a computational homogenization method to perform a finite element analysis of the mechanical 
properties of the porous material RVE.

Computational homogenization method
At sufficiently tiny sizes, any material can be thought of as being non-homogeneous, although at macroscopic 
dimensions, one often considers the statistical homogeneity of the material. The homogenization method uses 
the fine-scale strain field of a material to solve for the macroscopic effective properties of that material. The 
homogenization calculations below are based on biphasic composites since porous materials can be thought of 
as composites of a base material plus air.

According to homogenization  theory33, the average stress σ ij and the average strain εij are defined as:

 where V is the volume of the RVE, σij(x) and σij(x) is the stress and strain states at any point, respectively. The 
effective stiffness Cijkl and the effective flexibility Sijkl is defined as:

In order to calculate the average stress and average strain in a multiphase material,  Hill34 introduced a phase 
average concentration for the various phases in the material. The particular calculation is displayed below.

(13)r̂ℓj =
√

ρVRVE/Vrr
ℓ
j , ℓ = 0, 1, . . . 10.

(14)σ ij =
1

V

∫

V
σij(x)dV , εij =

1

V

∫

V
εij(x)dV

(15)σ ij = Cijklεkl

(16)Sijkl = C
−1

ijkl

(17)σ ij =
1

V

(

∫

Vf

σ
f
ij dVf +

∫

Vm

σm
ij dVm

)

Figure 8.  Constrained pores ( ̟ x = ̟y = 1.5,̟ r = 0.3 ) are applied. (a) The pore before restraint is applied. 
(b) The pore after the application of the constraint.
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 where f ,m denotes air and matrix material respectively, and vf , vm denotes the volume fraction of air and matrix 
material, respectively. Similarly, the average strain can be expressed as:

Equation (18) can be stated as follows based on the constitutive relationship of the composite phases:

where each phase’s stiffness matrix Cijkl is regarded as a constant term. Therefore:

The displacement boundary condition is applied in this investigation. Thus, the average strain of the RVE 
can be expressed using the divergence theorem, as shown in Eq. (23). And Eq. (24) will establish a relationship 
between the local strain and the average strain for any point in the RVE.

 where, Ŵ represents the surface of the RVE, η is the normal direction of the RVE boundary, u is the displace-
ment, and Aijkl is the tensor of the strain concentration factor. Equation (25) is obtained by integrating Eq. (24) 
and taking the volume average.

 where A is the phase’s average strain concentration factor. Equations (22) and (25) can be substituted for Eq. (19) 
to determine the global average stress as follows:

Equation (26), when compared to Eq. (15), yields the following as the composite’s effective stiffness matrix:

Computational implementation of RVE
The pores and a square of a specific size were generated in Abaqus using a Python script in accordance with the 
method for generating pores described in sections “The initial pore distribution”–“Design parameters in the z 
direction”. The pores penetrate the square. Subsequently, the corresponding pores were treated periodically in 
accordance with the method in section “Periodicity of RVE”. The pore Instances were then combined. Finally, a 
Boolean operation was used to obtain the target RVE, as shown in Fig. 9a.

Finite element analysis of the RVE
All of the finite element analyses in this study were carried out by combining Python and Abaqus. Assume that 
the base material of the solid is homogeneous, isotropic and linearly elastic. Using the normalization method, 
take the RVE size to be 1× 1× 1, Young’s modulus Es = 1 ( Es is linearly proportional to the effective stiffness) 
and Poisson’s ratio νs = 0.34. The finite element analysis was performed using a ten-node tetrahedral element 
(C3D10), as shown in Fig. 9b.
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The superposition principle was used to impose displacement boundary conditions as a combination of six 
pure strain components, and finite element calculations were carried out for each boundary condition. Then, from 
the ODB file, the strain components {ε11, ε22, ε33, ε23, ε13, ε12}T at each element’s integration point, the element 
volume, and the local orientation of each element were extracted. Finally, the effective performance of the RVE 
was calculated using this data (as explained in “Computational homogenization method”).

Results and discussion
Because a large portion of previous  research4–6, 35, concentrated on how porosity affected the mechanical proper-
ties of porous materials, the findings almost universally indicated that mechanical properties of porous materials 
decreased as porosity ρ increased. As a result, this study will use a controlled variable approach to discuss the 
effects of the number of pores N, the initial pore distribution uniformity α , the pore growth randomness ̟ x,̟ y 
and the pore size randomness ̟ r on the effective mechanical properties of porous materials.

Mesh convergence study
By examining the numerical results for the same RVE with various element numbers, the mesh 
convergence study was carried out. For the RVE, shown in Fig.  10a, with design parameters 
ρ = 0.25, α = 0.25, ̟x = ̟y = ̟r = 0, N = 16 . The number of elements are varied from 6× 104 to 1× 106 . 
The results are displayed in Fig. 10b–d. When there are more than 5× 105 elements, it is clear that the numerical 
results converge. As a result, to discretize the remaining RVE models, mesh sizes with element counts of 5× 105 
and higher are used.

In addition, the directions 1, 2 and 3 are used to indicate directions x, y and z, respectively. The stress and 
strain vectors in the resulting constitutive model are {σ11, σ22, σ33, σ23, σ13, σ12}T and {ε11, ε22, ε33, ε23, ε13, ε12}T , 
respectively, so the components of the effective stiffness tensor are derived by mapping these tensors one to one. 
The following engineering constants are E1 , E2 , E3 , G12 , G13 , G23 , v12 and v23.

Effects of the number of pores
The effect of the number of pores N on the mechanical properties of the RVE was analyzed for a columnar pore 
RVE (i.e., ̟ x = 0, ̟y = 0, ̟r = 0 ) with porosity design parameter ρ = 0.25 and Voronoi diagram irregularity 
α = 0.25 . Five independent sets of nucleation points pi0 ( i = x, y ) were used to generate five porous material 
models for each value of N, i.e., N = 4, 9, 16 and 25. In addition, the porosity of the RVE generated in the study 
is all within the range of (25± 0.5)%.

Figure 11 shows one of the RVEs generated in this section and the average value of the effective engineering 
constants at different N values. The corresponding relative standard deviation (RSD) is shown in Table 1. Fig-
ure 11 indicates that for a prismatic RVE, its Young’s modulus in the x and y direction E1, E2 are close (maximum 
relative difference of 8%), the Poisson’s ratio in the XZ and YZ planes v13, v23 are close (maximum relative dif-
ference of 8%) and shear modulus in the XZ and YZ planes G13, G23 are close (maximum relative difference of 
8%). The effect of the number of pores N on the Young’s modulus E3 in the z direction of the RVE can be ignored.

From Table 1, it can be seen that when N = 16 and N = 25, the relative standard deviation of the effective 
engineering constants of the RVE is less than 15%. This indicates that the effective engineering constants of the 
RVE are stable when N = 9, N = 16 and N = 25. However, when N = 4, the effective modulus of the RVE fluctuates 
greatly, with the maximum relative standard deviation of its effective engineering constants being 29%. Babu 
discovered that the mechanical properties of a material are influenced by the projected area of the fibers in the 
corresponding direction when he looked into the effective mechanical properties of fiber  composites36. When 
there are few pores, the position of the pores affects the projected area of the pores on the XZ and YZ planes. 

Figure 9.  The RVE design parameters are N = 16, α = 0.25, ρ = 0.25, ̟x = 1, ̟y = 1, ̟r = 0 . (a) The 
RVE geometry model generated in Abaqus; (b) the RVE meshed.
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The relative projected area of the pores on the XZ and YZ planes approaches 100% as the number of pores rises. 
As a result of the randomness of the pore locations, when the number of pores is low, the effective engineering 
constants E1, E2, G12, G13, G23, v12, v13, and v23 fluctuate greatly.

Effect of inhomogeneity of initial pore distribution
Based on the research in section “Effects of the number of pores”, in order to reduce the effect of the number of 
pores on the results, the effect of the initial pore distribution inhomogeneity α on the mechanical properties of 
the RVE was analyzed for a columnar pore RVE (i.e.̟ x = 0, ̟y = 0, ̟r = 0 ) with N = 16 . For each value of 
α , five independent sets of nucleation points pi0 ( i = x, y ) were used to generate five porous material models, 
respectively. Figure 12 shows one of the RVEs generated in this section and the average value of the effective 
engineering constants of the RVE at different α values. Table 2 shows the relative standard deviation of the cor-
responding effective properties.

Figre 12 shows that α has little effect on the effective mechanical properties of the RVE. At the same time, 
similar conclusions can be drawn for the mechanical properties of a columnar RVE as in section “Effects of the 
number of pores”. Observing Table 2, it can be seen that the relative standard deviation of the effective properties 
predicted at different α values is all less than 15%. This indicates that the numerical discretization is small and 
the numerical results are stable. In addition, it can be seen from Figs. 11 and 12 that the Young’s modulus in the z 
direction of a columnar RVE is independent of the distribution of pores in the XY plane and remains around 0.75.

Li discovered that the inhomogeneity of the strut cross-sectional area decreased the mechanical properties of 
 foams24. At the same time, changes in the relative projection area of the pores and the implementation of periodic 
structures will also have an impact on the mechanical properties of the RVE. These factors caused fluctuations 
in the mechanical properties of RVE, but Table 3 shows that this fluctuation is acceptable.

Figure 10.  (a) An RVE geometry model with the following design parameters 
ρ = 0.25, α = 0.25,̟x = ̟y = ̟r = 0, N = 16 ; (b–d) convergence of effective performance with the 
number of elements in an RVE.
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Effect of randomness in pore size
To reduce the effect of other factors on the mechanical properties of the RVE, the effect of pore size randomness 
( ̟ r ) was studied for a porous material model with α = 0.25 , N = 16 , ρ = 0.25 , ̟x = 0 , ̟y = 0 . Five porous 
material models were generated using five independent sets of nucleation points pi0 

(

i = x, y
)

 and random values 
aℓkr (ℓ = 0, 1, ..., 9; k = 1, 2, ...,N) for each ̟ r value, i.e.,̟ r = 0.2, 0.4, 0.6, 0.8, 1 . Figure 13 shows one of the RVEs 
generated in this section and the average value of the effective engineering constants at different ̟ r values. The 
corresponding relative standard deviation (RSD) is shown in Table 3.

Figure 13 shows that, on average, the effect of ̟r on the mechanical properties of the RVE is small. As ̟r 
increases further, E3 and v12 decrease, E1,E2,G12,v13 and v23 increase. The effect of ̟ r on G13 and G23 is negligible. 
This occurs because, as ̟r increases, the pore size inhomogeneity of the porous material increases and the 
projected area of the pores decreases on the XZ and YZ planes (as shown in Fig. 14) and increases on the XY. 
Therefore, the randomness of the pore size has an enhancing effect on the mechanical properties of the RVE in 

Figure 11.  (a) An RVE geometry model with design parameters 
ρ = 0.25, N = 16, α = 0.25, ̟x = ̟y = ̟r = 0 . (b–d) Effects of pore number on RVE effective mechanical 
properties.

Table 1.  Relative standard deviation in effective properties for porous materials with different N (unit :%).

N E1 E2 E3 G12 G13 G23 v12 v13 v23

4 7.49 21.04 0.12 3.89 2.79 13.15 28.92 7.55 21.02

9 2.05 13.09 0.03 12.27 2.02 6.29 8.94 2.05 13.08

16 3.43 3.73 0.23 5.13 2.83 1.88 5.33 3.27 3.89

25 3.22 1.42 0.11 4.26 1.63 1.46 3.06 3.14 1.47
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Figure 12.  (a) An RVE geometry model with design parameters 
ρ = 0.25, N = 16, α = 0.5, ̟x = ̟y = ̟r = 0 . (b–d) Effects of pore irregularity on RVE effective 
mechanical properties.

Table 2.  Relative standard deviation in effective properties for porous materials with different α (unit: %).

α E1 E2 E3 G12 G13 G23 v12 v13 v23

0.25 3.43 3.73 0.23 5.13 2.83 1.88 5.33 3.27 3.89

0.375 7.20 2.95 0.16 6.82 5.18 2.28 7.08 7.08 3.04

0.5 5.55 4.67 0.07 4.39 2.57 1.79 5.81 5.60 4.65

0.625 6.68 3.75 0.04 10.44 4.01 3.18 7.86 6.71 3.75

0.75 6.34 9.32 0.03 3.85 2.68 3.94 5.62 6.33 9.31

Table 3.  Relative standard deviation in effective properties for porous materials with different ̟ r(unit : %).

̟r E1 E2 E3 G12 G13 G23 v12 v13 v23

0 3.43 3.73 0.23 5.13 2.83 1.88 5.33 3.27 3.89

0.2 8.37 5.90 0.08 6.84 3.34 2.46 8.26 8.39 5.91

0.4 2.22 6.76 0.20 4.45 2.24 2.46 10.55 2.27 6.86

0.6 2.09 3.37 0.84 4.13 0.94 1.55 4.83 1.81 3.60

0.8 3.75 2.95 1.02 6.66 4.04 1.72 8.21 4.10 2.80

1 3.16 5.40 1.45 5.78 3.08 2.90 3.29 4.46 5.16
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the x and y directions and a weakening effect on the mechanical properties of the pores in the z direction, and this 
effect increases with the randomness of the pore size increases. Equation (9) shows that ̟ r leads to proportional 
scaling of the pore cross-section with respect to the z direction, resulting in a close change in the projected area 
of the pore on the XZ and YZ planes, leading to a close effect of ̟ r on the mechanical properties of the porous 
material in the x direction and y direction In addition, the effect of ̟ r on the effective engineering constants of 
the RVE is not significant. When ̟r = 1 , the average values of E1,E2,G12,v13 and v23 are 6%, 5%, 8%, 12%, and 

Figure 13.  (a) An RVE geometry model with design parameters 
ρ = 0.25, N = 16, α = 0.25, ̟x = ̟y = 0, ̟r = 0.8 ; (b–d) effects of randomness in pore size on RVE 
effective mechanical properties.

Figure 14.  The projection of the pore on the YZ plane with different ̟ r . (a) ̟ r = 0 ; (b) ̟ r = 0.4 ; (c) ̟ r = 0.8

.
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13% larger than when ̟r = 0 , respectively. E3 and v12  are relatively reduced by 12% and 6%, respectively. In 
terms of Young’s modulus, as ̟r increases, the increase in E1 and E2 is smaller than the decrease in E3 . From 
Table 3, it can be observed that the relative standard deviation of the effective stiffness of the RVEs generated 
at different ̟ r values is less than 15%, indicating that the method of generating RVEs and predicting effective 
stiffness in this study is repeatable.

.
Effect of pore growth randomness
In order to reduce the influence of other factors on the mechanical properties of RVE, the effect of pore growth 
randomness ( ̟ x , ̟y ) on the mechanical properties of RVE was analyzed for a porous material model with 
α = 0.25 , N = 16 , ρ = 0.25 , ̟ r = 0 . For each pair of ̟ x and ̟ y values, i.e., ̟ x = 0,1,2, and ̟ y = 0,1,2,3,4, five 
porous material models were generated using five sets of independent nucleation points pi0(i = x, y ) and random 
numbers aℓki (ℓ = 0, 1, . . . , 9; k = 1, 2, . . . ,N) , respectively. The average values of the corresponding effective 
engineering constant predictions and their relative standard deviations are shown in Fig. 15 and Table 4, respec-
tively. From Fig. 15, it can be seen that on average, as ̟ y increases, E1 , G12 , v13 and v23 increase, while G13,G23 
and E3 decrease, v12 and E2 fluctuates slightly. The increase of ̟ x leads to the increase of E2 , G12 , v13 and v23 , the 
decrease of G13,G23 and E3 , but has little effect on E1 . In addition, as ̟ x increases, v12 decreases. As ̟ x further 
increases, v12 remains within a stable range. At the same time, for each ̟ x value, as ̟ y   increases from 0 to 4, 
the change in the average value of E1 is similar. For each ̟ y value, as ̟ x increases from 0 to 3, the change in the 
average value of E2 is similar. This means that when ̟ x and ̟ y change, the interaction between them has little 
effect on the elastic modulus in the x and y directions. The effect of pore growth randomness on E3 decreases as 
pore growth randomness increases. At the same time, from ̟ x = ̟y = 0 to ̟ x = 3,̟ y = 4 , E1 , E2,G12,v13 and 
v23 increased by 18%, 16%, 26%, 58%, 55%, respectively. E3 , G13,G23,v12 decreased by 181%, 55%, 53%, 17%, 

Figure 15.  Effective engineering constants of the RVE for different ̟ x and ̟ y , where X-DP i denotes the 
x-directional design parameter ̟ x = i, (i = 0, ..., 3).
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respectively. This indicates that the sensitivity of the mechanical properties of RVE in the z direction to pore 
growth randomness is higher than that of the mechanical properties of RVE in the x and y directions.

This is because when ̟ y (or ̟ x ) increases while ̟ x (or ̟ y ) remains unchanged, the projection area of the 
pores on the XY plane increases significantly, and the projection area of the pores on the YZ (or XZ) plane 
decreases as ̟ y (or ̟ x ) increases, but the projection area on the XZ (or YZ) plane remains unchanged. Therefore, 
as ̟ y (or ̟ x ) increases, the mechanical properties of porous materials in the x (or y) direction increase, while 
the mechanical properties in the z direction decrease. At the same time, an increase in pore growth randomness 
leads to an increase in the irregularity of cell wall cross-sectional area. However, from Fig. 15, it can be seen that 
for low porosity RVEs with a given porosity, the relative projection area of pores dominates the effect on RVE’s 
effective mechanical properties. In other words, as ̟ x or ̟ y increases, the randomness of pore particle distribu-
tion on the XZ or YZ plane increases, and at the same time, the randomness of pore growth in the x or y direction 
increases. This indicates that the mechanical properties of porous materials are affected by the randomness of 
pore particle growth. As pore growth randomness increases, the relative projection area of pores on the XY plane 
increases and decreases on the XZ and YZ planes; and the unevenness of cell wall cross-sectional area increases. 
As a result, the randomness of the growth of porous particles increases, making the mechanical properties of 
porous materials weaker in the z direction and stronger in the x and y directions.

Table 4 shows that the relative standard deviations of the effective mechanical properties predicted by the 
five sets of RVEs generated by different ̟ y and ̟ x are all less than 15%. This once again proves the stability of 
the numerical results and the repeatability of the method used in this study.

The synergy of the three spatial design parameters
To reduce the impact of other factors on the mechanical properties of RVE, the effects of pore growth random-
ness ( ̟ x ,̟y ) and pore size randomness ( ̟ r ) on the mechanical properties of RVE were analyzed for a porous 
material model with α = 0.25,N = 16,ρ = 0.25 For each pair of ̟ x , ̟ y , and ̟ r values, i.e., ̟ x = 2,3,̟ y = 2,4 , 
and ̟ x = 0, 0.4, 1 , five porous material models were generated respectively. The average values of the predicted 
effective engineering constants and their relative standard deviations are shown in Tables 5 and 6 respectively.

As shown in Table 5, there is a superimposition effect when the three spatial design parameters work together. 
As ̟ r increases from 0 to 1, the maximum relative change rate of the average value of the effective mechanical 
properties of RVE corresponding to the four groups of ̟ x ,̟y is 10%. When the three spatial parameters work 
together, the impact of ̟r on the effective mechanical properties of RVE is still not significant, and the trend 
of the impact of spatial design parameters on the effective mechanical properties of RVE remains unchanged. 
In addition, the interaction of the three spatial design parameters has little effect on the equivalent mechanical 
impact of RVE in the x and y directions. The effective mechanical properties of RVE in the z direction decrease 
as the randomness of pore space increases, but when the randomness of pore space reaches a certain level, the 
rate of decline in the mechanical properties of RVE in the z direction slows down as the spatial design parameters 
continue to increase. For example: when ̟ x changes from 2 to 3 and ̟ y changes from 2 to 4, the relative changes 
in E3 corresponding to three ̟r values (0, 0.4, and 1) are 72%, 70%, and 51%, respectively. When ̟x = 2 and 

Table 4.  Relative standard deviation in effective properties for porous materials with different ̟ y and ̟ x 
(unit: %).

̟x ̟y E1 E2 E3 G12 G13 G23 v12 v13 v23

0 0 3.43 3.73 0.23 5.13 2.83 1.88 5.33 3.27 3.89

1 0 7.14 3.21 1.63 5.22 3.12 1.00 5.26 6.73 3.12

2 0 7.43 4.37 3.86 2.02 5.32 4.16 7.27 8.63 6.67

3 0 2.53 2.93 5.66 3.79 2.85 4.23 4.79 6.47 3.10

0 1 3.73 7.63 1.02 5.16 2.54 5.72 6.04 4.54 7.09

1 1 2.57 3.35 1.87 2.10 1.11 1.90 4.73 2.83 5.58

2 1 7.23 4.69 3.26 6.90 5.38 3.50 6.98 8.97 4.32

3 1 2.08 3.74 5.46 2.89 1.78 3.49 3.39 3.90 5.38

0 2 1.81 6.79 2.84 4.40 4.71 4.76 8.28 4.01 8.33

1 2 2.57 2.53 0.88 2.63 3.74 1.36 4.19 3.98 3.27

2 2 2.94 2.63 3.93 4.27 1.31 3.05 2.63 3.12 3.52

3 2 3.06 4.23 5.42 1.31 2.70 3.52 2.50 2.63 5.05

0 3 2.96 3.99 3.05 2.86 2.18 2.88 5.99 2.83 5.03

1 3 4.13 3.91 4.28 2.56 4.37 4.40 4.00 5.23 5.83

2 3 3.64 2.63 5.36 1.63 4.03 2.34 5.14 2.66 4.06

3 3 4.32 0.82 7.12 1.54 4.09 3.43 1.57 4.55 1.85

0 4 1.73 3.55 8.04 4.26 2.75 4.92 6.20 6.96 3.85

1 4 2.28 4.27 7.93 3.93 3.61 3.63 3.19 4.12 4.18

2 4 2.51 2.72 3.83 1.77 3.20 3.29 2.74 6.12 2.98

3 4 1.90 2.91 10.00 1.37 3.07 5.72 2.70 3.83 2.88
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̟y changes from 2 to 4, the relative changes in E3 corresponding to three ̟ r values (0, 0.4, and 1) are 31%, 52%, 
and 31%, respectively. When ̟x = 3 and ̟y changes from 2 to 4, the relative changes in E3 corresponding to 
three ̟ r values (0, 0.4, and 1) are 40%, 42%, and 31%, respectively.

Table 6 shows that the relative standard deviations of the effective mechanical properties of the five groups 
of RVEs generated by different design parameters are all less than 15%, proving the reliability and repeatability 
of the results.

Experimental validation and results
Experimental equipment and methods
To verify the reliability of the numerical method used in the previous section, the RVE with design param-
eter ρ = 0.242, α = 0.25, N = 16, ̟x = ̟y = ̟r = 0, (sample b) and the RVE with design parameter 
ρ = 0.24, α = 0.25, N = 16, ̟x = 0, ̟y = 1, ̟r = 0 (sample c) were prepared using SLA 3D printing tech-
nology. The 3D printed material was photosensitive resin. The specimen’s E3 was then determined by uniaxial 
compression tests. The model was then numerically solved again using Poisson’s ratio of the material supplied 
by the manufacturer. Finally, the values between the two were compared in order to verify the reliability of the 
numerical method.

According to ASTM D1621-16 (Standard Test Method for Compressive Properties of Rigid Cellular Plastics), 
the sample is designed as a cube with a side length of 6 cm. Three samples are made for each structure to assure 
the objective and reliability of the experimental results (As shown in Fig. 16). Additionally, specimens of the 
same size with a porosity of 0% (labeled as specimen a) were produced for the study in order to determine the 
matrix material’s Young’s modulus. The actual porosity of the specimens is shown in Table 7. The experimental 
procedure was displacement-controlled, and the specimens were quasi-statically loaded using the test machine’s 
indenter moving uniformly at a rate of 1 mm/min.

Experimental results and validation
Stress–strain curves for each specimen under compression were generated by applying uniaxial compression in 
the z direction to several specimens, as illustrated in Fig. 17. The three curves for specimens b and c, as well as 

Table 5.  The average value of the effective engineering constants for different ̟ r,̟ y and ̟ x (unit : %).

̟x ̟y ̟r E1 E2 E3 G12 G13 G23 v12 v13 v23

2 2 0 0.499 0.505 0.460 0.174 0.171 0.175 0.268 0.270 0.275

2 4 0 0.525 0.526 0.330 0.190 0.142 0.156 0.272 0.298 0.306

3 2 0 0.508 0.524 0.374 0.186 0.162 0.158 0.269 0.294 0.295

3 4 0 0.551 0.543 0.267 0.196 0.136 0.139 0.272 0.335 0.328

2 2 0.4 0.505 0.496 0.455 0.177 0.171 0.172 0.274 0.272 0.273

2 4 0.4 0.542 0.519 0.299 0.191 0.142 0.145 0.277 0.319 0.312

3 2 0.4 0.515 0.527 0.381 0.184 0.161 0.155 0.266 0.291 0.293

3 4 0.4 0.543 0.543 0.268 0.199 0.138 0.139 0.275 0.330 0.325

2 2 1 0.521 0.528 0.420 0.185 0.167 0.173 0.274 0.287 0.293

2 4 1 0.543 0.542 0.323 0.194 0.140 0.153 0.276 0.303 0.310

3 2 1 0.526 0.537 0.364 0.191 0.160 0.154 0.274 0.302 0.297

3 4 1 0.559 0.550 0.278 0.198 0.135 0.138 0.278 0.326 0.323

Table 6.  Relative standard deviation in effective properties for porous materials with different ̟ r,̟ y and ̟ x 
(unit: %).

̟x ̟y ̟r E1 E2 E3 G12 G13 G23 v12 v13 v23

2 2 0 2.94 2.63 3.93 4.27 1.31 3.05 2.63 3.12 3.52

2 4 0 2.51 2.72 3.83 1.77 3.20 3.29 2.74 6.12 2.98

3 2 0 3.06 4.23 5.42 1.31 2.70 3.52 2.50 2.63 5.05

3 4 0 1.90 2.91 10.00 1.37 3.07 5.72 2.70 3.83 2.88

2 2 0.4 4.16 4.19 4.25 1.38 4.84 1.23 5.53 4.11 3.50

2 4 0.4 3.09 3.80 4.32 1.68 2.82 4.78 3.64 2.51 2.98

3 2 0.4 5.31 4.86 5.59 4.61 4.42 5.28 5.91 3.98 6.59

3 4 0.4 1.82 2.15 8.20 1.67 3.14 1.48 3.48 4.93 4.44

2 2 1 2.68 2.94 3.08 3.15 3.37 2.35 2.97 4.23 2.81

2 4 1 3.65 2.63 12.13 3.96 5.29 7.25 3.99 7.72 1.84

3 2 1 3.13 2.91 4.49 2.65 1.88 3.11 3.34 3.20 3.86

3 4 1 1.69 2.16 9.23 2.19 6.08 5.01 2.35 2.55 3.55
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the curves for specimens a2 and a3, can be observed in the graphs and are all quite consistent, demonstrating the 
reliability of the experiment results. Table 7 shows the specimens’ effective Young’s modulus E3 from the experi-
ments. According to Table 7, there are significant differences between the experimental results for a1 and, a2, a3. 
Therefore, the mean value E3 = 282.995 MPa corresponding to specimens a2, a3 and Poisson’s ratio v = 0.39 
provided by the manufacturer were taken as the material properties of the base material. Table 7 shows the effec-
tive Young’s modulus E3 that was determined by homogenizing the RVE for specimens b and c. The relative error 
between the numerical and experimental results was found to be less than 5% after comparing the average of the 
three experimental results for the same structure with the numerically computed results (as shown in Table 8).

Figure 16.  (a) Specimen a; (b) specimen b; (c) specimen c.

Table 7.  The porosity of porous material specimens and their effective Young’s modulus.

Specimen number a1 a2 a3 b1 b2 b3 c1 c2 c3

Porosity (%) 0 0 0 24.13 23.95 24.49 23.90 24.01 24.06

Em(MPa) 307.49 282.80 283.19 216.01 222.30 222.87 189.03 186.71 187.31

Figure 17.  Stress–strain curve of a porous material specimen under uniaxial compression.

Table 8.  Experimental and simulation results for porous material specimens.

Specimen number E3 (MPa) FEM (MPa) Relative error (%)

Specimen b 220.4 213.0 3.4

Specimen c 187.68 195.7 4.3
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Conclusion
For the porous solid phase of oil-bearings, a pore structure modeling approach is suggested to generate a porous 
material RVE with geometrical periodicity. The computational homogenization method is used to predict the 
RVE’s effective properties. In order to investigate the relationship between the microstructure and the macro-
scopic mechanical properties of porous materials, the effective properties of RVEs generated from various design 
parameters are calculated, and the numerical results are analyzed. Finally, the availability of the numerical results 
was verified by performing compression tests on specimens prepared by 3D printing technology to measure the 
effective modulus of elasticity of the specimens. The following are the study’s principal findings.

1. The predicted values of the effective mechanical properties of the RVE generated by the given design param-
eters are stable, proving the repeatability of the method. This means the effectiveness of the RVE generation 
method.

2. The 3D printing technology can be used to produce the modeling method proposed in this study. However, 
due to the manner in which the RVE is generated, there are localized stress concentrations in the structure 
that must be smoothed and other treatments applied before they can be used in industrial preparation. And 
for RVEs with complex structures, there are situations where the support is not easy to remove.

3. With 25% porosity, the columnar pore RVE has an elastic modulus in the z direction of around 0.75 Es . At 
the same time, when the number of pores is high, Young’s modulus in the x and y directions is close, and the 
shear modulus and Poisson’s ratio in the XZ and YZ planes are closed.

4. For the columnar pore RVE, when the number of pores is 4, the mechanical properties of the RVE are unsta-
ble. At the same time, the irregularity of the pores has little effect on the effectiveness of the RVE.

5. The increase in the randomness of pore growth leads to a decrease in the weakening of the mechanical 
properties of the pores in the x and y directions, and an increase in the degree of weakening of the mechani-
cal properties in the z direction. At the same time, the shear modulus in the XY plane increases, the shear 
modulus in the out-of-plane direction decreases. The Poisson’s ratio in the XY plane decreases first and then 
tends to stabilize as the randomness of pore growth in the x direction increases.

6. The effect of pore size randomness on the mechanical properties of RVE is similar to the effect of pore growth 
randomness. The difference is that the former can ignore the effect on the shear modulus in the out-of-plane 
direction. In addition, the effect of this factor on the effective mechanical properties of RVE is smaller than 
the latter.

7. The three spatial design parameters have a superimposed effect on RVE. The increase in pore space ran-
domness (randomness of pore growth and randomness of pore size) reduces the mechanical properties of 
RVE in the z direction and increases the mechanical properties in the x and y directions. But the former is 
greater than the latter. In addition, as the randomness of pore space increases further, the rate of decline in 
the mechanical properties of RVE in the z direction slows down.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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