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Public health factors help explain 
cross country heterogeneity 
in excess death during the COVID19 
pandemic
Min Woo Sun 1,3*, David Troxell 2,3 & Robert Tibshirani 1,2

The COVID-19 pandemic has taken a devastating toll around the world. Since January 2020, the World 
Health Organization estimates 14.9 million excess deaths have occurred globally. Despite this grim 
number quantifying the deadly impact, the underlying factors contributing to COVID-19 deaths at 
the population level remain unclear. Prior studies indicate that demographic factors like proportion 
of population older than 65 and population health explain the cross-country difference in COVID-
19 deaths. However, there has not been a comprehensive analysis including variables describing 
government policies and COVID-19 vaccination rate. Furthermore, prior studies focus on COVID-19 
death rather than excess death to assess the impact of the pandemic. Through a robust statistical 
modeling framework, we analyze 80 countries and show that actionable public health efforts beyond 
just the factors intrinsic to each country are important for explaining the cross-country heterogeneity 
in excess death.

The World Health Organization (WHO) estimates that the COVID-19 pandemic has led to 14.9 million excess 
deaths worldwide in 2020 and  20211. Excess death is defined as the difference between actual reported death 
counts and what was expected under “normal” conditions based on data from earlier  years2. While excess death 
can result from non-COVID causes, excess death has shown to be a more accurate measure assessing the true 
impact and death toll of the COVID-19  pandemic3–5. Undertesting and underreporting of COVID-19 cases, 
for instance due to limited testing capabilities, account for some of this excess  death6,7. Indirect death resulting 
from COVID-19 due to hospital strain and overwhelmed public health infrastructures has also been shown to 
be associated with greater excess  deaths8.

Although the world collectively experienced a massive number of these excess deaths during the COVID-
19 pandemic, the impact across different countries varies widely. While some countries suffered around 450 
excess deaths per 100, 000 people, other countries saw nearly 0 excess deaths per 100,  0001. What factors drive 
this change? Were certain countries simply better suited to handle the pandemic due to robust healthcare infra-
structure, a healthier population, and a younger population? Or can these pre-existing traits not explain such 
variations alone, implying that some COVID-19 related public health efforts lessened the impact of the pan-
demic? In this paper, we split the set of all variables into two distinct subsets: “intrinsic” features that countries 
inherited before COVID-19 was declared a pandemic in March 2020, and “actionable” features that can poten-
tially be modified within the timeframe of the pandemic. By explicitly investigating governmental policies and 
public health efforts in conjunction with ingrained economic and health factors through this lens, we can better 
understand and help explain the drivers of excess deaths and the large variations of fatalities between countries.

Much of the past work regarding COVID-19 death at the country-level focuses on the impact of the pandemic 
on groups in different income levels (such as Refs.9,10). Another major area of study is the thorough analysis of 
COVID-19 death drivers in specific, single countries (such as Ref.11,12). In regard to studying the variation in 
COVID-19 deaths across countries, articles  like13 reveal that being strict in regards to certain policies - such as 
testing and contact tracing policies - are highly associated with countries that initially mitigated the spread and 
effect of the disease. However, this study and many others do not place a quantitative comparison among these 
factors, and no statistical model is created to estimate these features’ impacts. Other studies purely investigate 
intrinsic population risk factors. For example, the findings from Ref.14 state that Alzheimer’s disease and some 
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lung-related illnesses are associated with higher case mortality rates of COVID-19. The study performed in Ref.15 
incorporates both population risk factors such as lung-related illness prevalence and governmental policies like 
COVID-19 testing strategies. However, these models predict case fatality rate (CFR) rather than excess deaths. 
Additionally, like many of the other aforementioned studies, the analysis was performed in 2020 or early 2021 
making it impossible to estimate and incorporate the effects of the COVID-19 vaccine.

In our paper, we incorporate and add to many of the characteristics of the studies previously mentioned. Our 
primary contributions to the study of COVID-19 death variations are as follows: 

1. We build a gradient boosting model that allows for the quantification of how much various factors drive 
excess death. Additionally, we use these models to discuss which combinations of factors have especially 
deleterious effects on relatively lower-GDP countries and countries with obesity rates in the highest quartile 
of all countries in the study.

2. We view the analysis through the lens of intrinsic features and actionable features, and we specifically dem-
onstrate the prediction power gained from considering actionable public health efforts. We formalize this 
notion via a bootstrapped hypothesis testing procedure. Also, we fit two models – one with only intrinsic 
features and one including both intrinsic and actionable features. We use these two models to construct con-
fidence intervals regarding the change in excess death estimates for specific countries after adding actionable 
features.

3. We make steps to ensure that our analysis is robust. For example, we use excess death as our target variable 
which provides a more encompassing view of the pandemic’s mortality burden on a given country. We also 
incorporate many countries in our study rather than focusing on a particular country or region. Lastly, we 
incorporate newer, measurable factors such as vaccination rate.

Results
In this section we report the insights from our statistical analyses. We demonstrate that actionable factors—par-
ticularly COVID-19 vaccination rates and trust in official COVID-19 advice from governmental entities—are 
important in helping explain the cross-country heterogeneity of excess death.

Key drivers of excess death
We show in the "Methods" section that our final model successfully captures some of the intrinsic structure and 
signal in the dataset. The two questions of interest when dissecting how this model makes predictions are “which 
features do the final model deem as useful?” and “how exactly do these useful features contribute to the model?”. 
Feature importance methods implemented via the scheme detailed in the "Methods" section are one way to 
answer the first question. Figure 1 reveals the six features with the highest relative importance in the final model.

Two of the six features are “actionable” features, motivating the bootstrapped hypothesis test framework in 
the subsection “Increase in Predictive Performance from Actionable Features” which studies the improvement 
in predictive performance from including actionable variables. The percent of citizens with at least one dose 
of a COVID-19 vaccine in the study’s time frame and whether citizens base their pandemic-related decisions 
on advice from their government are deemed “actionable” factors since they could be altered via public health 
efforts. We note that in our study, we analyze how these variables impact predictive modeling results and behavior 
rather than make direct causal claims. Each variable in our study, though, was included because of its natural 
relation to health and COVID-19 or because of its existence in prior research works. For example, higher trust 
in governmental COVID-19 advice has been associated with higher degrees of health measures such as self-
quarantine and hand-washing16. Moreover, higher trust in doctors has been shown to be associated with higher 
treatment adherence and higher fulfillment of medical  needs17. This association led to the inclusion of confidence 
in a nation’s hospitals as it too measures trust in public health providers.

Before discussing how these important variables specifically contribute to the modeling process, we note 
that stability is a crucial aspect to feature importance rankings and  algorithms18. Past works have analyzed the 
relative stability of feature importance rankings for certain tree-based  methods19 and neural  networks20. Feature 
importance methods lose an extreme degree of validity and interpretability if small perturbations to the dataset 
drastically change importance values and rankings. To test the stability of our rankings, we randomly remove 
5% of our dataset, perform 5-fold cross validation, and compute the feature importance values. We repeat this 
process 500 times. Figure 2 displays the average ranking for the variables along with bars depicting the standard 
deviation for each variable’s ranking across trials.

Figure 1.  Six features in the final gradient boosting model with the highest relative feature importance. Feature 
definitions can be found in Supplementary Table S1.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16196  | https://doi.org/10.1038/s41598-023-43407-0

www.nature.com/scientificreports/

We see in Fig. 2 that the standard deviation in rankings resulting from dataset perturbations is typically 
around 1 to 1.5. For the top few variables, the standard deviation is less than 1. This suggests that our feature 
importance rankings are relatively stable in that they do not drastically change after small dataset changes.

After noting the relative stability of the feature importance rankings, one may ask “How do these important 
features specifically contribute to the model? Figure 3 depicts the partial dependency graphs for the six features 
with highest relative importance in the gradient boosting model.

Figure 2.  Feature importance rankings after 500 trials of randomly removing 5% of the dataset before 
performing 5-fold cross validation and calculating importance. For each variable, the dot represents the mean 
ranking, and the bars on each side represent the standard deviation across trials.

Figure 3.  Partial dependency graphs for the six features with the highest relative importance in the final 
gradient boosting model. Each (x,y) pair on a given graph displays that the average estimate of excess death is y 
if all observations had the value of x for the variable of interest. The scale of the y-axis is predicted excess death 
standardized via a cube-root transformation.
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We see that after marginalizing over all other variables, the estimate of excess death in the model decreases 
as certain variables increase. These variables include the percent of citizens with at least one COVID-19 vac-
cine dose, the percent of citizens basing their pandemic-related decisions on official advice from their national 
government, the percent of citizens who have confidence in their nation’s hospitals, and the GDP per capita. 
Conversely, the model’s estimate of excess death increases as other features increase. These features include the 
obesity percentage in the country and the percent of people aged 65 and over. Through these partial dependency 
plots, we can also look at countries that are similar in numerous aspects yet exhibit a large difference between 
their excess death. For example, we study the differences in excess death in Canada (54 excess deaths per 100,000 
people) and the United States (265 excess deaths per 100,000 people). We see in Fig. 4 some explanation as to 
why the boosting procedure predicts lower excess death estimates for Canada.

After knowing which features are most important to the model and how they contribute to the estimation 
process, the next question to investigate is “how do variables in the model interact with one another?” Partial 
dependency plots can again provide some insights to this question. For our final gradient boosting model, we 
see in Fig. 5 an interaction between GDP per capita and how much the citizens of a country trust and base 
pandemic-related decisions on their government’s advice regarding COVID-19.

Figure 4.  Partial dependency plots for two actionable features The vertical lines represent the observed values 
for the United States in blue and Canada in red. The y-axis represents the (cube-root) estimate of excess death 
after marginalizing over all other variables.

Figure 5.  Partial dependency graph for GDP per capita and percent of citizens who base pandemic-related 
behavior decisions on official advice from their national government. The Partial Dependence z-axis is on the 
scale of excess deaths per 100,000 people.
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Effectively, we see that the “penalty”—or increase in excess death estimate—for not trusting governmental 
COVID-19 advice is 43.7% greater for lower GDP countries than higher GDP countries. This is according to this 
class of models that successfully captures some inherent structure in the dataset as seen in Table 1 and Fig. 10. 
To see this relationship, one can imagine slicing the figure along a (log) GDP per capita of 10.5. Along this cur-
vature, we note the increase in partial dependence as we move from around 85% government trust to around 
60% . We see a similar increase exist when slicing the figure at a (log) GDP per capita of 7.5. If no interaction 
were present, these increases would be nearly equivalent. However, we see the penalty for moving from 85% trust 
(or higher) to 60% trust (or lower) is greater for countries with 3500 (USD) GDP per capita or less compared 
to countries with 36000 (USD) per capita or greater. This implies that following official, governmental advice 
regarding COVID-19 becomes particularly more imperative for lower-GDP countries to receive lower excess 
death estimates in our modeling process.

Next, we can analyze and quantify the interaction between vaccination rate and obesity percentage in the 
same way. Figure 6 depicts this relationship.

Following the same logic as the previous example, we see that countries in roughly the highest obesity quartile 
experience about a 11.2% greater penalty than countries in the lowest quartile when moving from “very vac-
cinated” (about 72% vaccination rate or better, which is the top third) to “relatively unvaccinated” (about 50% 
vaccination rate or worse, which is around the bottom half in our study). Therefore, we see via this quantifica-
tion how much more imperative distributing vaccines becomes to get lower predicted excess death estimates for 
countries with higher obesity rates.

These partial dependency plots provide a view into the inner-workings of our gradient boosting model. Not 
only do we see the degree to which certain actionable features decrease excess death estimates, but we also iden-
tified particularly harmful combinations of actionable and intrinsic country characteristics. This provides some 
insights as to which policies and metrics become increasingly important for countries that meet certain criteria.

Increase in predictive performance from actionable features
Since the final model suggests actionable features are important in predicting country-level excess death, we 
attempt to formalize this importance via the hypothesis test detailed in the "Methods" section. The results from 
the test indicate that the increase in predictive performance from the set of actionable features is statistically 
significant (p-value = 0.0001 and observed RMSE difference = 11.7 excess deaths per 100,000 people).

Table 1.  Results of the repeated cross validation scheme for 3 model classes. Hyperparameter grids had 
similar number of combinations and granularity level across classes.

Gradient boosting Random forest LASSO

Best hyperparameters

Number of trees = 1600

Variables sampled per split = 3 � = 0.01
Shrinkage = .007

Interaction depth = 2

Min obs per node = 10

CV RMSE for best hyperparameter combination 145.2 154.3 179.6

Figure 6.  Partial dependency graph for percent of people with at least one dose of COVID-19 vaccine and and 
percent of citizens with BMI of at least 30. The Partial Dependence z-axis is on the scale of excess deaths per 
100,000 people.
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As formalized in the bootstrapped hypothesis test detailed in the "Methods" section, the gradient boosting 
modeling framework experiences a statistically significant decrease in RMSE (RMSE units are excess deaths per 
100,000 people) when including actionable features as compared to using intrinsic variables only or intrinsic 
variables plus other randomly generated variables. In other words, the modeling framework inherently captures 
some signal via feature set expansion with actionable features. Because of this gain in overall predictive power, 
one may be interested in how specific predictions change after the feature set expansion (despite no guarantees 
whether a given prediction itself decreases in error). In addition to understanding how the model used these 
features to decrease overall RMSE, another naturally arising question is “which specific countries see increases 
in excess death estimates after adding actionable features”? To answer these questions through methods other 
than partial dependency figures, we create a measure called the “delta value”. This value measures the difference 
in predicted excess death between the model with the actionable features and the model without the actionable 
features, further described in the "Methods" section. We construct confidence intervals for the delta value based 
on 100 bootstrap iterations. Figure 7 displays the effect of adding actionable features in the model for the 51 
countries in which the direction predicted excess death improved, meaning that the model successfully predicted 
whether the given country’s estimate of excess death should rise or fall after considering actionable features. In 
other words, if ŶI < Y  then ŶI < ŶIA . Or, if ŶI > Y  then ŶI > ŶIA , where Y is the observed excess death, ŶI is 
the predicted excess death from intrinsic-only model, and ŶIA is the predicted excess death from the full model 
including actionable features. We show the confidence intervals for all 80 countries in Supplementary Fig. S1. 
Here, we focus on the top two actionable features identified in the subsection “Key Drivers of Excess Death”, 
desiring to understand how the model used these features to decrease RMSE. We see that countries to the right 
of the vertical zero line—i.e. countries that have increased predicted excess death after including actionable 
features—tend to have lower vaccination rates and less trust in COVID-19 advice from governments. This 
is displayed in the kernel density estimation plots—and while not shown - the trend persists not just for the 
51 countries displayed, but for all 80 countries studied. This can also be found in Supplementary Fig. S1. The 
opposite effect holds for countries to the left of the vertical zero line. These countries had lower predicted excess 
death after including the actionable features and had higher vaccination rate and trust in COVID-19 advice from 
governments. This further demonstrates the importance of considering the actionable features in understanding 
the heterogeneity in excess death at the country level.

Discussion
In December 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) led to the begin-
ning of a devastating pandemic that has disrupted the global economy and resulted in millions of deaths around 
the  world21. Beyond the direct death resulting from COVID-19 infections, the pandemic has had a tremendous 
indirect impact due to overwhelmed healthcare systems and limited medical resources. Over two years have 
passed since the beginning of the pandemic, yet we do not fully understand the effects of public health mandates 
and policies on COVID-19 death and whether the vast difference in death counts between countries are attrib-
utable to regional intrinsic factors. In this study, we take a data-driven approach to understand this problem 
by developing a statistical modeling framework to identify key drivers of excess death and assess the effect of 
actionable factors like COVID-19 vaccination and policies. We show that intrinsic factors like age distribution 
and comorbidity risks that have been shown to be positively associated with COVID-19 mortality in prior studies 
are important in explaining the cross-country variation in excess death. We also show in accordance with past 
literature that certain intrinsic trust metrics are important when estimating excess death. Particularly, the trust 
the population has in its nation’s hospitals—potentially signifying a robust system more capable of handling the 
pandemic’s burden—is an important feature.

We further demonstrate the importance of actionable features via a bootstrapped hypothesis testing frame-
work. Our tests reveal that expanding the dataset beyond just the intrinsic country characteristics obtained in 
this study can aid in modeling large variation in excess death we see across countries, and that adding actionable 
features aids prediction quality more than adding random noise variables to a statistically significant degree. 
Specifically, proportion of population with one COVID-19 vaccine dose and trust in COVID-19 advice from 
governments emerge at the top of the list for factors contributing to the predictive performance of our final 
model. Both of these variables show negative association with excess death. In addition, we detail the particularly 
deleterious effect that poor performance in these actionable variables can have on certain groups of countries in 
the modeling process. For instance, we show that low GDP countries can experience a disproportionate rise in 
estimated excess death if its citizens also do not trust their government’s pandemic-related advice. Similarly, we 
display that countries with obsesity rates in the highest quartile of all countries in the study can experience a dis-
proportionate rise in estimated excess death if the country is relatively unvaccinated, and we quantify this effect. 
We also note that the two principle component features signifying the swiftness in the government’s response 
to the pandemic and the duration of such policy implementations did not appear near the top drivers of excess 
death. One explanation for this relatively low feature importance could be that there is a difference between 
policy implementation and policy compliance. This is perhaps too why the amount to which citizens trust their 
government’s pandemic-related advice appears as one of the most significant variables in explaining excess death.

While our study aims to be holistic, a number of limitations are present. For example, our analysis does not 
exist in a causal framework. Rather than make causal claims, we study how various features impact modeling 
performance when the goal is to explicitly predict excess death across countries. Additionally, it is difficult to 
discern whether a government’s pandemic-related policy implementations were reactive or proactive in terms of 
excess death without including time in the analysis. Future work for this study may include a temporal analysis 
that enables for a quantification of how different policies and intrinsic variables become significant or insignifi-
cant over time. One could also focus on a specific region of the world, which would lead to more complete data. 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16196  | https://doi.org/10.1038/s41598-023-43407-0

www.nature.com/scientificreports/

Figure 7.  In the top plot, we show the 95% bootstrap confidence intervals of the “delta value”, which measures 
the difference in excess death prediction between the model fit on both intrinsic and actionable features, and 
the model fit only on intrinsic features. The bottom two figures are density plots of “trust in COVID-19 advice 
form governments” and “percent of population with one vaccination dose as of Nov. 1” respectively, colored by 
whether a country’s delta value lies to the left or to the right of the vertical zero line. The dashed lines represent 
the median values. Countries with delta to the left of the vertical zero line (i.e. countries with lower predicted 
excess death) tend to have higher vaccination rate and trust in government COVID-19 advice.
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Regardless, understanding the cross-country heterogeneity of excess death is key to gaining a comprehensive 
understanding of the true impact of the pandemic and can lead to actionable guidance for government and public 
health institutions in preventing future deaths. This study helps elucidate the factors contributing to excess death 
at the population level during the COVID-19 pandemic and can help guide governments in improving their 
response to pandemics in the future, ultimately saving human lives.

Methods
In this section, we give details of our overall modeling framework for our analysis and how we arrive at our 
“final model”. We build two models: one with only intrinsic features and one with both intrinsic and actionable 
features. We use and evaluate the predictions from these two models to assess the effects of actionable features 
such as vaccination rate and government policies during the COVID-19 pandemic.

Data collection and feature descriptions
First, we note that the time frame of our analysis is January 1, 2020 to November 1, 2021. This period is chosen 
for a number of reasons, including that the Omicron variant of the coronavirus SARS-CoV-2 was detected in 
early November  202122, and different variants can contain varying patterns of spread and mortality. Additionally, 
this time frame still allows for the analysis of COVID-19 vaccination policies. For this study, we use the excess 
death estimates from WHO as the dependent variable. We obtain 34 different initial variables for our analysis. 
Obesity percentage, age distribution, GDP per capita, population density, and hospital beds per 1000 people are 
a few of the “intrinsic” variables that were collected. Conversely, some of the collected features that are seen as 
at least moderately controllable over the course of the pandemic include number of days with comprehensive 
contact tracing, masking policies, workplace closures, days with available public testing, and official vaccination 
policies. The policy variables at the country-level were obtained from Ref.23, while the socio-demographic, health, 
and government-spending habit information was obtained from World Bank Open Data. In addition to these 
data sources, we also include thorough survey information regarding trust of various entities among citizens for 
each country. We include these trust metrics since a number of studies report an association between trust and 
compliance to policy measures. For example, the study in Ref.24 reports greater compliance for high-trust nations 
in the beginning of the pandemic,  while25 found an association between interpersonal trust and physical distanc-
ing adherence. Some of the trust metrics included in our analysis - such as overall confidence in the country’s 
hospitals and trust in the national government - are classified as intrinsic variables. Others - such as the degree 
to which citizens trust their government’s advice relating to COVID-19 measures - are classified as actionable. 
The survey data was obtained from Ref.26. COVID-19 related questions were typically asked in 2020, while other 
information to gauge citizen trust in various entities was obtained from 2018 survey data. For each survey, each 
country typically has approximately 1000 respondents. See Appendix A for the complete dataset description.

Final model construction for COVID-19 excess deaths
Pre‑processing
First, we note that some countries in our dataset did not have every variable available. For countries that only have 
a few missing features, we impute these missing values via nuclear norm regularization. This method iteratively 
finds the soft-thresholded SVD and the algorithm in Ref.27 is employed. After removing countries with many 
variables missing and filtering for countries with over 5,000,000 people due to COVID-19 data quality concerns, 
we continue our analysis with 80 countries from around the world. To simultaneously make all variables in our 
final data matrix exist on roughly the same scale while lowering skewness in some variables, a log transformation 
is performed for the GDP per capita, people per square kilometer, and population variables. No further stand-
ardization was performed since our feature importance techniques involve permuting values of a variable rather 
than simply use magnitude of linear coefficients (where scaling would matter), our remaining variables exist on 
roughly the same scale anyway ( 102 or less), and un-transformed variables more closely allow for interpretable 
modeling. Next, we note that interpretations of feature importance can be obfuscated when multi-collinearity is 
present, as it becomes challenging to rank variables in relative importance if a collection of such variables have 
similar effects. To avoid obscuring such interpretations and ensure drivers of excess death in the model can be 
reliably interpreted, we perform Principal Component Analysis (PCA) on the set of highly correlated features. 
The first principal component can be used in the model as a single variable representing the set of features as 
a linear combination. After creating various correlation plots, we decide to perform this method for variables 
falling into two groups: i) how quickly the country’s government responded to COVID-19 and ii) how long the 
country’s government held strict COVID-19 policies in place. An example of this dimension-reduction method 
for our dataset can be found in Fig. 8.

Critically, we note in Fig. 8 that interpretations after this method are still clear. Since each feature contributes 
in the same direction along the first principal component, the newly created feature can be interpreted as “a 
greater, positive magnitude indicates a longer-lasting strictness in COVID-19 policy implementations”. We note 
too that when applying PCA to the second group of features with high multicollinearity - i.e. features relating to 
how quickly the government responded to the pandemic and put policies in place - all features also contribute 
in the same direction. This leads to the interpretation “a greater, positive magnitude indicates the government 
was swift in implementing stricter COVID-19 policies”.

Hyperparameter tuning
After preprocessing the data, a number of models are employed using both the intrinsic and actionable features 
in the dataset. Specifically, Least Absolute Shrinkage and Selection Operator (LASSO)  regression28, Random 
Forest  regression29, and Gradient Boosting  regression30 models are created and analyzed. However, the limited 
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sample size present in our dataset prevents the typical training and testing data split. Therefore, in order to 
estimate test accuracy for each model class and to pick hyperparameter combinations, we construct a repeated 
cross-validation scheme.

We collect 100 different CV predictions for each observation to obtain a more robust sense of predictions that 
could follow from slightly varying training sets. Figure 9 depicts the flow of the CV scheme.

Cross‑validation results and model selection
Table 1 details the output from the 5-fold cross-validation scheme.

We see that across the 100 repetitions, gradient boosting is the class of models that result in the lowest cross-
validation (CV) error. The CV root mean squared error values (with units being excess deaths per 100,000 people) 

Figure 8.  Bi-plot for one example of PCA in the employed dataset. All variables relate to how long the 
government’s COVID-19 policy was kept in place.

Figure 9.  Schematic of the employed cross-validation algorithm. 100 predictions per observation were made 
for each hyperparameter combination.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16196  | https://doi.org/10.1038/s41598-023-43407-0

www.nature.com/scientificreports/

in Table 1 involve all N ∗ 100 values (resulting from 100 repetitions of 5-fold cross validation). Figure 10 details 
the distributions of the RMSE for each individual repetition of the repeated CV process.

In Fig. 10 we see that the gradient boosting model class with the specified hyperparameters consistently 
provides lower RMSE values for individual 5-fold CV trials. Due to this overall performance and consistency 
demonstrated through the repeated CV procedure, we choose to employ gradient boosting with the tuned 
hyperparameters as the “final model”.

After seeing how the gradient boosting model class characterized by the hyperparameter values specified in 
Table 1 leads to lower CV error, the next step is to investigate how this type of model makes predictions. There-
fore, we train a “final model” using all of the available data to get a more holistic sense of the model’s capturing 
of the inherent structure of the dataset. This “final model” leads to the insights discussed in the Results section.

Feature importance and partial dependencies
The parameters and estimation process of the final model detailed in “Cross-Validation Results and Model Selec-
tion” are dissected in numerous ways. Namely, feature importance and partial dependencies provide insights 
regarding the model. In our analysis, the importance of a feature is calculated via the increase in prediction 
error resulting from randomly permuting the values of the feature. The algorithm is similar to that in Ref.29 
but uses the entire dataset rather than out-of-bag  observations31. Next, to define partial dependency, consider 
a sub-vector of input variables of interest denoted XS , its complement with other inputs Xc , and an estimator f̂  . 
Partial dependency is defined as the marginal  average32:

This allows for the expression of the estimator f̂  as a function of the variables of interest Xs.

Bootstrap hypothesis testing
In order to evaluate the impact of the actionable features, we build two models following the same hyperparam-
eter tuning procedure. One model is only fit on the set of intrinsic features while the other model is fit on the set 
of both the intrinsic and actionable features as shown in Fig. 11. This dichotomy of models generates two sets 
of excess death predictions and RMSE. However, supervised learning algorithms can improve their predictive 
performance by increasing the number of features. In order to demonstrate that the set of actionable features 
are improving the model performance beyond the effect of simply adding more variables, we test the following 
hypothesis:

where A is the set of actionable features and Y is the response variable, excess death. To construct the null distri-
bution, we perform the following bootstrapping procedure. We first fit a gradient boosting model with just the 
intrinsic features and compute the residuals. We bootstrap these residuals to generate {r∗1 , r∗1 , · · · , r∗B} . We add 
these residuals to the predicted excess death from the intrinsic-only model to get y∗ = ŷI + r∗ . We fit another 
gradient boosting model with both intrinsic and actionable features and the corrupted response variable y∗ and 

(1)f̃s(Xs) = EXc f̂ (Xs,Xc)

(2)f̃s(Xs) ≈
1

N

N
∑

i=1

f̂
(

Xs,X
(i)
c

)

(3)H0 : A ⊥ Y

(4)H1 : A �⊥ Y

Figure 10.  Distribution of CV RMSE. Each boxplot consists of the 100 different, individual CV RMSE values.
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generate the residuals {r′1, r′1, · · · , r′B} . Finally we compute the difference of RMSE from the residuals r∗ and r′ 
as our test statistic.

We repeat this procedure for 1000 iterations to generate 1000 bootstrapped RMSE differences. The p-value 
is given by,

We attain a p-value of 0.0001 which suggests that the improvement in model performance through the inclusion 
of actionable features is statistically significant. The null distribution and observed RMSE difference of excess 
deaths per 100,000 people is shown in Fig. 12.

Measuring the effect of actionable features
As shown in “Bootstrap Hypothesis Testing”, the overall modeling process inherently gains signal and predictive 
power when actionable variables are included in the feature set. Therefore, one may be interested in analyzing 
how specific predictions for any given country change after this feature set expansion, and in analyzing how the 
model uses the actionable features to decrease RMSE. To assess the effect of adding actionable features in the 
model for each country, we measure how much the prediction changes between the model including and the 
model excluding the set of actionable features. Here, we compute the quantity for each country i:

where ŶIA are the excess death predictions from the model trained with both the intrinsic and actionable vari-
ables, and ŶI are the excess death predictions from the model without the actionable variables.

We further construct 95% confidence intervals for delta estimates. We estimate the variance of the deltas 
by bootstrapping - i.e. sampling with replacement - the countries in the pre-processed data matrix and then 
computing the difference of excess death predictions from the two models ŶI and ŶIA . We repeat this procedure 

(5)
card (Bootstrapped RMSE differences > Observed RMSE difference)

B

(6)δ(i) = Ŷ
(i)
IA − Ŷ

(i)
I

Figure 11.  Diagram of the intrinsic vs. actionable feature modeling framework. Red represents the intrinsic 
features while blue represents the actionable features.

Figure 12.  The gray histogram represents the null distribution constructed from 10,000 permuted RMSE 
differences and the red line represents the observed RMSE difference. This procedure results in a p-value of 
0.0001.
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for B iterations, generating B deltas δ(i) = {δ(i)1 , · · · , δ(i)B } for each country i. We compute the sample standard 
deviation as:

Using this estimate, we construct the confidence intervals for each country i as follows:

In practice due to sampling with replacement, some of the bootstrapped data matrix will have missing countries, 
so we bootstrap until each country has at least B number of δ.

Data availibility
All data can be found in https:// github. com/ minwo osun/ covid- morta lity/ tree/ main/ analy sis/ data and detailed 
descriptions of the data are available in https:// github. com/ minwo osun/ covid- morta lity/ blob/ main/ analy sis/ 
data/ Count ry_ Data_ Descr iptio ns. pdf.

Code availability
All code supporting this work is available on: https:// github. com/ minwo osun/ covid- morta lity.
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