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Dynamical entropic 
measure of nonclassicality 
of phase‑dependent family 
of Schrödinger cat states
M. Kalka 1, B. J. Spisak 1*, D. Woźniak 1, M. Wołoszyn 1 & D. Kołaczek 2

The phase‑space approach based on the Wigner distribution function is used to study the quantum 
dynamics of the three families of the Schrödinger cat states identified as the even, odd, and Yurke–
Stoler states. The considered states are formed by the superposition of two Gaussian wave packets 
localized on opposite sides of a smooth barrier in a dispersive medium and moving towards each other. 
The process generated by this dynamics is analyzed regarding the influence of the barrier parameters 
on the nonclassical properties of these states in the phase space below and above the barrier regime. 
The performed analysis employs entropic measure resulting from the Wigner–Rényi entropy for the 
fixed Rényi index. The universal relation of this entropy for the Rényi index equal one half with the 
nonclassicality parameter understood as a measure of the negative part of the Wigner distribution 
function is proved. This relation is confirmed in the series of numerical simulations for the considered 
states. Furthermore, the obtained results allowed the determination of the lower bound of the 
Wigner–Rényi entropy for the Rényi index greater than or equal to one half.

The application of space-phase methods to the study of quantum systems initiated by Wigner allows looking 
at the theory of these systems as the statistical theory in which observables characterizing them form a non-
commutative  algebra1–3. This observation is the cornerstone of the space-phase formulation of quantum theory 
and has given the impulse to develop more rigorous rudiments of this  approach4–8. As a result of these studies, 
quantum mechanics emerged as a deformation of the symplectic structures characteristic of classical mechanics 
formulated in the phase-space language. Hence, the description of quantum phenomena is based on ordinary 
c-number functions on the phase space, and Planck’s constant is treated as a measure of a Poisson algebra 
 deformation9. Historically, the first formulation of quantum mechanics in this way is based on the Wigner distri-
bution function (WDF), which plays the role of the quantum system state within this  approach1. Since then, this 
approach has attracted a lot of attention because of its applicability in many modern quantum problems, including 
quantum  entanglement10,11, quantum  computing12, or quantum  metrology13. In addition, numerous applications 
can also be found in quantum  optics14, atomic  physics15,16,  electrodynamics17, and plasma  physics18, condensed 
 matter19,20, gravitation and  cosmology21–23 or field  theory24. Furthermore, this approach has many interdisci-
plinary  applications25, e.g. in quantum  electronics26,27, quantum  chemistry28, quantum  biology29,30, or signal 
 processing31–33. Besides that, Wigner’s idea is also influential in developing some branches of mathematics, e.g. 
non-commutative  geometry34,35, geometrical  quantization36, or the theory of pseudo-differential  operators37,38.

One of the characteristic properties of the WDF is its negativity in some regions of the phase space. This 
property renders the WDF an example of a non-classical distribution function since the rest of this function’s 
properties are consistent with its Kolmogorov counterpart in probability theory. The negativity of the WDF has 
been the subject of numerous discussions and interpretations. Among these various proposals, the approach 
assuming that the WDF is treated as a wave function defined on the phase space deserves special  attention39–41. 
The immediate consequence of this approach is an interpretation of this function as the probability amplitude on 
the phase space. Thus, the square of the absolute value of this wave function is treated as the probability density 
on the phase space, and just like the WDF this quantity is symplectically  covariant42. However, this probabilistic 
interpretation is restricted to pure states only. Nevertheless, let us note that this new look at the WDF is free of 
its sign problem. On the other hand, numerous studies on the negativity of the WDF led to the conclusion that 
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this part of the WDF is a hallmark of the state nonclassicality which can be expressed quantitatively by the non-
classicality parameter introduced by Kenfack and Życzkowski43. Of course, this measure is not perfect because 
it does not detect nonclassical states described by the WDF-positive states. Nevertheless, the advantage of the 
aforementioned nonclassicality parameter is its simplicity and clear interpretation because it provides informa-
tion on the fraction of the phase space occupied by the negative part of the WDF.

Let us note that looking at the phase-space formulation of quanta as a statistical theory immediately inclines 
one to introduce the concept of entropy to the considerations as an essential component of such a statistical 
approach. However, at the beginning of the deliberations on the introduction of this state function, we encoun-
tered fundamental conceptual difficulties related to the negativity of the WDF. One of the first attempts to define 
the entropy of quantum states using the WDF has been based on the concept of coherent states, regarded as the 
most classical quantum  states44. Such states are usually represented by the Gaussian functions, which minimize 
the uncertainty principle, and the corresponding WDF being also a Gaussian is always nonnegative, accord-
ing to Hudson’s  theorem45. In this case, considering the concept of a quantum state in the definition of entropy 
seems fully justified. A major step in the development of the concept of quantum state entropy in the phase-
space approach based on WDF was also the work of Manfredi and  Feix46, in which the authors introduced and 
discussed properties of the so-called quantum linear entropy, utilizing for this purpose the functional of the 
WDF square being an invariant quantity under symplectic transformation. Recently, a slightly different approach 
was proposed by van Herstraeten and  Cerf47. These authors introduced the concept of Wigner quantum entropy 
based on quantum states with the positive definite WDF. In turn, their studies have been generalized to the case 
of arbitrary absolutely integrable Wigner functions by Dias et al.48 The results presented in these last works 
partially motivate our studies because their authors operated with the WDF interpreted as the wave function 
on the phase space. Another way to introduce the entropy within the phase-space approach for quantum states 
requires projecting a quantum state on the coherent state and then taking the square of the absolute value of 
this function, which leads to another phase-space quasi-distribution function called the Husimi distribution 
 function49. This approach brought Wehrl to the concept of the von Neumann entropy in the phase space, which 
is currently regarded as the quantity which is the closest to the classical understanding of the entropy. In turn, 
the Wehrl result can be regarded as a particular case of the Rényi–Wehrl  entropies50 commonly used to meas-
ure quantum state localization in the phase space. It is also worth to mention the Tsallis entropy, which can be 
seen as a linearization of the Rényi entropies. This observation was used by Sadeghi et al.51 to conclude that the 
nonclassicality parameter is related to the Tsallis entropy based on the Wigner function with the Tsallis index 
equal one. However, these authors did not give any quantitative characteristics in the form of a formula linking 
these two quantities. Instead of this, they examined several examples of states and showed the coincidence of the 
nonclassicality parameter and the Tsallis entropy of the Wigner function in graphs. As a result, this allowed them 
to conclude that these two considered quantities have similar properties. Following these results, we have found 
the exact relation between the nonclassicality parameter and Wigner–Rényi entropic measure of |ρ(x, p, t)|2 for 
a fixed, fractional Rényi index value. Therefore, we can interpret the Wigner–Rényi entropy for this fractional 
index in terms of the nonclassicality parameter. A detailed analysis of this issue is one of the subjects which we 
consider in this paper.

Another issue discussed in this paper concerns the interaction of the phase-dependent family of the 
Schrödinger cat (SC) states with the potential barrier in a one-dimensional dispersive channel. This continua-
tion of our previous studies on the SC states in the phase-space  formalism52 allows us to generalize them to the 
case of the well-separated bimodal state formed by the coherent superposition of two Gaussian wavepackets, 
each of which moves with an opposite momentum value. It means that each wave packet that is a part of this 
coherent superposition approaches the other in the configurational space, with an obstacle in the form of a 
Gaussian barrier between them acting as a scattering centre. For the described situation, we performed studies 
in the above- and below-barrier regimes, simultaneously analyzing the influence of the relative phase encoded 
in these states on the nonclassicality, which is expressed in terms of the appropriate entropy. Such framework 
can serve as a model for scattering in the constricted semiconductor  nanowires53. On the other hand, the process 
of double-sided barrier penetration has recently gained increased interest with its use in the field of quantum 
electron  optics54–59.

In this work, we use three families of the SC states, i.e. even SC states, odd SC states, and Yurke-Stoler 
(YS) states. All of them have been extensively studied in quantum  optics60, including quantum spectroscopy 
 methods61,62, quantum computing and information  theory63, and even quantum theory of  gravity64. It is also 
worth mentioning that some experimental methods exist for creating these states. Among them, we can note 
intense laser-matter  interaction65, diamond mechanical  resonations66, levitating ferromagnetic  particles67 
or following the original Yurke and Stoller proposal with a nonlinear Kerr interaction in the superconduct-
ing  circuit68–70. Recently, a method of generating SC states based on cavity electro-optic systems was also 
 considered71,72. Moreover, continuous advances in electron quantum optics make it possible to think of solid-
state quantum information processing based on flying qubits with controlled phases.

The purpose of the presented study is twofold; first, we show that the nonclassicality parameter in the form 
proposed by Kenfack and Życzkowski is related to the Rényi entropy for the Rényi index equal one half. Thereby, it 
allows us to interpret this quantity as an entropic measure of the area occupied by the negative part of the WDF in 
the phase space. Secondly, we investigate the influence of the relative phase encoded in the Schrödinger cat states 
on the dynamics of the WDF in the presence of the scattering center, assuming that the Gaussian wavepackets 
that form this bimodal state move in opposite directions. We quantitatively describe this dynamical problem in 
terms of the aforementioned fractional Rényi entropy.
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Theoretical framework
Here we introduce only indispensable facts concerning the phase-space formulation of the quantum theory 
which are directly used in this work. More details about this formulation can be found in the extensive literature 
related to this  issue14,49,73–78. In the phase-space formulation of the quanta, the isolated one-particle quantum-
mechanical system is characterized by the Weyl symbol of the Hamiltonian, Ĥ(x̂, p̂) = p̂2/(2m)+ U(x̂) , which 
is given by the formula

The Weyl symbol of the Hamiltonian for the considered system is equivalent to the classical Hamilton function, 
i.e. HW (x, p) = H(x, p) = p2/(2m)+ U(x) , where p and x are the Weyl symbols of the momentum and position, 
respectively, and they are consistent with the classical counterparts; U(x) is the potential energy and m denotes 
the mass. In turn, the state of the considered quantum-mechanical system is represented by the WDF, which 
corresponds to the Weyl symbol of the density operator, ρ̂(t) , rescaled by the factor 1/(2π�) . Especially for the 
state represented by such a density operator, the corresponding WDF can be expressed as follows,

Based on this expression, we conclude that the time evolution of the quantum system state in the phase space 
follows from the time dependence of the WDF. The equation of motion of this function for the isolated system 
was initially derived by Wigner in his original  paper1. However, only further studies conducted by Moyal allowed 
introducing the structure called the ‘sine-Poisson’  bracket2. On the one hand, this discovery was an essential step 
in understanding the non-commutativity of the Poisson structure of the quantum phase space (p�ase space), 
and on the other hand it allowed one to reformulate the Wigner’s original form of the equation of motion to the 
new form which is now called Moyal equation

where the symbol {·, ·}⋆ denotes the Moyal bracket of two phase-space  functions79. Let us note that this expression 
can be reduced to the Poisson bracket in the classical limit, symbolically understood as � → 0 . Consequently, 
the Moyal equation reduces to the Liouville equation, and quantumness is preserved only in the initial condi-
tion, while the movement is consistent with classical dynamics generated by the Liouville flow. It is also worth 
noting that the Moyal and Liouville dynamics are consistent in the case of the potential energy expressed by a 
polynomial of the order less than or equal to 2. However, for computational reasons, it is more convenient to 
formulate the equation of motion (3) slightly differently. Namely, using the Bopp  shifts80, the Moyal equation 
can be transformed into the following  form52.

where the first term in the RHS of this equation corresponds to the kinetic term, while the second term in the 
RHS represents the potential term which is inherently  nonlocal81. The structure of this equation explicitly alludes 
to the Liouville equation, although the potential term has an intricate form. Nevertheless, finding the time evolu-
tion of the WDF requires specifying the initial condition for the Eq. (4) and solving the Cauchy problem for it.

After this nutshell foreword to the phase-space formulation of quanta, we now discuss one of the primary 
results of our work, namely the relationship between entropy and the nonclassicality parameter. We prove that 
for pure states the Rényi entropy for the Rényi index equal to one half can be considered the logarithmic measure 
of state nonclassicality. The assumption of the purity of the state is significantly important because it allows us 
to look at the WDF as the amplitude of the probability density in the phase space according to the arguments 
presented in Refs.39,41, i.e. the WDF represents the wave function on the phase space for the pure state being a 
particular solution of the Schrödinger equation written in the phase-space representation. On this basis, it can be 
concluded that the symplectically covariant squared modulus of the WDF is regarded as the probability density 
in the phase space, and the corresponding WDF norm with respect to the space L2(R2) is given by the formula

Using this norm, along with the auxiliary function, ρ̃(x, p, t) , introduced by Dias et al.82,

to ensure correct normalization, we can express the Rényi entropy of the probability density, |ρ̃(x, p, t)|2 , in the 
phase space for the Rényi index α in the form
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The obtained result can be regarded as an extension of Dias et al.’s result given by Eq. (22) in their  work82 to 
the Rényi entropy. However, we are still restricted by the purity of the state represented by the WDF, which is 
interpreted as the wave function in the phase-space representation. On the other hand, taking into account that 
|ρ(x, p, t)| = [ρ2(x, p, t)]1/2 , we get the result similar to the quantum Wigner–Rényi entropy defined for Wigner-
positive states recently introduced by van Herstraeten and  Cerf47. Moreover, this last result is also extended by 
Dias and  Prata48 to the case of the arbitrary integrable Wigner functions associated with the Feichtinger  states83.

After taking into consideration Eqs. (5) and (6), we can transform Eq. (7) into the form

Let us note that the Wigner–Rényi entropy expressed by Eq. (8) for the fixed Rényi index α refers to the prob-
ability density in the phase space defined by Eq. (6). In the case of the Rényi index α = 1/2 , the Wigner–Rényi 
entropy (8) can be algebraically reduced to the form

This observation is an important result because it allows us to conclude that the Wigner–Rényi entropy for the 
Rényi index α = 1/2 can be regarded as the entropic measure based on the WDF with a clear physical inter-
pretation. To see this, it is enough to use the definition of the nonclassicality parameter introduced by Kenfack 
and Życzkowski43, namely

Then, comparison of Eqs. (9) and (10) leads to the following relation between these two quantities,

Hence, we can conclude that the entropy S1/2 can be regarded as a logarithmic measure of the nonclassicality of 
the state that is represented by the WDF and which is understood as the wave function of the pure state in the 
phase space. On the other hand, the nonclassicality parameter can be expressed by the entropy, S1/2(t) , accord-
ing to the formula

This result clearly shows that the nonclassicality of the state can be measured by the Wigner–Rényi entropy of 
order α = 1/2 . In particular, we can conclude that for any Wigner-positive states, i.e. δ(t) = 0 , we always obtain 
the constant value of this entropy, namely S1/2(t) = ln (2π�) which represents the logarithm of the quantum cell 
volume in the phase space. Moreover, analyzing the formula for entropy S1/2 as a function of the nonclassical-
ity parameter δ in time, we can conclude that this quantity may be a nonmonotonic function, generally. This is 
because during the time evolution of the WDF in dispersion media, where quantum phenomena play the essential 
role, changes in the nonclassicality parameter are observed in the form of its initial increase and subsequent 
decrease to a specific value. We often come across such situations in transport processes.

Let us return to the Wigner–Rényi entropy given by Eq. (8). This expression can be used to discuss the 
entropic uncertainty relation in the phase  space46,50,84–87. A natural question arising from this issue concerns 
the lower bound of the Wigner–Rényi entropy with the Rényi index α � 1/2 . For the study of this problem, we 
use the results of Lieb’s  work88, where the author proved that the lower bound for the Lq-norm of the WDF with 
1 � q < 2 and the upper bound with q > 2 , are saturated only by the Gaussian states. Let us define the function 
I2α(t) for α > 0 in such a way that it corresponds to the Lq-norm considered in Lieb’s work, namely,

Following the result of Theorem 1 from Lieb’s  work88, we can find the upper bound of the integral (13) for α > 1 . 
Let us note that taking the natural logarithm scaled with 2α−1(π�)1−α and then rescaling it with 1/(1− α) , we 
reconstruct the expression for the Wigner–Rényi entropy given by Eq. (8). Because for α > 1 , the term 1/(1− α) 
in Eq. (8) is negative, and the logarithm is a monotonically increased function, the inequality from Theorem 1 
changes sign, resulting in the lower, not upper bound for the Wigner–Rényi entropy for α > 1 . Referring to 
Theorem 2 of Lieb’s  work88, we arrive at the lower bound for 1/2 � α < 1 . Now, we follow the same reasoning as 
in the previous proof for α > 1 . This result gives us a complete lower boundary for the Wigner–Rényi entropy 
with α � 1/2 . The boundary can be expressed in the form of the following inequality

which according to Lieb saturates iff Sα(t) is calculated for the Gaussian WDF. Moreover, we note that for 
α = 1/2 , we reproduce our previous result, i.e. S1/2 = ln 2π� , but with some qualitative difference, namely, 
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we obtained this result for the class of the Wigner-positive states ( δ = 0 ) of which the Gaussian states are a 
particular case.

Finally, let us note that the formula given by Eq. (14) extends the results of Dias et al.82 to the case α � 1/2 . 
However, this extension is a succession of the used interpretation of the WDF. Secondly, the authors only consider 
the Shannon entropy corresponding to Rényi index α = 1.

At the end of this discussion it is worth pointing out that Dias and  Prata48 proposed the lower bound of 
Rényi-Wigner entropy of |ρ(x, p, t)| for two separate cases of Rényi index, namely α ∈ (1, 2) and α � 2 . In the 
same work, they proved the van Herstraeten-Cerf conjecture of the Wigner-positive states for α � 2.

Computational method
The general solution of the Moyal equation (4) can be written in the exponential form, such that

where Û (t) is the time evolution operator. For the Moyal equation, the operator Û (t) is given by the following 
formula

where T̂ = −i�p∂x/m and Û = U
(
x + i�∂p/2

)
− U

(
x − i�∂p/2

)
 are kinetic and potential operators, respectively.

In the numerical calculations, the solution can be obtained by acting on WDF repeatedly with the operator 
Û (�t) , where �t = 10 a.u. is the time increment. Calculation-efficient form of the time evolution operator can 
be derived by applying the symmetric Strang splitting  formula89–91

Using the partial Fourier transforms in the first or second variable defined as follows,

one can obtain a formula for a single step of the time evolution of the WDF in the form

where the auxiliary function U�(x, y) is defined as the central difference of the potential energies, namely

Since Eq. (4) is defined for x, p ∈ R , in order to perform numerical computation the phase space is limited to the 
box of size [−Lx , Lx)× [−Lp, Lp) with periodic boundary conditions imposed by the numerical method. Thus the 
used values of Lx and Lp are large enough to assure that the WDF vanishes in the vicinity of the boundary during 
the whole simulation. The computational box is discretized into the grid of size of Nx × Np in the following way,

where m ∈ {0, 1, . . . ,Nx − 1} , n ∈ {0, 1, . . . ,Np − 1} , and the steps on the computational grid are �x = 2Lx/Nx , 
�p = 2Lp/Np . Numerical calculations were performed in atomic units ( � = e = m = 1 ) and with the follow-
ing parameters of the computational grid: Nx = Np = 1024 , Lx = 1500 a.u. and Lp = 0.5 a.u. For the efficient 
calculation of the Fourier transforms the Fast Fourier Transform (FFT) algorithm was used.

Initial state
Numerical determination of the time evolution of the WDF from Eq. (22) requires establishing the initial condi-
tion. For this purpose, we assume the initial WDF in the form corresponding to the superposition of two Gauss-
ians with the same widths, δx , representing coherent states localized at different phase space points denoted by 
(x1, p1) and (x2, p2) . According to this description, the general expression for this WDF can be written in the form
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(16)Û (ti − t0) = exp

[
− i

�

(
T̂ + Û
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where parameter β controls the amplitude ratio of the states, and θ is the relative phase between them. Besides 
this, the normalization factor A equals

This form of the initial condition can be regarded as a generalization of the result presented in Ref.52 for the 
coherent superposition, and we refer to this as the Schrödinger cat  state10 (SC state). For further investigation, 
we assume that both Gaussians move in the dispersive medium in opposite directions with the same value of 
the initial momentum, i.e. p2 = −p1 . On account of that, we can simplify expression (26) to the following form

with the normalization factor A given by the formula

Referring to the previous  study52, we assume the following values of the parameters which characterize this ini-
tial condition, namely β = 0.5 , δ2x = 500 a.u., x1 = −300 , x2 = 300 and p1 = 0.15 a.u. Owing to this selection 
of the parameters, the presented initial condition (27) is the phase-space representation of the SC state given 
by the superposition of two well-separated and well-localized Gaussians approaching each other with the same 
momenta. Let us note that the relative phase still remains to be a free parameter of the initial condition, creat-
ing the possibility of researching its influence on the WDF dynamics generated by solving the Moyal equation 
in inhomogeneous dispersive media. Of course, the problem formulated in this way is too general; hence we 
decided to conduct a study on the three-element class of the considered bimodal states, which are well recognized 
in the literature. The class of these states consists of the odd and even SC states for which the relative phases 
are θ = 0 and θ = π , respectively, and the Yurke-Stoler state with θ = π/2 . The influence of θ on the value of 
the normalization factor given by Eq. (28) has been found to be negligibly small due to the numerical values of 
the prefactors exp

(
−2p21δ

2
x/�

2
)
 (approximately 1.7× 10−10 [a.u.]) and exp
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Results and discussion
We now turn to the results of the numerical simulation, in which we investigate the dynamics of the three-element 
family of SC states described by the WDF in the form given by Eq. (27), which move in a dispersive medium 
with the repulsive potential barrier. The barrier has the form of the Gaussian function,

where U0 is the strength of the barrier having width w, centered at XB . The barrier is assumed to be located in 
the center of the simulation region ( XB = 0 ) whereas the remaining parameters take on the following values: 
U0 = 0.008 a.u., w2 = 50 a.u.; we will refer to this set of parameters as the standard parameters. An explanatory 
figure of the proposed setup is presented in Fig. 1.

We solved the Moyal equation (4) numerically by applying the second-order split-operator method accord-
ing to Eq. (17).

The resulting time evolution of the probability density on the phase space, |ρ(x, p, t)|2 , is presented in Fig. 2 
containing snapshots at t = 1.5 , 2.2, 2.9 and 3.6× 103 a.u. At these time instants, the probability density on 
the phase space occupies mostly that part of the space in the neighbourhood of the potential barrier, and the 
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dynamics of the state is therefore determined by the characteristics of the potential. Earlier, that is before the 
situation illustrated in Fig. 2, the state evolves freely (details of the dynamics in terms of the WDF are presented 
in the Supplementary Information S1). When the interaction with the barrier starts, all three states retain their 
original symmetry, as visible in Fig. 2a,e,i. Then, for the assumed standard parameters of the barrier, interaction 
with the barrier takes place in the above-barrier regime resulting in changes of the probability density on the 
phase space depending on the chosen initial state. For the SC states, both odd (Fig. 2b–c) and even (Fig. 2j–k), 
interaction with the barrier does not break the symmetry of the initial state. In the case of the odd SC state, 
the fringes visible in Fig. 2b are the result of quantum interference. A similar phenomenon occurs for the even 
SC state; due to the small amplitude, it is not visible in Fig. 2j, but snapshots of the even SC state showing this 
phenomenon are available in the Supplementary Information S1. The situation is considerably different for the 
YS state interacting with the barrier in the above-barrier regime. As shown in Fig. 2f–g, such interaction of 
the YS state with a symmetric potential barrier leads to asymmetry of the initial state resulting in most of the 
probability density on the phase space remaining to the left of the barrier. Evolution of the YS state produces 
interference fringes visible in Fig. 2f. After interaction with the barrier, the free evolution takes place again, as 
shown in Fig. 2d,h,l. The SC states remain symmetrical, while YS states stay asymmetric. Although the time 
evolution of the even and odd SC states has the same effect in terms of keeping the symmetry of the initial state, 
the interaction of these states with the barrier proceeds differently. It is worth noting that although during the 
interaction with the barrier the even and odd SC states preserve the initial symmetry of the probability density 
on the phase space, the dynamics of the interaction is different.

That difference can be identified with help of two quantities, the nonclassicality parameter δ and the 
Wigner–Rényi entropy of order α = 1/2 . Both are shown in Fig. 3 for the even and odd SC states and the 

x1 0 x2

p1 p2

U(x)

Figure 1.  Conceptual sketch of the Schrödinger cat state interacting with the repulsive potential barrier with 
varying parameters.

Figure 2.  The phase space snapshots of the probability density on the phase space, |ρ(x, p, t)|2 , for the even SC 
state (first row), YS state (second row) and odd SC state (third row) at different times during interaction with 
the barrier in the form of a Gaussian potential. The equipotential lines of the classical Hamiltonian of the system 
under consideration are indicated by the grey contour lines.
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Yurke–Stoler state. As visible in Fig. 3, the Wigner–Rényi entropy and the nonclassicality parameter change 
almost in the same manner for each considered case, which is in accordance with the derived relation (12) link-
ing δ and S1/2 . Both of those dynamical characteristics, S1/2 and δ , of the odd SC state ( θ = 0 ) have maximal 
values larger than in the case of the even SC state ( θ = π ). In addition, the characteristics of the even SC state 
approach the final constant value much faster.

The system was investigated for varying values of the parameters U0 and w2 to find out how this asymmetry 
depends on the strength and width of the barrier. First, for the fixed standard w2 = 50 a.u. the strength of the 
barrier was varied in the range of U0 ∈ {0.004, 0.008, . . . , 0.02} . Then, for the standard U0 = 0.008 a.u. the bar-
rier width was varied in the range of w2 ∈ {50, 148, 216, 298, 500} . The investigated values of w2 correspond to 
uniform changes of the barrier width w.

Figures 4 and 6 show the influence of the width and height of the barrier on the dynamical characteristics of 
the odd and even SC states. The nonclassicality parameter and the Wigner–Rényi entropy S1/2 are also presented 
for the Yurke-Stoler state (Fig. 5) for various sizes of the barrier. In all figures, bold, dashed black lines indicate the 
Wigner–Rényi entropy for the standard barrier parameters that correspond to interactions in the above-barrier 
regime. The results presented in Fig. 4 show that for the even SC state, if barriers are higher than U0 = 0.012 a.u. 
and wider than w2 = 148 a.u., the peak values of the Wigner–Rényi entropy is the largest among the considered 
states, which also corresponds to the high nonclassicality expressed by the nonclassicality parameter δ . For 
barrier height equal U0 = 0.004 a.u. the entropy not only has the lowest maximal value, but also it is the fastest 
to reach the constant final value. While in the case of variable barrier height, shown in Fig. 4a, the entropy and 
nonclassicality parameter take on the final value equal to the initial one, the situation changes for variable barrier 

Figure 3.  Influence of the relative phase θ on the Wigner–Rényi entropy of order α = 1/2 , for the standard 
parameters of the barrier. Inset shows the nonclassicality parameter δ.

Figure 4.  Influence of (a) parameter U0 and (b) parameter w2 on the Wigner–Rényi entropy S1/2 for the even 
Schrödinger Cat WDF ( θ = 0 ). The inset shows the nonclassicality parameter δ . Thicker, black dashed line 
indicates results for the standard parameters of the barrier, namely U0 = 0.008 a.u. and w2 = 50 a.u.
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width. As shown in Fig. 4b, only for the standard parameters of the barrier the initial and final values of S1/2 and 
δ are the same. With an increase in the width of the barrier, the final values are rising.

This allows us to conclude that increasing the width of the potential barrier results in an increasingly nonclas-
sical state at the end of the simulation. It should also be noted that, in contrast to the change in height, the wider 
the barrier, the faster the entropy and nonclassicality parameters approach the final constant value. In the case of 
the YS state, it can already be observed for a barrier with standard parameters that the final value of the entropy 
and the nonclassicality parameter is different—smaller—than the initial value. This is related to the asymmetri-
zation of the initial state. As can be seen in Fig. 5 lowering the barrier to U0 = 0.004 a.u. results in bringing the 
final value closer to the initial value, leading to the conclusion that lowering the barrier has a positive effect on 
maintaining the initial symmetry of the YS state. Increasing the barrier height results in a larger asymmetry, up 
to U0 = 0.02 a.u. where the trend reverses, and the final values of the entropy and nonclassicity parameter are 
close to the final values obtained for the standard barrier parameters. A similar effect on the symmetry of the 
final state can be observed when the barrier width increases. This means that the strength of asymmetrization 
can be modified by controlling the potential parameters.

Figure 6 shows the effect of changes in the potential parameters on the Wigner–Rényi entropy and the non-
classicality parameter of the odd SC state. Although the effect of the barrier height U0 is similar to that for the case 
of the even SC state shown in Fig. 4, it should be noted that for all of the considered barrier heights the entropy 
reaches the lowest maximal values among the considered states. This means that the evolution of the odd SC state 
is less nonclassical than for the even SC state. Unlike the even SC state, in the case of changes in the width of the 

Figure 5.  Influence of (a) parameter U0 and (b) parameter w2 on the Wigner–Rényi entropy S1/2 for the Yurke–
Stoler WDF ( θ = π/2 ). The inset shows the nonclassicality parameter δ . Thicker, black dashed line indicates 
results for the standard parameters of the barrier, namely U0 = 0.008 a.u. and w2 = 50 a.u.

Figure 6.  Influence of (a) parameter U0 and (b) parameter w2 on the Wigner–Rényi entropy S1/2 for the odd 
Schrödinger Cat WDF ( θ = π ). The inset shows the nonclassicality parameter δ . Black dashed line indicates 
results for the standard parameters of the barrier, namely U0 = 0.008 a.u. and w2 = 50 a.u.
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potential barrier for the odd SC state, there is no change in the final value of S1/2 and δ relative to the initial value. 
Regardless of the parameters of the potential, the initial symmetry of the odd SC state will be always preserved 
after interaction with the barrier. As for the even SC state, we observe a faster flattening for lower U0 , but the 
same trend is also preserved for w2 changes. In contrast to the even SC state, in the case under consideration the 
wider the potential barrier, the later the Wigner–Rényi entropy and the nonclassicality parameter flatten out.

Concluding remarks
The phase-space formulation of quantum theory based on the Wigner distribution function allows us to take an 
alternative view of the quantitative description of the dynamical aspect of quantum systems. Using this approach, 
we have analyzed the dynamics of the three-element family of Schrödinger cat states in the phase space. The 
distinction between members of this family is based on the adoption of the established values of the relative 
phase encoded in the general form of the Schrödinger cat state. In the present studies, we have focused on a 
quantitative description of dynamic changes in the nonclassicality of the considered states during their interac-
tion with the repulsive barrier in terms of the fractional Wigner–Rényi entropic measure. The results obtained 
by us can be divided into two parts.

In the first part of the presented studies, we have introduced the Wigner–Rényi entropy using the square of 
the modulus of the Wigner function. This quantity is interpreted as the probability density in the phase space 
only for pure states. Due to this observation, we have found a relationship between the Wigner–Rényi entropy 
for the index Rényi α = 1/2 and the nonclassicality parameter introduced by Kenfack and Życzkowski, which is 
regarded as a measure of the area in the phase space occupied by the negative part of the Wigner function, and 
which is also considered as an indicator of quantumness. Furthermore, we have found a lower bound for the 
Wigner–Rényi entropy generated by the modulus squared of the Wigner function.

In the second part of our studies, the previously introduced concepts have been used to study the dynamics 
of the three-element family of Schrödinger cat states consisting of the odd, even and Yurke-Stoler states, with a 
scattering center in the form of the Gaussian barrier. At the initial moment, the considered family of quantum 
states has been modeled by a coherent superposition of two wave packets located on opposite sides of the barrier 
with appropriately selected relative phases in such a way as to reproduce the above-mentioned family. In our stud-
ies, we have used the wave packets having equal but oppositely directed momenta, moving towards a scattering 
barrier placed exactly in the middle of the distance between the packets. As a result of the performed simulations, 
we have noticed that independently of the choice of the relative phase, the Wigner–Rényi entropy measuring the 
nonclassicality of the considered states in the region of their interaction with the barrier changes significantly. 
Simultaneously, we have observed that the degree of nonclassicality for the even and odd Schrödinger cat states 
is preserved, while for the Yurke-Stoler states, we have observed a decrease of the degree of nonclassicality with 
respect to the initial moment. The obtained result is related to the emergence of an asymmetry in the interaction 
of packets forming the Yurke-Stoler state with the Gaussian barrier.

We have carried out calculations in two energy regimes, i.e. we have considered the case of scattering of 
states over the barrier and their tunneling. The transition between these regimes has been possible by control-
ling the height of the barrier while maintaining all the parameters of the Schrödinger cat states. As a result, we 
have observed that the considered fractional Wigner–Rényi entropy has the same value before the odd and even 
states enter the region of interaction with the potential barrier and after they leave. In contrast, for the Yurke-
Stoler states, we have not observed any change during scattering over the barrier, while during the tunneling the 
Wigner–Rényi entropy decreases from its initial value. In addition, we have also investigated the influence of the 
Gaussian barrier width on the dynamic changes of the fractional Wigner–Rényi entropy. In this case, we have 
noticed that increasing the barrier width causes an increase in the Wigner–Rényi entropy for all the considered 
states during their interaction with the barrier. In contrast, after leaving this area, the even and Yurke-Stoler 
states are characterized by greater fractional Wigner–Rényi entropy compared to the initial value. Nevertheless, 
we do not observe such a change in the odd state’s fractional Wigner–Rényi entropy.

In conclusion, the main objective of the presented studies has been to show that the Wigner–Rényi entropy for 
the Rényi index equal one half can be interpreted as the logarithmic measure of the area occupied by the nega-
tive part of the Wigner function in the phase space. The obtained result is significant because it shows the direct 
relationship between the considered entropy and the nonclassicality parameter of Kenfack and Życzkowski43. We 
have demonstrated that this fractional entropy can be interpreted in terms of the quantumness of states expressed 
by the negativity of the Wigner function. At the same time, we have found the lower bound of the Wigner–Rényi 
entropy defined for the probability density distribution in the phase space understood as the squared module of 
the Wigner function representing the pure state. In the limiting case of the Rényi index equal one the result is 
consistent with the known lower bound for the Shannon entropy for pure states. The results obtained from the 
numerical simulations prove the validity of the introduced tool, and we expect that it will be an introduction to 
further research on fractional Wigner–Rényi entropies for pure states.
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