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Disulfidptosis‑associated lncRNAs 
predict breast cancer subtypes
Qing Xia 1,2, Qibin Yan 1,2, Zehua Wang 1, Qinyuan Huang 1, Xinying Zheng 1,2, Jinze Shen 1, 
Lihua Du 2, Hanbing Li 2* & Shiwei Duan 1*

Disulfidptosis is a newly discovered mode of cell death. However, its relationship with breast cancer 
subtypes remains unclear. In this study, we aimed to construct a disulfidptosis‑associated breast 
cancer subtype prediction model. We obtained 19 disulfidptosis‑related genes from published articles 
and performed correlation analysis with lncRNAs differentially expressed in breast cancer. We then 
used the random forest algorithm to select important lncRNAs and establish a breast cancer subtype 
prediction model. We identified 132 lncRNAs significantly associated with disulfidptosis (FDR < 0.01, 
|R|> 0.15) and selected the first four important lncRNAs to build a prediction model (training set 
AUC = 0.992). The model accurately predicted breast cancer subtypes (test set AUC = 0.842). Among 
the key lncRNAs, LINC02188 had the highest expression in the Basal subtype, while LINC01488 and 
GATA3‑AS1 had the lowest expression in Basal. In the Her2 subtype, LINC00511 had the highest 
expression level compared to other key lncRNAs. GATA3‑AS1 had the highest expression in LumA 
and LumB subtypes, while LINC00511 had the lowest expression in these subtypes. In the Normal 
subtype, GATA3‑AS1 had the highest expression level compared to other key lncRNAs. Our study 
also found that key lncRNAs were closely related to RNA methylation modification and angiogenesis 
(FDR < 0.05, |R|> 0.1), as well as immune infiltrating cells (P.adj < 0.01, |R|> 0.1). Our random forest 
model based on disulfidptosis‑related lncRNAs can accurately predict breast cancer subtypes and 
provide a new direction for research on clinical therapeutic targets for breast cancer.

Abbreviations
LumA  Luminal A
LumB  Luminal B
Her2  HER2-enriched
Basal  Basal-like
Normal  Normal-like
H2S  Hydrogen sulfide
RSS  Reactive sulfur species
lncRNAs  Long noncoding RNAs
FDR  False discovery rate
RF  Random forest
VIMP  Variable importance
ssGSEA  Single-sample gene set enrichment analysis
AAGs  Angiogenesis-associated genes
P.adj  Corrected P value
AUC   Area under the curve
ROC  Receiver operating characteristic
Sp  Specificity
Se  Sensitivity
NB  Naive Bayesian mode
SVM  Support vector machine
KNN  K-nearest neighbor
CSN  COP9 signalosome
PD-1  Programmed cell death protein 1
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pDCs  Plasmacytoid dendritic cells
NK cells  Natural killer cells

Breast cancer is one of the most common malignancies in women and is responsible for the highest mortality 
rate among  women1. It is a genetically and clinically heterogeneous disease with multiple subtypes that have 
distinct molecular  features2. PAM50 technology can detect the expression levels of 55 genes and divide breast 
cancer into 5 subtypes: Luminal A (LumA), Luminal B (LumB), HER2-enriched (Her2), Basal-like (Basal), and 
Normal-like (Normal)3,4. However, PAM50 assay is expensive and difficult to  perform5, necessitating the need 
for new, less expensive alternatives to predict breast cancer subtypes.

Disulfidptosis is a newly discovered form of cell  death6. Under glucose-deficient conditions, cells with high 
expression of SLC7A11 consume large quantities of NADPH, leading to an abnormal accumulation of disulfides 
such as cystine. This results in disulfide stress and rapid cell  death7. It has been found that levels of methionine 
and cysteine are increased in colorectal cancer  tissues8. Hydrogen sulfide (H2S) and related reactive sulfur spe-
cies (RSS) help cancer cells adapt to the immune  microenvironment9.

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that do not encode  proteins10. 
lncRNAs can act as decoys, scaffolds, and enhancers, and are involved in chromatin remodeling and transcrip-
tional and post-transcriptional  regulation11. There is accumulating evidence that lncRNAs often play oncogenic 
or tumor suppressor roles in human  cancers12,13.

Machine learning (ML) is a powerful data analysis  technique14 that leverages algorithms capable of processing 
complex functions to construct highly accurate predictive models. ML finds applications across various domains 
of clinical research, enabling breakthroughs such as the detection of COVID-1915, the diagnosis of coronary 
artery  disease16, the identification of prostate  cancer17, and the classification of leukemia  subtypes18. One note-
worthy ML algorithm is Random Forest (RF), which belongs to the ensemble learning category. RF harnesses 
the collective power of numerous individual decision trees for tasks like classification and feature  selection19. 
In this collaborative process, each tree within the random forest makes predictions and casts votes, with the 
class garnering the most votes ultimately becoming the prediction of the overall  model20. The distinguishing 
advantage of the RF model lies in its teamwork approach, akin to having a team of classifiers. These individual 
“team members” work synergistically to derive the final prediction result, delivering remarkable efficiency and 
exceptional  accuracy21. Remarkably, despite the extensive exploration of machine learning techniques in the 
context of breast cancer  prediction22, no prior studies have delved into the utilization of Random Forest models 
for predicting breast cancer subtypes. By integrating the strengths of the RF algorithm into the realm of breast 
cancer subtype prediction, we aim to unlock new avenues of insight and potentially enhance the accuracy of 
this critical healthcare application.

Materials and methods
Datasets
Data collection and processing were carried out as follows. Given the TCGA database’s comprehensive amalga-
mation of genetic, clinical, and image data spanning diverse tumor types, it stands as an indispensable asset in 
the field of cancer research. Therefore, our initial step involved procuring RNA-seq data for breast cancer and 
adjacent normal tissues directly from the TCGA database (https:// portal. gdc. cancer. gov/). Subtype classification 
of TCGA-BRCA patients was then obtained (Table S1)23. After excluding patients with unknown subtypes, a 
total of 1104 tumor samples and 113 adjacent normal samples remained. Genes with zero expression in more 
than half of the patients were removed, resulting in the extraction of 3305 lncRNAs. The 1104 patients were 
randomly divided into a training group (776 patients) and a test group (328 patients) using the caret package 
in R statistical software.

Identification of differential lncRNAs associated with disulfidptosis
The voom algorithm of the limma package (version 3.52.4)24 in R software (version 4.3.0) was used to identify 
lncRNAs that were differentially expressed between breast cancer tissues and adjacent normal tissues. lncRNAs 
were considered significantly differentially expressed if they had a false discovery rate (FDR) of less than 0.05 
and an absolute log2 fold change (|logFC|) of greater than or equal to 1. The relationship between differentially 
expressed lncRNAs and disulfidptosis-related genes was then assessed using the Pearson correlation score. A 
significant correlation was defined as having an absolute correlation coefficient (|R|) greater than 0.15 and an 
FDR less than 0.05.

Establishment and evaluation of breast cancer subtype prediction model
The Random Forest (RF) algorithm in the Random Forest R software package (version 4.7–1.1)25 was used for 
gene selection and model building by reducing the feature dimension based on variable importance (VIMP) and 
minimum depth. The article explains several key performance metrics for classifier assessment. AUC, denoting 
the area under the ROC curve, serves as a crucial gauge for classifier performance. Specificity (Sp) quantifies 
the proportion of accurately classified negative samples, while Sensitivity (Sn) measures the proportion of cor-
rect classifications among actual positive samples. Precision, on the other hand, estimates the ratio of correctly 
classified positive samples within the overall positives. The F1 score offers valuable insights into classification 
balance. To assess the breast cancer subtype prediction model effectively, employ a comprehensive evaluation 
comprising AUC, Sp, Sn, Precision, and F1 score. The SHAP  package26 in Python was used to provide the degree 
of influence of each feature in the model and its positive or negative impact on each predicted outcome for 
explaining machine learning models.

https://portal.gdc.cancer.gov/
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Immune infiltration analysis based on disulfidptosis‑associated lncRNAs
Immune infiltration was analyzed using the CIBERSORT deconvolution  algorithm27 on R software to calculate 
the composition of tumor immune cells from expression profiles. Single-Sample Gene Set Enrichment Analysis 
(ssGSEA) in the GSVA R software package (version :1.44.5)28 was used to calculate the degree of infiltration of 
28 immune cell types based on published immune cell gene  signatures29. The correlation between disulfidptosis-
related lncRNAs and immune infiltration was calculated to explore their relationship in different breast cancer 
subtypes.

Interaction of RNA methylation with disulfidptosis‑associated lncRNAs
RNA methylation modifications are key regulators that affect cellular biological functions such as cell prolifera-
tion and metastasis, stem cell differentiation, and homeostasis in  cancer30. Three RNA methylation modification-
related genes were obtained from the literature, including 23 m6A modification  genes31, 12 m5C modification 
 genes32, and 10 m1A modification  genes33. Correlations between disulfidptosis-associated lncRNAs and RNA 
methylation genes were calculated to explore their relationship in different breast cancer subtypes.

Interaction of angiogenesis with disulfidptosis‑associated lncRNAs
Angiogenesis, the process of forming new blood vessels from pre-existing vessels, is an important event in tumor 
growth and hematogenous  metastasis34. A set of 36 angiogenesis-related mRNAs was obtained from the Hallmark 
gene  set35. The association between disulfidptosis-associated lncRNAs and angiogenesis-associated genes (AAGs) 
was assessed to explore their relationship in different breast cancer subtypes.

Statistical analysis
Statistical analyses were performed using R version 4.1.0. Gene expression in tumor tissue was compared to that 
in adjacent non-tumor tissue using a t-test. Correlations between genes were calculated using Pearson analysis, 
and differences in proportions between groups were compared using Wilcoxon tests. The corrected P value (P.
adj) was calculated using the Bonferroni method. The performance of the models was evaluated using receiver 
operating characteristic (ROC) curves and the area under the curve (AUC). Two-sided tests were used to report 
p-values, with values less than 0.05 considered statistically significant.

Ethics approval and consent to participate
TCGA belong to public databases. The patients involved in the database have obtained ethical approval. Users 
can download relevant data for free for research and publish relevant articles. Our study is based on open-source 
data, so there are no ethical issues and other conflicts of interest.

Results
Enrichment analysis of disulfidptosis‑related genes
We conducted an enrichment analysis of disulfidptosis-related genes by identifying 19 disulfidptosis-related 
mRNAs through a literature search (Fig. 1). Under glucose-deficient conditions, high expression of SLC7A11 
mediates cystine uptake into cells, consuming large amounts of NADPH and reducing cystine to cysteine, 
resulting in NADPH depletion. This promotes the oxidation of the sulfhydryl group (–SH) of cysteine on actin 
cytoskeletal proteins to form intermolecular or intramolecular disulfide bonds (–S–S–), leading to the col-
lapse of the cytoskeleton and separation of the plasma membrane, eventually inducing cell  death6,7,36. INF2 
and PDLIM1 are involved in actin synthesis and have the unique ability to accelerate actin polymerization and 
 depolymerization37. CD2AP can recruit capping proteins to specific subcellular locations and modulate their 
actin capping activity through allosteric effects to affect actin  assembly38. MYH9 and MYH10 interact with actin 
to become part of the cytoskeleton. Under glucose-deficient conditions, disulfide bonds can form between MYH9 
and MYH10 proteins, leading to abnormal protein  function39,40. ACTN4, FLNA, FLNB, IQGAP1, and TLN1 are 
intracellular actin-binding proteins that maintain cytoskeleton  stability41–43. MYL6 is involved in muscle contrac-
tion and cell motility by interacting with actin and myosin heavy  chains44. Aberrant expression and aggregation 
of ACTB can affect cytoskeletal  changes45. DSTN promotes depolymerization and reorganization of actin and is 
involved in cytoskeletal remodeling and regulation of actin filament  turnover46. CAPZB plays an important role 
in regulating the dynamics of actin filaments and stabilizing their  length47. RPN1 and NCKAP1 are cytoskeletal 
proteins involved in upregulating Arp2/3 complex-mediated actin  nucleation48.

Feature selection
A total of 345 differentially expressed lncRNAs were found in breast cancer (FDR < 0.05, |logFC|> 1.5), including 
129 that were up-regulated and 216 that were down-regulated (Fig. 2A). Using Pearson correlation analysis, 132 
lncRNAs significantly associated with disulfidptosis were identified (p.adj < 0.05, |R|> 0.15). Preprocessing, which 
includes feature selection, is crucial in machine learning, as is well known. It can somewhat increase the model’s 
prediction accuracy in addition to reducing the complexity of the training  model49. As a result, we prioritize 
the significance of characteristics using the random forest algorithm, screen out features that are closely related 
to the model, and improve the accuracy of the breast cancer prediction model. Four lncRNAs with the highest 
relative importance values and relative importance greater than 40 were selected as key factors for constructing 
a model to predict breast cancer subtypes (Fig. 2B,C).

We identified biomarkers by evaluating the predictive models (Figs. 2D–F). The expression levels of the four 
key lncRNAs used to build the model were significantly different among the five subtypes. In the Basal subtype, 
LINC00511 and LINC02188 had the highest expression (0.75–1 quantile, Q4), while LINC01488 had the lowest 
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(0.25–0.5 quantile, Q2). LINC00511 was significantly higher than adjacent tissues (P < 0.001). In the Her2 sub-
type, GATA3-AS1 had the highest expression (Q4), while LINC01488 had the lowest (Q2). LINC00511 and 
LINC01488 were significantly higher than adjacent tissues (P < 0.001). In LumA and LumB subtypes, GATA3-
AS1 had the highest expression (Q4), while LINC00511 had the lowest (0.5–0.75 quantile, Q3). LINC00511 
and LINC01488 were significantly higher than adjacent tissues (P < 0.001), while LINC02188 was significantly 
lower (P < 0.001). In the Normal subtype, GATA3-AS1 had the highest expression (Q4), and LINC00511 and 
LINC01488 were significantly higher than adjacent tissues (P < 0.001).

Evaluation of a model of disulfidptosis‑associated lncRNAs for predicting breast cancer 
subtypes
The Support Vector Machine model (SVM) is a supervised learning algorithm utilized for data analysis via clas-
sification and  regression50. The K-Nearest Neighbor (KNN) algorithm, on the other hand, is a straightforward 
instance-based learning  technique51. Meanwhile, the Naive Bayesian (NB) classifier stands as a well-established 
supervised algorithm within the field of machine  learning52. Subsequently, we harnessed Random Forest (RF) to 
construct a breast cancer subtype prediction model, incorporating these four pivotal algorithms for comparison: 
RF, KNN, SVM, and NB.

Figure 1.  Molecular mechanism of disulfidptosis-related genes. Under glucose-deficient conditions, high 
expression of SLC7A11 mediates cystine uptake into cells, consuming a large amount of NADPH and reducing 
cystine to cysteine, resulting in NADPH depletion. This promotes the oxidation of the sulfhydryl group (–SH) 
on the actin cytoskeleton protein’ s cysteine to form intermolecular or intramolecular disulfide bonds (–S–S–), 
leading to cytoskeleton collapse and plasma membrane separation, eventually inducing cell death. SLC3A2 
encodes a chaperone protein for SLC7A11. NADPH promotes cytoskeleton reorganization by regulating actin 
polymerization and depolymerization and plays an important role in maintaining cytoskeleton stability and 
plasticity. INF2, DSTN, TLN1, CAPZB, RPN1, and NCKAP1 are involved in actin synthesis and cytoskeleton 
formation. FLNA, FLNB, IQGAP1, PDLIM1, and CD2AP are actin-binding proteins that regulate protein 
function by binding to actin. MYL6, MYH9, and MYH10 are myosin proteins that interact with actin to form 
part of the cytoskeleton. ACTN4 and ACTB are intracellular actins that maintain cytoskeleton stability. (Created 
by BioRender, https:// www. biore nder. com/).

https://www.biorender.com/
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Figure 2.  Expression of key lncRNAs in breast cancer subtypes. (A) key lncRNAs are differentially expressed 
between breast cancer and paracancerous cells. Red indicates up-regulated genes while blue indicates down-
regulated genes. Volcano Plot was constructed through “ggplot2” R package (version:3.4.2, https:// cran.r- proje 
ct. org/ web/ packa ges/ ggplo t2/ index. html). (B) Four genes with relative importance above 40 are selected from 
the top 20 features to build a model. (C) Disulfidptosis-related genes show significant correlation with key 
lncRNAs. The thickness of the connecting lines in the figure represents the value of Pearson’s R. Correlation 
Chord Diagram was constructed through “circlize” R package (version:1.0.12, https:// cran.r- proje ct. org/ web/ 
packa ges/ circl ize/ index. html). (D) The box plot displays the significant differential expression of key lncRNAs 
across different breast cancer subtypes. * indicates P < 0.01, ** indicates P < 0.001 and *** indicates P < 0.0001. 
Boxplot was constructed through “ggplot2” R package. (E) A heatmap shows the expression of key lncRNAs 
in different subtypes. Heatmap was constructed through “pheatmap” R package (version:1.0.12, https:// 
cran.r- proje ct. org/ web/ packa ges/ pheat map/ index. html). (F) The height of the bars represents the expression 
quantile of key lncRNAs. we calculated the quantile ranks of key lncRNAs among all non-zero expressed 
lncRNAs in the four subtypes of breast cancer. LINC00511 had high abundance in the five subtypes (0.75–1.0 
quantile, Q4); LINC00511 has a low proportion in paracancerous tissues (0.25–0.5 quantile, Q1). GATA3-AS1 
is highly abundant in all five subtypes and their paracancerous tissues (0.75–1.0 quantile, Q4). LINC01488 
has a low abundance in the Basal subtype (0.25–0.5 quantile, Q2). LINC02188 has a high abundance in the 
Basal, Her2, LumA, Normal subtypes and paracancerous tissue (0.75–1 quantile, Q4). *Indicates P < 0.01, ** 
indicates P < 0.001 and *** indicates P < 0.0001. Circular barplot was constructed through “tidyverse” R package 
(version:2.0.0, https:// cran.r- proje ct. org/ web/ packa ges/ tidyv erse/ index. html).

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/circlize/index.html
https://cran.r-project.org/web/packages/circlize/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/tidyverse/index.html
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In Fig. 3A–D, we present the AUC (Area Under the Curve) results for these four machine learning models. 
RF achieves an AUC of 0.842, while NB records an AUC of 0.583, SVM achieves 0.826, and KNN attains 0.865. 
Figure 3E exhibits additional metrics, including Specificity (Sp), Sensitivity (Sn), Precision, and F1 score for the 
three machine learning models. For RF, Sp is 0.8, Sn is 0.6, Precision is 0.57, and F1 score is 0.58. KNN yields Sp 
of 0.77, Sn of 0.62, Precision of 0.52, and F1 score of 0.55. Meanwhile, NB displays Sp of 0.8, Sn of 0.36, Precision 
of 0.42, and F1 score of 0.35. SVM produces Sp of 0.8, Sn of 0.35, Precision of 0.37, and F1 score of 0.3.

While KNN demonstrates a higher AUC value than RF, it’s essential to consider that RF outperforms KNN in 
terms of Sp, Precision, and F1 score. Furthermore, the overall evaluation indices of RF surpass those of SVM and 
NB models, underscoring the robustness of the breast cancer prediction model constructed using Random Forest.

Figure 3.  Evaluation of machine learning Model. (A) ROC curve of verification set (Random Forest model). 
(B) ROC curve of verification set (Naive Bayesian model). (C) ROC curve of verification set (Support Vector 
Machine model). (D) ROC curve of verification set (K-Nearest Neighbor model). The ROC curve was 
constructed through “pROC” R package (version:1.18.0, https:// cran.r- proje ct. org/ web/ packa ges/ pROC/ 
index. html). (E) Sensitivity (Sn), Specificity (Sp), Precision, and F1 Score of verification set. Line graphs was 
constructed through “ggplot2” R package. (F) The SHAP disease risk factor model identifies critical features and 
their impact ranges across the dataset. Color coding reflects feature values, with red denoting high values and 
blue indicating low values.

https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
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We then used the SHAP model to evaluate the role of key lncRNAs in our model. In the model, GATA3-AS1 
had the most significant impact, while LINC00511 had the least. The results indicated that each key gene had a 
different contribution to the model (Fig. 3F).

Immune infiltration and the disulfidptosis‑associated lncRNAs
We conducted an immune infiltration assay to explore the relationship between disulfidptosis and immune 
infiltration in different breast cancer subtypes. CIBERSORT and ssGSEA were used to evaluate the immune 
infiltration of patients, and the correlation between key lncRNAs and immune cells was calculated. Key lncRNAs 
were found to have varying degrees of correlation with the level of immune cell infiltration (Fig. 4A).

RNA methylation genes and the disulfidptosis‑associated lncRNAs
We explored the relationship between disulfidptosis-related lncRNAs and RNA methylation in different breast 
cancer subtypes by assessing the correlation of key lncRNAs with RNA methylation genes. We observed diversity 
in the association between four lncRNAs and RNA m6A modifying genes (Fig. 4B). GATA3-AS1 and LINC01488 
showed positive correlations with RNA m1A modifier gene expression, while LINC00511 showed a negative 
correlation. The correlation between LINC02188 and RNA m1A modifier genes varied (Fig. 4C). LINC00511, 
LINC01488, and LINC02188 were positively correlated with RNA m5C modification genes (Fig. 4D), while the 
association between GATA3-AS1 and m5C modifier genes was diverse (Fig. 4D).

Angiogenic genes and the disulfidptosis‑associated lncRNAs
Angiogenesis, the formation of new blood vessels, has been shown to be integral to cancer  development53. 
Our study assessed the correlation of key lncRNAs with angiogenic genes to explore the relationship between 
disulfidptosis and angiogenesis in different breast cancer subtypes. Our results indicate that the relationship 
between the four lncRNAs and angiogenesis is intricate. Each of the four lncRNAs exhibited positive or negative 
correlations with multiple angiogenic genes (Fig. 4E).

Discussion
Disulfidptosis is a recently discovered type of cell death that differs from apoptosis, autophagy, and ferroptosis. In 
this study, we established a prediction model for breast cancer subtypes based on 4 lncRNAs related to disulfidp-
tosis. The model includes 3 lncRNAs that are highly expressed in breast cancer (GATA3-AS1, LINC00511, and 
LINC01488) and 1 lncRNA that is lowly expressed (LINC02188). LINC01488 and LINC00511 showed higher 
expression in the Basal subtype, while GATA3-AS1 showed higher expression in the Her2 and Normal subtypes. 
GATA3-AS1 and LINC02188 showed higher expression in the LumA and LumB subtypes.

In this study, LINC02188 was found to be associated with a reduced risk of Her2, LumA, and LumB breast 
cancer subtypes for the first time. Located on chromosome 16 and 658 bp in length, LINC02188 has been shown 
to be associated with the activation of various immune cells, RNA methylation modifier genes, and the expres-
sion of multiple angiogenic factors. The COPS3 protein is a subunit of the COP9 signalosome (CSN) that exerts 
deubiquitination and protein kinase activity in various  processes54. PD-L1 is a ligand for programmed cell death 
protein 1 (PD-1) that inhibits T cell signaling by interacting with PD-155. GATA3 is a transcription factor that 
plays an important role in the differentiation of mammary epithelium, urothelium, and T lymphocyte  subsets56. 
GATA3-AS1 induces PD-L5 deubiquitination through the miR-1-676p/COPS3 axis while destabilizing GATA3 
protein by promoting its ubiquitination, thus promoting TNBC progression and immune  escape57. MMP13 
is a matrix metalloproteinase that remodels the extracellular matrix and promotes cancer cell  invasiveness58. 
LINC00511 promotes breast cancer proliferation, migration, and invasion through the miR-150/MMP13 axis. In 
HCC, LINC01488 inhibits metastasis and tumorigenesis via the miR-124-3p|miR-138-5p/vimentin  axis59. Our 
research shows that LINC01488 is lowly expressed in the LumB subtype of breast cancer but highly expressed in 
the Basal, Normal, Her2, and LumA subtypes. We speculate that LINC01488 expression may be tissue-specific.

Plasmacytoid dendritic cells (pDCs) can recognize viruses and tumor cells and enhance the function of natu-
ral killer cells (NK cells), T cells, B cells, and other dendritic cells to promote cellular innate and adaptive immune 
 responses60. T cells are lymphocytes that can kill tumor cells by recognizing tumor-specific or tumor-associated 
antigens, exerting anti-tumor immune effects and playing a key role in tumor  monitoring61,62. Macrophages are 
important cells in the tumor microenvironment that can polarize into M1 or M2 phenotypes in response to differ-
ent stimuli and  signals63. M1 macrophages mainly induce the production of pro-inflammatory cytokines such as 
TNF-α, IL-1β, IL-6, and IL-12, which are conducive to anti-tumor  effects64. In the Basal subtype, high expression 
of LINC02188 and LINC00511 may increase immune infiltration of tumor tissue by activating various immune 
cells, thereby inhibiting tumor development. Mast cells can promote tumor cell proliferation and  invasion65. 
M2 macrophages secrete anti-inflammatory cytokines such as IL-10, CCL18, and CCL22, which are beneficial 
to cancer cell  growth66. In the LumA and LumB subtypes, high expression of LINC01488 and GATA3-AS1 may 
activate Mast cells and M2 macrophages, promoting tumor immune escape and development.

RNA methylation plays a critical role in cancer  development67. m6A is the most prevalent internal mRNA 
modification in eukaryotic cells and regulates multiple RNA processing  steps68. The relationship between the 
four lncRNAs and m6A modifying genes is complex and has both positive and negative correlations. RNA m1A 
modification disrupts base pairing and can affect local RNA structure or protein-RNA  interaction69. GATA3-
AS1 and LINC01488 were positively correlated with RNA m1A modifier gene expression, while LINC00511 was 
negatively correlated. RNA m5C modification can promote mRNA nucleoplasmic transport, DNA damage repair, 
enhance mRNA stability and regulate mRNA  splicing70. LINC00511, LINC01488, LINC02188 were all positively 
correlated with RNA m5C modification genes. Since DNMT3A, DNMT3B, and DNMT1 are also responsible 
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Figure 4.  Key lncRNAs in breast cancer subtypes associated with immune infiltration, RNA methylation 
modification, and angiogenesis. (A) On the right, ssGSEA is used to assess the enrichment scores of immune 
pathways in breast cancer patients. Correlations exist between immune pathways and between key lncRNAs and 
immune pathways. On the left, CIBERSORT is used to assess the proportion of immune cells in breast cancer 
patients. Correlations exist between immune cells and between key lncRNAs and immune cells. Pearson’s r 
represents the correlation coefficient between immune cells, while coef represents the correlation coefficient 
between key lncRNAs and immune cells. P.adj represents the adjusted significance P value of key lncRNAs in 
breast cancer subtypes and immune cells. Correlation heatmap was constructed through “linkET” R package 
(version:0.0.4, https:// rdrr. io/ github/ Hy4m/ linkET/). (B)–(E) Key lncRNAs show correlation with m6A 
modification-related genes (B), m1A modification-related genes (C), m5C modification-related genes (D), and 
angiogenesis-related genes (E), respectively. The corrected P value (P.adj) was calculated using Bonferroni’s 
correction. Correlation heatmap was constructed through “ggplot2” package in R.

https://rdrr.io/github/Hy4m/linkET/


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16268  | https://doi.org/10.1038/s41598-023-43414-1

www.nature.com/scientificreports/

for DNA m5C methylation modification, this suggests that LINC00511 and LINC02188 may promote DNA 
methylation while GATA3-AS1 reduces it.

This study has some limitations. Firstly, we only used the TCGA internal dataset for analysis and lack external 
validation. In the future, we need to verify the accuracy of the model using more clinical samples. Secondly, as 
disulfidptosis research is a novel and fast-growing field, more regulators may be discovered in the future and 
the model can be further optimized after a deeper understanding of the biological process of disulfidptosis. 
Additionally, this study was based on RNA profiling and cannot explain the direct molecular mechanism of 
disulfidptosis-related lncRNAs in breast cancer development at the protein level.

Prior research endeavors have explored the application of computational methodologies, notably machine 
learning models, in the realms of breast cancer diagnosis and prognosis. For instance, one study leveraged sup-
port vector machine (SVM) techniques, employing FTIR spectra from plasma, to detect breast  cancer71. Another 
notable contribution by Mariia V. Guryleva et al. combined the Boruta algorithm with a Random Forest (RF) 
model to delineate genes associated with Polyunsaturated Fatty Acid (PUFA) metabolism changes in breast 
cancer, thereby facilitating breast cancer subtype  prediction72. Hang et al. introduced an MRI-based multipa-
rameter radiomics model that adeptly forecasts molecular subtypes and androgen receptor expression in breast 
 cancer73. Additionally, Zheng et al. harnessed deep learning radiomics for the prediction of axillary lymph node 
status in early breast  cancer74.

In contrast to prior studies, our research represents a pioneering effort in incorporating disulfidptosis-asso-
ciated long non-coding RNAs (lncRNAs) into the signature screening process. This novel approach enabled the 
identification of four distinctive biomarkers showcasing differential expression patterns across various breast 
cancer subtypes. Remarkably, our findings also suggest an intriguing link between breast cancer subtypes and 
disulfidptosis phenomena.

Furthermore, it’s noteworthy that previous investigations have predominantly focused on utilizing machine 
learning models trained on breast cancer images for tumor classification into neoplastic and benign categories. 
While these studies exhibit higher accuracy and specificity, it’s imperative to acknowledge the resource-intensive 
nature of training such models using expensive and time-consuming breast cancer images.

Conclusions
Here, we constructed a breast cancer subtype prediction model containing 4 key lncRNAs using a random forest 
model. We found strong correlations between key lncRNAs in the model and immune milieu, RNA methylation, 
and angiogenesis. Our findings reveal the potential function of disulfidptosis-asscociated lncRNAs in breast 
cancer subtypes and provide a new direction for improving individualized treatment of breast cancer.

Data availability
All relevant data are within the paper and its Supporting Information files. The data that support the findings of 
this study are openly available in TCGA database at https:// portal. gdc. cancer. gov/.
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