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Reproducibility in pharmacometrics 
applied in a phase III trial 
of BCG‑vaccination for COVID‑19
Rob C. van Wijk  1, Laurynas Mockeliunas 1, Gerben van den Hoogen 2, Caryn M. Upton  2, 
Andreas H. Diacon 2 & Ulrika S. H. Simonsson  1*

Large clinical trials often generate complex and large datasets which need to be presented frequently 
throughout the trial for interim analysis or to inform a data safety monitory board (DSMB). In 
addition, reliable and traceability are required to ensure reproducibility in pharmacometric data 
analysis. A reproducible pharmacometric analysis workflow was developed during a large clinical trial 
involving 1000 participants over one year testing Bacillus Calmette-Guérin (BCG) (re)vaccination in 
coronavirus disease 2019 (COVID-19) morbidity and mortality in frontline health care workers. The 
workflow was designed to review data iteratively during the trial, compile frequent reports to the 
DSMB, and prepare for rapid pharmacometric analysis. Clinical trial datasets (n = 41) were transferred 
iteratively throughout the trial for review. An RMarkdown based pharmacometric processing script 
was written to automatically generate reports for evaluation by the DSMB. Reports were compiled, 
reviewed, and sent to the DSMB on average three days after the data cut-off, reflecting the trial 
progress in real-time. The script was also utilized to prepare for the trial pharmacometric analyses. 
The same source data was used to create analysis datasets in NONMEM format and to support model 
script development. The primary endpoint analysis was completed three days after data lock and 
unblinding, and the secondary endpoint analyses two weeks later. The constructive collaboration 
between clinical, data management, and pharmacometric teams enabled this efficient, timely, and 
reproducible pharmacometrics workflow.

Clinical trial datasets are becoming larger and increasingly complex with innovative advances in biomarker 
including genomic, transcriptomic, proteomic, and metabolomic measurements, mobile or wearable patient 
surveillance, and the use of real-world data1,2. The impact of larger datasets on pharmacometrics, including 
big data and data-mining of information sources other than clinical trial records, is expected to further 
increase in the coming years3. With more complex, non-randomized data like real-world data, transparency 
and reproducibility of decisions and steps in the data analysis become even more important4. While size and 
complexity of datasets and their analysis increase, the extreme scrutiny on clinical trial analysis and decision 
making in drug development rightfully remain unchanged. At the same time, the urgency to answer clinical 
questions, especially during epidemics or pandemics, increases. Thus, more complex analyses have to be 
performed with the same quality in a shorter time frame.

Pharmacometricians are experts in data review, processing, and analysis in clinical and preclinical 
pharmacology. Reproducibility, defined as reaching the same outcome when repeating an analysis5, is essential 
to all quantitative sciences, including pharmacometrics3. Consensus exists among the scientific community 
to improve reproducibility6. Thus, investing in developing a standardized, reproducible, and interoperable 
workflow will be advantageous in the long term. Essential to reproducibility is access to the data analysis 
workflow describing the computational steps including scripts in addition to the (raw) data7. Traceability and 
clear, transparent documentation of the workflow and the steps taken are necessary to prevent irreproducibility 
crises that threaten clinical and preclinical drug development5,6,8,9.

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), became a world-wide pandemic. It particularly put a serious strain on the health care system of 
South Africa10. Health care workers on the frontline were at high risk of contracting COVID-1911. Evidence of 
a non-specific protective effect of the anti-tuberculosis (TB) Bacillus Calmette-Guérin (BCG) vaccine against 
respiratory tract infections, and infections in general12, through epigenetic changes in the innate immune 
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system has been reported13–15. In addition, epidemiology studies reported that COVID-19 burden was lower 
in countries with broader BCG vaccination coverage16,17. A double-blind, randomized, placebo-controlled trial 
enrolled 1,000 health care workers to investigate this hypothesis (NCT04379336, Re-BCG-CoV-19 project18). 
The primary endpoint of the trial was incidence of hospitalization due to COVID-19, with secondary endpoints 
including incidence of COVID-19, respiratory tract infection (RTI), and hospitalization due to all causes19. 
Participants were followed up for 52 weeks in the Western Cape, South Africa with the objective to assess in a 
timely manner if BCG (re)vaccination can reduce the COVID-19 burden on the health care system. To achieve 
this, the study started enrolment in May 2020, within two months of the first diagnosed patient in South Africa10, 
and simultaneously initiated close collaboration between the clinical, data management, and pharmacometric 
teams to prepare for real-time analysis and reporting.

The objective of this work was therefore to create a reproducible pharmacometric workflow for data 
processing, reporting, and analysis in order to support the data safety monitoring board (DSMB) and allow for 
efficient, timely, and reproducible data analysis. We focussed on understanding of, and confidence in handling the 
growing clinical trial dataset, fast and reliable frequent reporting of aggregated and per-arm data, and consistency 
between the reporting and the subsequent pharmacometric analysis dataset. We present here the reproducible 
pharmacometrics workflow that led to the rapid pharmacometrics analyses of the trial, which are not the focus 
on this work and the outcome of which are reported separately.

Methods
Workflow structure
The reproducible pharmacometric workflow was designed in consensus between the pharmacometricians, 
clinicians, and data managers within the project, and is shown in Fig. 1. The structure is concisely described 
here, with more detailed description at their respective paragraphs. Data collection from participants occurred 
at designated visits in the trial: screening and enrolment, monthly follow-up visits, when an event (e.g. COVID-
19) occurred, and for sample collection. Data was quality controlled (QC) by the clinical and data management 
teams following good clinical practice (GCP) and captured in electronic case report forms (eCRFs) using 

Figure 1.   Overview of the pharmacometric reproducibility workflow. Clinical operations were the initial start 
of the workflow, but because of its circularity, and ongoing clinical operations throughout the trial parallel to 
the data processing, the workflow was performed repeatedly. The black boxes represent the clinical team, purple 
boxes represent the data management team, magenta boxes represent the pharmacometric team, and orange box 
represent the independent data safety monitoring board (DSMB). All processes were blinded until the end of the 
clinical trial, after which the data report per arm and the DSMB contained the unblinded data. eCRF = electronic 
case report form, QC = quality control.
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an electronic data capturing tool in a virtual private cloud platform (Mobenzi Technologies (Pty) Ltd., Cape 
Town, South Africa). The database architecture consisted of four master databases, which were transferred to 
the pharmacometric team. Upon receipt of the master databases, the data was subject to the pharmacometric 
processing script (https://​github.​com/​rcvan​wijk/​Repro​ducib​ility​PMX), which integrated the four master 
databases whereafter a complementary data review was performed. The pharmacometric and data management 
teams conferred where queries where identified, and technical inaccuracies (e.g. spelling) were corrected by the 
data management team in the input data, while clinical meaning ambiguity was resolved in a reproducible and 
annotated manner in the pharmacometric processing script.

After resolving all queries, the pharmacometric processing script produced two types of output. Firstly, the 
script automatically generated two data reports for frequent review; an aggregated report and a per-arm closed 
report. The aggregated data report, with treatment arms combined to prevent investigator unblinding or bias, 
was presented to the data safety monitoring board (DSMB) during the open session of their meeting, where the 
clinical team was present. The closed data report for the DSMB conversely showed the clinical trial data separated 
per arm but still blinded during the trial. Second, the pharmacometric processing script prepared for the different 
pharmacometric analyses, by graphical exploration of the data and data parsing to datasets for non-linear mixed 
effects modelling, of which the results were also presented to the clinical team and the DSMB. Collaboration on, 
and interoperability of, the pharmacometric processing script was essential between the different members of 
the pharmacometric team, which are working on the same reporting and analyses in parallel. To facilitate coding 
within the same script, the members of the pharmacometric team worked together in a private Github repository 
through Github Desktop (v.2.9.4) which at the same time ensured the script’s version control.

Clinical trial data
The clinical trial data was captured in four master databases namely Screening/enrolment, Events, Lab results, and 
Follow-up, which consisted of 59 datasets in total. The Screening/enrolment database contained the participant 
demographics, medical and social history, and trial specific information such as inclusion/exclusion criteria, 
informed consent, and randomization. This database was therefore essential for covariate information to be 
tested in subsequent analyses. In the Events database, all information on adverse events was collected. Events 
were categorized as injection site reaction (ISR), respiratory tract infection (RTI), or other. Events were given a 
health status score by the clinical team with 0 representing healthy participant, 1 representing mild symptoms, 2 
representing moderate symptoms, 3 representing severe symptoms, 4 representing hospitalization, 5 representing 
hospitalization with supplemental oxygen, 6 representing hospitalization with mechanical ventilation, and 7 
representing death20. Event descriptions were standardized using the Medical Dictionary for Regulatory Activities 
(MedDRA, v.23.0) terminology. RTI events were followed-up and a health status score was recorded weekly. The 
MedDRA lower level term (LLT) was utilized to define the event type (e.g. COVID-19) while the corresponding 
health status score was utilized to define the event severity (e.g. 2, moderate). The Lab results database contained 
reports on presence of SARS-CoV-2 antibodies and latent TB infection based on interferon-gamma release assay, 
for which samples were taken at baseline and weeks 10, 26 and 52, or at baseline and week 52, respectively. The 
serology data on SARS-CoV-2 antibodies was particularly informative for asymptomatic SARS-CoV-2 infections 
and as a (time-varying) covariate. Lastly, in the Follow-up database, data originating from the monthly follow-up 
visits was recorded. This included a symptom screen and record of sick leave, as well as receipt of vaccines 
including influenza, BCG, or SARS-CoV-2 specific vaccinations which was important for censoring the data.

The four master databases were transferred from the data management to the pharmacometric team through 
secure file transfer protocol (sFTP, WinSCP v. 5.19.321) and integrated into a single database based on the 
participant’s identifier (ID) by the pharmacometric processing script. The script was written in R (v.4.0.422) 
using RMarkdown (v.2.723) through the RStudio (v.1.4.110624) interface, which allowed for clear distinction of 
separate code chunks per objective. The Tidyverse (v.1.3.025) collection of packages including dplyr (v.1.0.526), 
magrittr (v.2.0.127), and tidyr (v.1.1.328) ensured clean and transparent coding with extensive commenting for 
interoperability between members of the pharmacometric team. The clinical trial was performed in accordance 
with guidelines and regulations, and was approved by the South African Health Products Regulatory Authority 
(Ref: 20,200,402), Pharma-Ethics (Ref: 200,423,268) and UCT Human Research Ethics Committee (Ref: 
237/2020). Informed consent was provided by all participants. Further details on the trial can be found in its 
primary manuscript18.

Data review
The clinical team’s QC ensured all data entries to the eCRF platform corresponded to the paper source 
documentation. The data management’s QC subsequently checked the eCRF platform data on MedDRA coding, 
duplicates, incomplete or non-QC-ed records, etc. Once data had passed the clinical and data management 
QCs successfully, they were transferred to the pharmacometric team. The integrated database as a result of the 
pharmacometric processing script was subject to a data review complementary to these QCs. The pharmacometric 
data review had three objectives, and was performed by running the integrated data through an R-script after 
which results were reviewed by members of the pharmacometrics team. First, data was reviewed to comprehend 
the clinical meaning of the data entries, including in the context of new data and information on COVID-19 that 
arose throughout the trial and the ongoing pandemic. Second, once integrated by the pharmacometric processing 
script, the consistency between the data entries was reviewed, e.g. to not have conflicting records from different 
datasets for the same timepoint. Third, a check was done to ensure the eCRF data output of the eCRF platform 
(Mobenzi), was correctly input into the data handling software used by the pharmacometric team (R). This more 
technical review considered missing values, leading spaces, spelling, lower or upper cases, and numerical or 
character values, among others. A dedicated R chunk in the pharmacometric processing script was developed 

https://github.com/rcvanwijk/ReproducibilityPMX
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for the data review which was updated frequently. After every data transfer, the updated integrated database 
was reviewed using this code and queries were directed to the data management team. After all queries were 
resolved and data review was passed successfully, the integrated database was used for graphical and numerical 
exploration in the pharmacometric processing script, as well as for the DSMB report.

Reporting
Frequent reporting on the progress of the trial was critical to identify early evidence of efficacy, if present. To 
that aim, the reports contained graphical and tabular exploration of the data without formal interim statistical 
testing. To limit the time between data transfer and distributing data reports, the pharmacometric processing 
script was developed to automatically generate reproducible data reports. RMarkdown was used to incorporate 
R-based output (numeric, graphical, tabular) with written text, which was compiled into a pdf document by 
knitr (v.1.3329). Written text and R variables were combined using the in-line R calling feature of RMarkdown. 
The script was coded to produce two versions of the same report based on a single switch-variable. One version 
of the report would show aggregated data for the trial for review by the clinical investigators, while the other 
version showed blinded, per arm data for review by the DSMB in their closed meeting.

Pharmacometric analysis preparation
The pharmacometric processing script was also utilized for the pharmacometric analysis preparation. 
The integrated database that was input for the tables and graphs in the report, was transformed into the 
pharmacometric analysis datasets in NONMEM v.7.4.330 format. The pharmacometric analysis datasets were 
used to develop a reproducible modelling workflow and strategy per endpoint (hospitalization due to COVID-19, 
COVID-19, RTI, hospitalization due to all causes, SARS-CoV-2 specific vaccination), including which hazard 
functions for time-to-event analysis to test31. Model scripts were drafted and tested with the interim data, and 
the scripts were code reviewed by a second reviewer, while the clinical trial was still ongoing, to ensure timely 
and efficient results upon completion of the trial. NONMEM scripts were run separate from the pharmacometric 
processing script. A data description table (DDT) was appended to the report for traceability of the analysis 
dataset variables to the source input databases. Additionally, model diagnostics using xpose4 (v.4.7.132) and 
kernel based visual hazard comparison33 were included into the pharmacometric processing script.

Results
Transfer of clinical trial data
Instead of the conventional approach of receiving data for pharmacometric analysis after the trial completion, 
an iterative data transfer and reproducible data handling workflow was developed by consensus between the 
clinical, data management, and pharmacometric teams who collaborated in this clinical trial. Data QC and 
review responsibilities were shared between the clinical, data management, and pharmacometric teams. Figure 2 
shows the participation in the trial from start of enrolment to final visit. First data was transferred once data 
management procedures were developed, which occurred as early as 16% enrolment. In total, 41 data transfers 
occurred on average every 1.8 weeks. The Screening and enrolment database was locked within three weeks 
after enrolment completed. Trial participation showed a slight decrease between the last participant in and first 
end of study visit (first participant out, April 2021) due to withdrawal and lost to follow-up or death (n = 11 and 
n = 2, respectively, in that interval). The full database was locked within 5 working days after trial completion, 
after which unblinding took place.

Figure 2.   Overview of the data management throughout the clinical trial. Number of participants on trial over 
time is shown in purple solid line, database locks (n = 2) are shown in black dashed lines, scheduled data review 
(n = 41) are shown as magenta top rug plot, first reported diagnosed COVID-19 case in South Africa is shown as 
grey bottom axis mark for reference.
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Understanding and confidence in handling through data review
The frequent interim data QC by the clinical, data management, and pharmacometric teams was a time-saving 
investment. All records were subject to check after entry into the eCRF, and the clinical QC and data management 
combined found in 20.9% of the records that a correction was needed when the eCRF was compared to the paper 
source document. A total of 201 queries accounting for 10.7% of total records were found by the pharmacometrics 
team and resolved while the trial was ongoing. The last data check after the trial completed only resulted in 4 
additional queries which were resolved in two days, after which the data could be locked. In addition to saving 
time after study completion, addressing queries while the study is still ongoing was also found to be advantageous 
because an incorrect measurement (e.g. weight) can still be re-measured and recorded. Pharmacometric analysis 
(magenta hexagon in Fig. 1) could commence practically immediately after trial completion because of this 
streamlined review process (other magenta, purple, and black boxes in Fig. 1). Best practices and examples of 
the data review are described below.

Data review was challenging because of the large size of the database. The full database consisted of 20,457 
records. Figure 3 shows the database architecture including number of records per master database. The four 
master databases Enrolment/screening, Events, Lab results, and Follow-up, contained 24, 13, 12, and 10 datasets 
in .dat format, respectively (Supplementary Table I). Each dataset came with a metadata file in .stsd format 
reporting on each variable, possible values, and units. All records were linked through the participants ID 
(n = 1000) in the integrated database.

Most important in the pharmacometric data review was the understanding of the clinical meaning of the data 
entries. For example, COVID-19 was defined as a symptomatic disease with confirmed SARS-CoV-2 infection. 
As such, a COVID-19 event with a health status score of 0, or a polymerase chain reaction (PCR) confirmed 
asymptomatic SARS-CoV-2 infections with a health status of 1 or higher, would result in a query directed to the 
clinical team on how to interpret these results. The records would subsequently be corrected in the next data 
transfer for the health status score to reflect the event definition. Another example was post viral syndrome, i.e. 
long COVID. A record without a preceding COVID-19 event would also result in a query.

The consistency review between the different databases and datasets mostly focussed on the Events master 
database. The weekly health status score was captured in two different datasets; in the original Events dataset for 
the first observation(s) and thereafter in the Follow-up dataset. In the integrated datasets, these weekly health 
status scores were merged and checked for consistency. Where different health status scores for a single week 
were reported, or where the number of weekly scores did not equal the number of weeks an event was ongoing, 
a query was opened. Each event had a unique event number, so duplicate event numbers were flagged to the 
data management team. Consistency between Follow-up and Events master databases was important because 
participants self-reported COVID-19 events during the follow-up contact, which would result in a record in the 
Events master database when symptomatic. Consistency of dates between the Lab, Follow-up, and Events master 
databases was checked to prevent ongoing events after trial completion.

Records were checked for missing or not applicable (NA) values. Additionally, dates (negative timepoints, 
the same record with different dates), MedDRA event descriptions, and spelling were checked. Spelling was a 
noteworthy issue where COVID-19 was recorded with 63 different spelling alternatives, including COVID-19, 
COVID 19, COVID, COVID-19 infection, COVID-19 pneumonia, COVID-19 respiratory tract infections, while 
post COVID viral syndrome was recorded in 10 different alternatives. Therefore, the MedDRA term initially 
utilized, but unfortunately also contained two alternative spellings for both. From this insight, the MedDRA 
numerical codes were included into the data processing.

Figure 3.   Number of eCRFs submitted per master database. Dataset architecture consisted of 4 master 
databases (Screening/enrolment, Events, Lab results, and Follow-up) for which the number of records is shown.
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The initial analysis workflow evolved over time with new information and methods arising during the 
pandemic which were unknown at database setup. Post viral syndrome after COVID-19, also coined long 
COVID34–36, was one example, which was first reported on trial in August 2020. Discussions on long COVID 
developed around two points. First, the link between COVID-19 and long COVID was important to be 
established, by assigning those events the same event number. Second, long COVID could very well last longer 
than the maximum 12 weeks for which the eCRF was equipped. An additional data field was incorporated to 
record health status scores needed after week 12. Measurement of SARS-CoV-2 antibodies was approved by South 
African regulators in August 2020, and first results were reported to site in October 2020. This led to discussions 
around participants who were SARS-CoV-2 antibody positive at baseline, participants who were SARS-CoV-2 
antibody negative after confirmed COVID-19, and on how to interpret reversal of seroconversion from positive 
to negative. Globally, SARS-CoV-2 specific vaccinations were first approved in December 2020 but became 
only available in South Africa in February 2021. Understandably, health care workers were among the first to 
be vaccinated with specific COVID-19 vaccines, which needed to be recorded in the database for appropriate 
censoring in the pharmacometric analyses. Regarding handling of events ongoing after the final (week 52) study 
visit consensus was reached to allow ongoing events after the final visit if the event was an important endpoint 
of the trial, for example COVID-19 events or respiratory tract infections in general that were symptomatic at 
the final visit. Acute events would be followed-up until resolution of symptoms, while chronic events like post 
viral syndrome would not.

Interoperability
Interoperability between members of the pharmacometric team was essential to divide the work with the short 
timelines. The pharmacometric processing script was stored in a private Github repository where multiple coders 
could work simultaneously. Through Github, changes to parts of the script by team members could be reviewed 
and incorporated into an updated version, all while tracking these changes and being able to revert to an earlier 
version in case of debugging. Additionally, the file structure between pharmacometricians was standardized, 
so only the path to the working directory needed to be changed relative to which all other files were inputted 
or outputted. The path to the working directory was automatically called at the start of the script based on an 
if-statement with the system’s info of the user’s machine (Fig. 4). Interoperability was also improved by using 
clear, transparent, and well commented coding. The Tidyverse packages including the magrittr pipe operator 
(% > %) allowed for better readable and interpretable code25,27. Interoperability between data management and 
pharmacometric teams was ensured by naming standards for the four master databases.

Automatically compiled and consistent data reports
The pharmacometric team prepared the data reports for the DSMB to review the safety and efficacy of the 
ongoing trial. Because of the time-sensitive nature of the vaccination trial, initially biweekly reporting was 
proposed, which was later amended to a lower frequency by request of the DSMB and the clinical team because 
of reduced clinical urgency. Two types of reports were prepared. The open report showed the data aggregated 
which was open to review for the whole clinical trial, while the closed report showed the blinded data per study 
arm for the closed session of the DSMB. The pharmacometric processing script was developed to automatically 
generate a report based on the integrated database, to prevent repetitive manual report drafting with the suggested 
frequency. Using this method, a transparent and reproducible workflow was established from the raw eCRF input 
through to the DSMB report. RMarkdown was used to integrate the R-based processing of the integrated database 

- ifelse(Sys.info()[‘nodename’] == ‘collaborator1’, ‘path/to/collaborator1/’, 

‘path/to/collaborator2/’, ) 

- ‘/Input/Events/’

# derive the working directory from the systems inform on

WD <

# standardize downstream directory

wd_events <

# use paste0() func on to input data

df_events1 <- read.table(paste0(WD, wd_events, ‘dataset1’))

Figure 4.   Interoperability through standardized file structure and automatic extraction of working directory 
using the system’s info. The ifelse() statement can be expanded with nested ifelse() statement for more 
collaborators.
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with Markdown and LaTeX text compilers to create a report in pdf format in which the numerical, graphical, 
and tabular elements were automatically updated with each compilation (Fig. 5A).

To create the two versions of the report in a consistent manner, an R-variable was integrated into the 
relevant numerical, graphical, and tabular elements where aggregated or per-arm data was reported. This had 
the advantage of not having to work in two RMarkdown scripts at the same time with the risk of inconsistencies 
and code conflicts that occur when coding even when working as diligently as possible. As a result, the open 
and closed reports showed the exact same data with the only difference being the presentation of these data. The 
switch-variable (CLOSED) was used in if-statements throughout the report to show figures and tables either 
aggregated or per arm (Fig. 5B), as well as in R-code that was called in-line in the RMarkdown file (Fig. 5C).

When the DSMB meeting schedule was set, a corresponding data transfer schedule was set. On average, the 
DSMB received the compiled and reviewed report within 3 days after the cut-off date of the data, including the 
final unblinded report. The DSMB repeatedly expressed their appreciation for these “excellent turnaround times.”

Pharmacometric analysis preparation
The pharmacometric processing script was also developed to include the pharmacometric analysis dataset 
creation. This resulted in a transparent, traceable, and version-controlled workflow from the raw eCRF input 
data to the analysis dataset in NONMEM format. Moreover, because the same script and integrated database was 
utilized to that aim, the datasets were consistent with the figures and tables in the DSMB reports.

The reproducible workflow and subsequent confidence in handling of the data allowed for preparation of 
the pharmacometric analysis of the primary and secondary endpoints while the trial was still ongoing. Based 
on interim graphical exploration of the data, modelling strategies were developed per endpoint including 
which functions to test. Model scripts were written, tested, and code reviewed before the data lock. Analysis 
of the primary endpoint had the highest priority. Because of the reproducible workflow and preparations for 
the pharmacometric analysis before the data lock, the primary endpoint analysis was completed and reviewed 
within three days after data lock and unblinding, and shared with the DSMB and the clinical team. Analysis of the 
secondary endpoints, including a total of 7 time-to-event analyses for COVID-19, RTI, and hospitalization due 

(A) `r part_screen` par�cipants were screened for this study. `r part_enrol` par�cipants were 

enrolled for this study. 

(B) ```{r}

T){graph_per_arm} else {graph_aggregated}

CLOSED = T #closed report shows data per arm for the DSMB

if(CLOSED ==

if(CLOSED == T){table_per_arm} else {table_aggregated}

```{}

(C) The primary endpoint was hospitaliza�on due to COVID-19. `r ifelse(CLOSED == T, 

paste(n_hosp_c19_group1, " (", round(100 * n_hosp_c19_group1 / part_group1, 1), "%) 

par�cipants were hospitalized in the ", Arm1, " arm with a posi�ve COVID-19 PCR test 

result. ", n_hosp_c19_group2, " (", round(100 * n_hosp_c19_group2 / part_group2, 1), "%) 

par�cipants were hospitalized in the ", Arm2, " arm with a posi�ve COVID-19 PCR test 

result.", sep = "), paste(n_hosp_c19, " (", round(100 * n_hosp_c19 / part_enrol, 1), "%) 

par�cipants were hospitalized with a posi�ve COVID-19 PCR test result.", sep = ""))`

Figure 5.   RMarkdown was used to combine text and R variables in the automatically generated report. (A) 
In-line calling of R variables to include them in a written sentence, (B) R variable CLOSED was used to switch 
between open and closed reporting using if-statements for tables and graphs called in R-chunks or (C) called in 
in-line R calls.
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to all causes in both intention-to-treat and per-protocol datasets, as well as an exploratory time-to-SARS-CoV2 
specific vaccination analysis, was completed and reviewed within two weeks after data lock and unblinding, and 
presented to the DSMB and the clinical team. As we focus here on the reproducible pharmacometrics workflow, 
the results of these analyses are out of scope and reported separately.

Discussion
A reproducible pharmacometric workflow was developed here to review data iteratively during a clinical trial, 
report the trial data frequently to the DSMB, and prepare for the pharmacometric analyses of the primary and 
secondary endpoints upon trial completion to answer time-sensitive questions. Early collaboration between 
clinical, data management, and pharmacometric teams was established in this COVID-19 vaccination trial to 
ensure preparedness for the short analysis timelines. Investing in the development of this workflow paid off, as the 
primary endpoint analysis was completed within three days, and the secondary endpoint analyses were completed 
within two weeks after the data lock and unblinding. The automatically compiled open and closed reports ensured 
consistent and real-time presentation of the latest data when reporting to the DSMB, with on average three days 
between cut-off and sending the report. The DSMB repeatedly expressed their appreciation for the latest data 
and extensive analyses given the short timelines. The data review did not only result in confidence in handling 
the data, but also progressive insight with each iteration. Every single query from the data review improved the 
understanding of the data, their structure, and the data handling by the processing script. Additionally, through 
frequent interactions between the clinical, data management and pharmacometric teams, the appreciation for 
each other’s expertise and requirements grew which led to a very constructive environment. Drug development 
would benefit by moving from a conventional linear and sequential paradigm, to a more integrative approach 
as shown here37. Medical conditions that are less visible than pandemic ones might require the same urgency in 
answering clinical questions. Tuberculosis was the leading cause of mortality due to an infectious agent before 
the COVID-19 pandemic, and its burden on developing countries has only increased during the pandemic due 
to reduced access to care, diagnoses and treatment initiation38,39.

The pharmacometric reproducible workflow developed here falls within a larger context of increasing 
awareness in reproducibility in both data and modelling. This is especially important because of the increasing 
size and complexity of data acquisition and data types in drug development. The FAIR principles of findability, 
accessibility, interoperability and reusability of data are becoming the standard40,41. The Re-BCG-Cov-19 project 
is committed to these principles, as are progressively more publicly funded projects. For modelling, it is an 
encouraging first step for scientific journals to require authors to upload model scripts to reproduce the results 
reported in their articles7,42, although reproducibility to the level of successfully running these models and 
generating the article figures remains a concern43. A drug and disease model repository (DDMoRe) has been 
developed for pharmacometric model codes44, where the analysis scripts within this project will be uploaded as 
well, and more recently best practices in reproducibility in systems pharmacology were formulated45.

Conclusion
The reproducible pharmacometric workflow we developed resulted in fast, efficient, and reliable analyses in a 
large clinical trial during the COVID-19 pandemic in South Africa. The constructive collaboration between 
clinical, data management, and pharmacometric teams enabled this efficient and robust pharmacometric data 
analysis which was embedded during the trial in order to support the DSMB and allowed for efficient, timely, 
and reproducible data analysis.

Data availability
The pharmacometric reproducibility script (without specifics of clinical data) is available at https://​github.​com/​
rcvan​wijk/​Repro​ducib​ility​PMX. The study data will be made available in an open access data repository upon 
completion of all trial analyses as per the data availability statement of the primary paper of the clinical trial17.
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