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Quantum formalism 
for the dynamics of cognitive 
psychology
Dorje C. Brody 

The cognitive state of mind concerning a range of choices to be made can be modelled efficiently by 
use of an element of a high-dimensional Hilbert space. The dynamics of the state of mind resulting 
from information acquisition can be characterised by the von Neumann–Lüders projection postulate 
of quantum theory. This is shown to give rise to an uncertainty-minimising dynamical behaviour 
equivalent to Bayesian updating, hence providing an alternative approach to representing the 
dynamics of a cognitive state, consistent with the free energy principle in brain science. The quantum 
formalism, however, goes beyond the range of applicability of classical reasoning in explaining 
cognitive behaviour, thus opening up new and intriguing possibilities.

The present paper is concerned with the use of Hilbert space techniques, so successfully implemented in char-
acterising behaviours and properties of quantum  systems1, to model cognitive ‘psychology’ in the sense to be 
defined below. The paper, on the other hand, is not concerned with whether quantum effects seen in microscopic 
physical systems, such as interference, violation of the Bell inequality, or the use of complex numbers, might 
play a role in psychology or in brain activity. There are differing opinions on the  matter2–7, but these will not 
be addressed here, for, the use of Hilbert space techniques in modelling cognitive behaviour, in itself, does not 
necessarily require the actual functioning of the brain’s neurophysiology to be quantum mechanical. What does 
concern us will include the tensor product structure of the Hilbert space, entanglements, the superposition 
principle, the projection postulate, and decoherence. While some may view these to be intrinsically quantum-
mechanical effects, I shall show that they are in fact intrinsic to any probabilistic system modelled on a Hilbert 
space—an idea that is rooted in the pioneering work of  Rao8  (see9 for a related discussion). In any case, my pur-
pose here is to illustrate how it is both natural and effective to implement Hilbert space techniques in modelling 
human cognitive behaviour. Such a proposal, in itself, is not new (see, e.g.,10–13 and references cited therein). 
My main contribution is to introduce a formalism that allows for a systematic treatment of the dynamics of the 
cognitive state of mind, from which predictions can be made about human behaviour.

The key idea to be explored is that the state of mind of a person, to be defined more precisely in what follows, 
can be represented efficiently in terms of a vector in a high-dimensional Hilbert space, which in turn is a tensor 
product of lower-dimensional Hilbert spaces. However, before turning to technical discussions, I would like 
to illustrate the significance of the superposition principle in this context through simple examples. The first 
concerns the tossing of a fair coin. When a coin is tossed, but the outcome not yet revealed, no one will dispute 
the state of the coin, which is a macroscopic classical object: it is either in the ‘heads’ state or in the ‘tails’ state. 
In fact, even before the coin is tossed, it will be known to all that the state of the coin will be either heads or tails. 
However, a person who is in the position of guessing the outcome will have a different state of mind. Until the 
moment when a choice is made, the person’s mind is neither in a state of heads nor in a state of tails—it is in a 
state of superposition, to be explained below. Thus there is a dissonance between the objective reality of the state 
of the coin and the state of the mind attempting to determine the state of the coin.

Another example is seen in children’s hand game of rock, scissors and paper. Again, until the last moment 
when the decision is made as to which hand to choose, the person’s mind is in the state of a superposition between 
the three alternatives. Of course, with any decision, a person may come with a predetermined outcome – as in 
Groucho Marx’s, “Whatever it is, I’m against it!” But until when that decision is made, the fact remains that 
the mind is in an indefinite state. Only at the moment when the decision is made, for example to declare that 
the outcome of the coin tossing will be heads, or choosing the scissors hand, the state ‘collapses’ into one of the 
definite states. This situation is very much analogous to the measurement process in quantum theory.

With these heuristics in mind, the present paper will be organised as follows. I begin by defining what I mean 
by the state of mind, which will essentially be a Hilbert-space representation of the probability assignments to 

OPEN

School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, UK. email: d.brody@surrey.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43403-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16104  | https://doi.org/10.1038/s41598-023-43403-4

www.nature.com/scientificreports/

the totality of the choices available to the person. A given set of choices will then be modelled as an observable 
acting on this Hilbert space. The idea I put forward here, which is part of an on-going programme initiated 
 in14, is closely related to the proposals made by Yukalov and  Sornette12, Busemeyer and his  collaborators15, and 
Khrennikov and his  collaborators16. In my approach I model the dynamics of cognitive behaviour directly using 
a quantum formalism that takes into account the impact of noise, rather than starting from the quantum theory 
and then deducing implications in behavioural modelling by reduction. As a consequence, I am able to gain 
certain insights into human behaviour that go beyond what is commonly understood in cognitive psychology. 
I examine how the state of mind changes when a person acquires noisy information that is relevant to decision 
making. My approach will be consistent with the cybernetics framework of Wiener as an attempt to understand 
the dynamics of living  systems17. I use the von Neumann-Lüders projection postulate in quantum mechanics to 
arrive at the change in the state of mind, and show that the result agrees with the classical formulation using the 
Bayes formula; in agreement with related previous  findings16. Further, I show that the projection postulate gives 
rise to an evolution that on average minimises future ‘surprises’, and hence is consistent with the free-energy 
principle widely adopted in brain  science18. I then consider what happens when noisy information arrives in 
continuous time. When the dynamical evolution of the state of mind resulting from a sequential von Neumann-
Lüders projection postulate is reduced to a projective Hilbert space, the dynamical equation reveals an important 
feature, namely, that each state of zero uncertainty, having vanishing Shannon-Wiener entropy, acts as an attrac-
tor to the dynamics. The result provides a geometric explanation of certain characteristics of human behaviour 
seen in psychology literature (such as confirmation bias), which I have previously called the tenacious Bayesian 
 behaviour19. The work presented here demonstrates the fact that if a person’s opinion is strongly skewed towards 
one of the false alternatives, and if all choice observables are commutative, then even if partial information about 
the truth is revealed and the person behaves rationally in accordance with Bayesian updating, it is very difficult 
for the person to escape from the initial misconception. In other words, adherences to false narratives commonly 
observed in today’s society need not be due to irrational behaviour. Following the proposal  in10, I then consider 
what happens if choice observables are not commutative. This is motivated by the observation that many empiri-
cal observations concerning cognitive human behaviour cannot be fully described by use of a commuting set of 
observables. It will be shown that the existence of incompatible observables can be used to rescue a person fallen 
into a false attractor—a possibility that is unavailable by use of purely classical reasonings.

Decision making and the state of mind
Throughout the paper I shall be concerned with the cognitive process of decision making, which will be a topic 
distinct from what is known as statistical decision theory, for which there are excellent  treatises20,21. Decision 
making occurs when a person is unsure from which alternative to choose; but I will be using the term ‘decision 
making’ in a broad sense to include a person’s uncertain point of view on a topic, for which there are multiple 
views, and for which there may not be a need to choose one particular alternative. In any case, this uncertainty, 
which is largely due to lack of sufficient information, can be modelled in the form of a set of probabilities that 
represents the likelihoods of different alternatives being selected. Suppose that a decision needs to be made to 
choose one out of N alternatives. The number of alternatives can be infinite, or even uncountable—the formalism 
extends straightforwardly to these cases, but for simplicity I consider the finite case here. That said, my own view 
is that the use of infinite or uncountable variables is merely for mathematical convenience, for, the reduction of 
uncertainty in determining the value of a continuous variable requires infinite information acquisition, which 
is not available in real world. At a given moment in time, let pk denote the likelihood that the kth alternative is 
selected. If pk = 1 for a value of k then the mind is in a definite state in relation to this decision. Hence for a given 
decision, the set of numbers (p1, p2, . . . , pN ) represents the state of mind in relation to that decision making.

It will be useful here to explain in more detail the meaning of these probabilities. For this purpose, consider 
the example, say, of choosing an item from a menu in a restaurant. The likelihood of selecting a given choice by 
a person, in fact, cannot be inferred, because in general a repeated “measurement” is not permissible in cogni-
tive psychology. This follows from the fact that after an experiment, information is typically acquired to alter 
the state of mind of the person (e.g., “I have tried this dish and it was not so nice.”). Hence in general one cannot 
reconstruct the state of mind of a person on a given choice. This is entirely analogous to the situation in quan-
tum mechanics whereby in general one cannot perform a measurement without altering the state of the system.

To overcome this issue, consider, hypothetically, a large number of identical “clones” of the person, all of 
whom are faced with the same decision at the same time. The fact that there are uncertainties in the choice means 
that different clones will make different choices, the results of which can then be used to infer the likelihoods of 
different alternatives being chosen. This is essentially the idea of an “ensemble” introduced by Gibbs. Of course 
in reality there are no clones. In cognitive psychology the issue is handled by performing instead experiments on 
a large number of people. Each person is in a different state of mind, but if the group of people have some level 
of commonality, then they can be viewed as clones of a hypothetical representative of the group.

At any moment in time one faces a multitude of decisions, not just one, some of which are intertwined with 
each other while others are independent. In probability theory, such a situation is modelled by means of a joint 
probability for the totality of decisions. Alternatively, the situation can be modelled on a Hilbert space by use of 
the square-root map: pk → ψk =

√
pk  . Here by a Hilbert space H , I mean a real vector space endowed with a 

Euclidean inner product, such that each element of H has a finite norm. A typical element of H , i.e. a real vector 
of finite length, is denoted |ψ� , whose transposition is written �ψ | in the usual Dirac notation. Thus the inner 
product of a pair of elements |ψ� and |φ� in H is written
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An element |ψ� ∈ H , which is a vector, can also be expressed in the matrix form as follows:

It will be shown that the norm of a vector carries no psychologically relevant information. Thus, in what fol-
lows it will be assumed that all vectors have unit norm. Clearly, the vector with components {ψk} , in the basis 
|ek� = (0, 0, 0, . . . , 1, 0, . . . , 0) , with only the kth element nonzero, is an element of an N-dimensional real Hilbert 
space HN . Thus, in the Dirac notation the state can be expressed in the form of a superposition |ψ� =

∑

k ψk|ek� . 
If there is a second decision to be made out of M alternatives, then the state of a person’s mind in relation to these 
two choices is represented by an element of the tensor product HN ⊗HM . This tensor product structure arises 
solely from statistical dependencies of two decisions, when modelled on a Hilbert space.

There are reasons for choosing to work with a Hilbert space H of square-root probability vectors, rather than 
the probabilities themselves. To this end recall the example of a person who is attempting to guess the outcome 
of a coin toss. I have indicated that the physical state of a tossed coin is that of either heads or tails, and this is 
represented on H by what is called a mixed state. Writing |1� for the ‘heads’ state and |0� for the ‘tails’ state, and p 
for the bias of the coin, the ‘either-or’ state is given by the following mixed-state density matrix:

The state of mind of a person trying to guess the outcome, on the other hand, is neither heads nor tails, and this 
is represented on H by a linear superposition

which can equally be represented in the form of a pure-state density matrix |ψ��ψ | . The two states ρ̂ and |ψ��ψ | 
are different. Working with the mixed state ρ̂ is equivalent to working with classical probabilities, whereas in 
general the properties of a pure state |ψ� cannot be fully captured using the language of classical probabilities. 
Of course, if the only decision at hand concerns the guessing of the outcome of a coin toss, then there are no 
psychological experiments one can perform that will distinguish the states ρ̂ and |ψ� . That is, with merely one 
decision it is not possible to determine statistically, even if a large number of clones are available, whether the 
state of mind of a person is that of ‘either-or’ or ‘neither-nor’. This makes it legitimate to work with classical 
probabilities when dealing with a single decision. However, if there are more decisions involved, and if some of 
the decisions are not compatible in the sense explained below—and there are ample empirical data suggesting 
some decisions are not  compatible22—then it is possible to experimentally distinguish the mixed state ρ̂ from 
the pure state |ψ� . In this situation, the use of Hilbert space techniques becomes a necessity, because cognitive 
behaviour resulting from incompatible decisions cannot in general be modelled by use of classical probabilistic 
reasonings, but can be explained by use of quantum  probabilities11.

The Hilbert-space construction outlined here extends to the case where an arbitrary number of decisions are 
to be made. With this in mind, I define the state of mind of a person facing a range of alternatives to consider, 
at any moment in time, to be an element of the tensor product H = ⊗K

l=1Hl , where K is the number of distinct 
decisions. If two decisions can be made independently, then the component of the state vector belonging to the 
corresponding subspace of H will be in a product state. Otherwise, a state is entangled. As a simple example, 
consider a pair of binary decisions, for example, whether to take fish or meat for the main course, and whether 
to take red or white wine to accompany it. Writing |F� and |M� for the food choices, and similarly |R� and |W� for 
the wine selections, if the state of mind of a person is |ψ� = c1|FW� + c2|MR� , then the person will choose fish 
with white wine with probability c21 , and meat with red wine with probability c22 = 1− c21 ; but no other option 
will be chosen. This is evidently an entangled state (a state that cannot be expressed in the form of |XY� , where 
|X� is an arbitrary linear combination of |F� and |M� , and |Y� is an arbitrary linear combination of |R� and |W� ), 
which collapses to one or the other alternatives at the moment the waiter arrives and takes the order.

In this Hilbert space formulation, a given choice can be modelled by a real symmetric matrix, whose dimen-
sion is the number of alternatives. Such a matrix corresponds to observables in quantum mechanics. I will 
assume, for now, that all such ‘observables’ or ‘choices’ are compatible in the sense that the matrix representations 
can be diagonalised simultaneously. What this means is that at any given time, an arbitrary number of decisions 
can be made simultaneously. It is then evident that no state of mind, whether entangled or not, can violate laws of 
classical probability, and hence no state can violate, in particular, Bell’s inequalities. Later in the paper, however, 
I will consider the case where choice observables are incompatible.

The eigenvalues of the choice observables then label different alternatives. This is analogous to quantum 
observables when it concerns labelling outcomes of a single measurement. However, observables in quantum 
theory have a second role apart from representing measurement outcomes: they generate dynamics. As a conse-
quence, the differences of observable eigenvalues have direct physical consequences, and hence they cannot be 
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chosen arbitrarily. It appears, in contrast, that the differences of eigenvalues of the choice observables have no 
significance: the results of a selection, such as choosing a hand in the game of rock, scissors and paper, can be 
labelled by means of any three distinct numerical values, merely as place keepers so that statistical analysis can be 
applied. It will be shown below, however, that when it concerns the dynamics of the state of mind, the eigenvalue 
differences do play an important role, and hence, just as in quantum theory, they cannot be chosen arbitrarily,

It may be helpful to remark here about the use of real Hilbert spaces in the present consideration, as opposed 
to complex Hilbert spaces required for the characterisation of quantum systems. In quantum theory, an imagi-
nary number (or a complex structure, more precisely) plays two roles: one concerns the rotation of a plane wave 
by the right angle, and the other concerns the identification of the orientation of the time axis, connected to the 
unitary time evolution. To my knowledge in cognitive psychology there has been no phenomenon identified that 
suggests the requirement of a complex number—perhaps because this is not a question that has emerged in the 
past. Hence, although it seems plausible that complex numbers may ultimately be required for a more adequate 
characterisation of cognitive behaviour, for now I shall confine my analysis to real Hilbert space.

Dynamics
Having established the framework for representing the cognitive state of mind, let us explore how the state 
changes in time. To this end I shall be working under the hypothesis that a given state |ψ� of a person’s mind 
changes only by transfer of information. It is, of course, possible that an isometric motion analogous to the 
unitary motion of quantum theory that does not exchange information can change the state (for example, to 
start wondering about the feasibility of a choice immediately after making the choice without any external 
information), and if so this will be given by an orthogonal transformation. However, without any clear physical 
or psychological evidence indicating the existence of such a symmetry, I shall not consider this possibility, and 
focus instead on the universally acknowledged empirical fact that information acquisition (or information loss) 
will inevitably change the state of a mind. The question is, in which way?

To understand dynamics, I shall be borrowing some ideas from communication theory. Focusing on a sin-
gle decision to start with, let X̂ denote the decision or choice observable, with eigenvalues {xk}k=1,...,N . These 
eigenvalues for now merely label different alternatives. The eigenstate |xj� of X̂ , satisfying X̂|xj� = xj|xj� , thus 
represents the state of mind in which the jth alternative has been chosen. Prior to an alternative being chosen, the 
state is in a superposition |ψ� =

∑

k ck|xk� . The state will change when the person acquires information relevant 
to the decision making. This information is rarely perfect. In communication theory, anything that obscures 
finding the value of the quantity of interest is modelled in terms of noise. Let ε̂ denote this noise. Here, ε̂ can take 
discrete values, or more commonly continuous values. I will consider the latter case so that ε̂ acts on an infinite 
dimensional Hilbert space H∞ distinct from the state space HN . The noise arises from external environments E . 
For simplicity I shall assume that the state of noise is pure, and is given by |η� = η(y) ∈ H∞ , although a mixed 
state can equally be treated. Then initially the state of mind of a person attempting to make a decision and the 
state of the noise-inducing environment as perceived by the decision maker are disentangled, and when taken 
together can be represented by the product state |ψ�|η�.

Acquisition of partial information relevant to decision making can be modelled by observing the value of

   Here, the sum is taken in the tensor-product space HN ⊗H∞ . To understand this composite sum, consider 
the case in which ε̂ is finite and can take three values ε1, ε2, ε3 , while the decision is binary, represented by the 
values x0 and x1 . Then ξ̂ is a 6× 6 matrix with the eigenvalues x0 + ε1 , x0 + ε2 , x0 + ε3 , x1 + ε0 , x1 + ε1 , x1 + ε3 . 
In general, the eigenvalues of ξ̂ are highly (typically N-fold) degenerate. The form that ξ̂ takes is of course noth-
ing more than a signal-plus-noise decomposition in classical communication  theory17. The ‘signal’ term, more 
generally, will be a function F(X̂) of X̂ , but for simplicity I shall assume the function to be linear because the 
choice of F(x) is context dependent.

Once the value of the information-providing observable ξ̂ is measured, the initially-disentangled state

becomes an entangled state. In quantum mechanics, the transformation of the state after measurement is given 
by the von Neumann-Lüders projection postulate. That is, writing

for the projection operator onto the subspace of HN ⊗H∞ spanned by the eigenstates of ξ̂ with the eigenvalue 
ξ , the projection postulate asserts that the state of the system after information acquisition is

A short calculation then shows that this is given more explicitly by

ξ̂ = X̂ + ε̂.

|ψ�|η� =
∑

k

√
pk η(y)|xk�

�̂ξ =
∑

k

δ(y − ξ + xk)|xk��xk|

ρ̂ξ = �̂ξ |ψ�|η��ψ |�η|�̂ξ

tr

(

�̂ξ |ψ�|η��ψ |�η|�̂ξ

) .

ρ̂ξ =
∑

k,l

√
pkpl η(ξ − xk)η(ξ − xl) |xk��xl|

∑

m pmη2(ξ − xm)
.
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Two interesting observations that follow are in order. First, the density matrix by construction is a projection 
operator onto a pure state |ψ(ξ)� given by

where ξ is the value of the detected signal. Second, the coefficients of the pure state agrees with the conditional 
probability of the choice given by the Bayes formula:

That is, πk(ξ) is the probability that the kth alternative is chosen, conditional on observing the value ξ of ξ̂ . It 
follows that the von Neumann-Lüders projection postulate of quantum theory not only gives the correct classical 
result (as already observed  in7,16 with a different construction) but also provides a simple geometric interpreta-
tion of the Bayes formula. This follows because the Lüders state |ψ(ξ)� associated to a degenerate measurement 
outcome ξ is given by the orthogonal projection of the initial state onto Hilbert subspace associated to this 
outcome. Hence |ψ(ξ)� is the closest state on the constrained subspace in terms of the Bhattachayya  distance23 
to the initial state |ψ�|η�.

It is worth remarking that an alternative interpretation of the von Neumann-Lüders projection postulate can 
be given in terms of the so-called free energy  principle24,25. Intuitively, this principle asserts that the change in the 
state of mind follows a path that on average minimises elements of surprise. In the present context, the degree of 
surprise can be measured in terms of the level of uncertainty. Suppose that the state of mind after information 
acquisition becomes µ̂ξ that is different from the Lüders state ρ̂ξ . Then the level of uncertainty associated with 
the choice observable X̂ resulting from µ̂ξ , conditional on the observed value ξ of ξ̂ , is given by

where I have written δ̂ξ = µ̂ξ − ρ̂ξ for the deviation. Since the first two terms on the right hand side together 
constitute the conditional variance of X̂ , which is positive and is independent of µ̂ξ , to minimise the expected 
uncertainty, and hence the surprise, for all X̂ and ξ , it has to be that δ̂ξ = 0 . It follows that among all the states 
consistent with the observation, the Lüders state is unique in that it minimises the expected level of future sur-
prise, as measured by the uncertainty.

I might add parenthetically that a psychologist wishing to predict the statistics of the behaviour of a person 
who has acquired information relevant to decision making will a priori not know the observed value of ξ . To 
a psychologist, ξ is thus a random variable with the density p(y) =

∑

m pmη
2(y − xm) . That is, given the state 

|ψ�|η� , the probability of the measurement outcome of the observation of ξ̂ lying in the interval [y, y + dy] is 
given by p(y)dy . Hence, in this case the density matrix ρ̂ξ has to be averaged over ξ , but the denominator of ρ̂ξ 
is just the density p(y) for ξ , so the averaged density matrix is given by

where ωkl = xk − xl and

Evidently, 0 ≤ �(ωkl) ≤ 1 and �(ωkk) = 1 for all k, l, but because the initial state of mind |ψ��ψ | in this basis has 
the matrix elements {√pkpl} , it follows that an external observer (e.g., a psychologist) will perceive a decoherence 
effect whereby the off-diagonal elements of the reduced density matrix are damped.

It is at this point that I wish to comment on the numerical values of the differences {ωkl} . While there is 
no reason why �(ω) should be monotonic in ω (unless η(y) is unimodal), it will certainly be the case that the 
decoherence effect is more pronounced for large values of ω . That is, �(ω) ≪ 1 for ω ≫ 1 . For the same token, 
the values of ωkl will directly affect the conditional probabilities {πk(ξ)} . Therefore, while the values of ωkl , and 
hence those of xk , can be chosen arbitrarily to describe the statistics of the initial state of mind, once the dynam-
ics have been taken into account (what happens after information acquisition), it becomes evident that they 
cannot be chosen arbitrarily.

A better intuition behind this observation can be gained by reverting back to ideas of signal detection in 
communication theory. For this purpose, consider a binary decision. Supposed that the eigenvalues of X̂ labelling 
the two decisions are chosen to be, say, ±0.1 and suppose that the noise distribution η2(y) is normal, centred at 
zero, with a small standard deviation. In this case, the observed outcomes of ξ̂ will most likely take values close 
to zero. As a consequence, a single observation of ξ̂ will reduce on average the initial uncertainty only by a very 
small amount. In contrast, suppose that the two eigenvalues of X̂ are chosen to be ±10 , but the noise is the same 
as before. Then the observation will almost certainly yield the outcome that is close to +10 or −10 . Hence the 
uncertainty in this case has been reduced to virtually zero after a single observation. This extreme example shows 
how it is not possible to label different choice alternatives by arbitrary numerical numbers, while at the same 
time adequately modelling the dynamics of the state of mind.

|ψ(ξ)� =
∑

k

√

πk(ξ) |xk�,

πk(ξ) =
pk η

2(ξ − xk)
∑

m pmη2(ξ − xm)
.

tr

(

[

X̂ − tr(X̂µ̂ξ )

]2

ρ̂ξ

)

= tr

(

X̂
2ρ̂ξ

)

−
(

tr

(

X̂ρ̂ξ

))2

+
(

tr

(

X̂ δ̂ξ

))2

,

E[ρ̂ξ ] =
∑

k,l

√
pkpl �(ωkl) |xk��xl |,

�(ω) =
∫ ∞

−∞
η(y)η(y − ω)dy.
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In the event where a model η(y) for the state of noisy environment exists, it is possible in principle to estimate 
the eigenvalue differences {ωij} by studying how much a person’s views shifted from the acquisition of the noisy 
information. This is because the average reduction of uncertainty, as measured by entropy change or the deco-
herence rate, is determined by the eigenvalue differences {ωij} . The implication of the choices of the eigenvalue 
differences {ωij} on voter behaviours in an electoral competition has recently been  examined26.

Sequential updating
I have illustrated how the cognitive state of mind of a person in relation to a given choice changes after a single 
acquisition of information. A more interesting, as well as realistic, situation concerns the sequential updating of 
the state of mind as more and more noisy information is revealed. In this case the information-providing observ-
able ξ̂t is a time series. As a simple example that extends the previous one very naturally, I consider the time series

where the noise term ε̂t is modelled by a standard Brownian motion {Bt} multiplied by the identity operator of the 
Hilbert space H∞ . The ‘signal’ component, more generally, can be given by 

∫ t
0 Fs(X̂)ds , but again for simplicity 

I assume that the function Ft(x) is linear for all t. In fact, even more generally, the range of alternatives X̂ itself 
can be time dependent, but I do not consider this case here.

In this example, what happens to the state of mind can be worked out by discretising the time interval [0, t] 
and taking the limit. Starting from time zero, over a small time increment dt the initial state |ψ�|η� is projected 
to the Lüders state �̂ξdt |ψ�|η� , suitably normalised, in accordance with the projection postulate. The noise is 
normally distributed with mean zero and variance dt , so that η(y) is the square-root of the corresponding Gauss-
ian density function. Then after another time interval dt we apply the projection operator again, normalise it, 
and repeat the procedure until time t. Finally, taking the limit, a calculation shows that the Lüders state, after 
monitoring the observable ξ̂t up to time t, is given by

where ξt = Xt + Bt and X is the random variable represented on the Hilbert space HN by the operator X̂ along 
with the initial state |ψ� ; that is, X takes the value xk with the probability pk , and �t =

∑

k pke
kkξt− 1

2 x
2
k t gives 

the normalisation.
Since we have an explicit expression that monitors the change in the state of mind as information is revealed, 

there is a priori no reason to identify the differential equation to which |ψ(ξt)� is the solution. Nevertheless, the 
exercise of working out the dynamical equation provides several new insights worth discussing. The detailed 
mathematical steps required here to work out the dynamics has been outlined  in27, so I shall not repeat this. It 
suffices to say that the Lüders state is a function of t and ξt , where the latter is a Brownian motion with a random 
drift. Hence the relevant calculus to apply is that of Ito: one Taylor expands |ψ(ξt)� in t and ξt , and retain leading-
order terms, bearing in mind that (dξt)2 = dt . Then it follows that

where �X̂�t = �ψ(ξt)|X̂|ψ(ξt)�/�ψ(ξt)|ψ(ξt)� and where

The process {Wt} defined in this way is in fact a standard Brownian motion, known as the innovations  process28. 
This process has the interpretation of revealing new information. That is, while the time series {ξ̂t} contains 
new as well as previously known information about the impending choice to be made, the process {Wt} merely 
contains information that was not known previously.

There are two important observations that follow. First, the evolution of the state of mind is not directly gener-
ated by the noise {Bt} , nor by the observation {ξ̂t} . Rather, it is the innovations process that drives the dynamics. 
But this is the case only if the state of mind changes in such a way as to continuously minimise uncertainties. 
Since the expectation of the cumulative uncertainty is the  entropy27, it follows, according to the present frame-
work, that the tendency towards low entropy states required in  biology24, which forms the basis of the free energy 
principle, emerges naturally. In particular, the implication here based on the projection postulate is that the state 
of mind changes only in accordance with the arrival of new information; it will not change spontaneously on its 
own. Second, while the analysis presented here can be deduced as a result of standard least-square estimation 
 theory28,29, I have derived these results using the von Neumann–Lüders projection postulate of quantum theory. 
It follows that the informationally efficient dynamical behaviour of a system—efficient in the sense of minimis-
ing surprises—is applicable not only to states of mind but also to quantum systems. An analogous point of view, 
based on the free energy principle, has recently been proposed  elsewhere30.

It might be added, for the purpose of psychological modelling, that the averaged reduced density matrix 
ρ̂t = E[ρ̂ξt ] can be seen to obey the dynamical equation

This, of course, is the Lindblad equation generated by the decision X̂.

ξ̂t = X̂t + ε̂t ,

|ψ(ξt)� =
1√
�t

∑

k

√
pk e

1
2 xkξt−

1
4 x

2
k t |xk�,

d|ψ(ξt)� = −1

8
(X̂ − �X̂�t)2|ψ(ξt)� dt +

1

2
(X̂ − �X̂�t)|ψ(ξt)� dWt,

dWt = dξt − �X̂�t dt.

∂ρ̂t

∂t
= X̂ρ̂t X̂ − 1

2

(

X̂2ρ̂t + ρ̂t X̂
2
)

.
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Projecting down the dynamics
One advantage of working with the mathematical formalism of quantum theory in modelling the psychological 
states of mind is the deeper insight that it can uncover (cf.10). To this end, I note that although I have defined the 
state of mind as a vector in Hilbert space, what I really have in mind is a projective Hilbert space consisting of 
rays through the origin of Hilbert space. The idea is as follows. In probability theory, one can say, for instance, 
that the likelihood of an event happening is 0.3, or three out of ten, or 30%—all of these statements convey the 
same idea. The total probability being equal to one is merely a convenient convention that does not carry any 
significance. Putting it differently, working with the convention that the expectation of any decision X̂ in a state 
|ψ� is given by the ratio �X̂� = �ψ |X̂|ψ�/�ψ |ψ� , it is evident that the expectation values are independent of an 
overall scaling of the state |ψ� by a nonzero constant. Hence the Hilbert space vector |ψ� carries one psychologi-
cally irrelevant degree of freedom. When this degree of freedom is eliminated by identification |ψ� ∼ �|ψ� for any 
�  = 0 , one arrives at a projective Hilbert space, otherwise known as real projective space. This is a real manifold 
M of dimension N − 1 , endowed with a Riemannian metric induced by the underlying probabilistic rules given 
by the von Neumann-Lüders projection  postulate31.

Let {ψa} denote local coordinates for points on M . A point on M thus represents a state of mind correspond-
ing to a family of vectors �|ψ� , �  = 0 , on Hilbert space. For any representative |ψ� of that family corresponding 
to the point ψ ∈ M , consider a function on M through the expectation X(ψ) = �ψ |X̂|ψ�/�ψ |ψ� . With this 
convention, and writing ∇a for the gradient vector, the dynamical equation for the state of mind |ψ(ξt)� , when 
projected down to M , is given by

where VX(ψ) = �ψ |(X̂ − X(ψ))2|ψ�/�ψ |ψ� is the function on M that corresponds to the variance of X̂ in the 
state |ψ� . The mathematical analysis leading to this result have essentially been provided  in32,33, which will not 
be repeated here. The important observation is that the drift term (the coefficient of dt ) that generates a ten-
dency flow on the state space M is given by the negative gradient of the variance (uncertainty). Therefore, on 
the state space there is a tendency of driving the state of mind into one of the states with no uncertainty—this is 
the flow that attempts to reduce surprises. It also follows that if the state of mind is in the vicinity of one of the 
definite states of no uncertainty, then it will be difficult to escape from that neighbourhood—a phenomenon 
that I referred to as a tenacious Bayesian  behaviour19. I shall have more to comment on this below. In Fig. 1 an 
example of the negative gradient flow of the uncertainty on the state space is sketched, along with the gradient 
flow ∇aX of the mean.

It is worth remarking that in principle properties of the dynamics just outlined can be inferred from the 
squared amplitudes

of the coefficients of |ψ(ξt)� , which evidently contain as much information as the state |ψ(ξt)� itself. Indeed, 
starting from the expression for πkt , which can be deduced by use of the Bayes formula, one can apply the Ito 
calculus to deduce the dynamical equation satisfied by πkt , known in communication theory as the Kushner 
 equation34. However, πkt is a martingale, that is, on average a conserved process. In particular, the process has no 
drift (the coefficient of dt in the Kushner equation for πkt is zero), so by simply examining the Kushner equation 
for πkt it is difficult to infer key properties of the dynamics. In contrast, the surprise-minimising feature of the 
dynamics becomes immediately apparent once the process is projected to the state space M via Hilbert space.

Difference between psychological and quantum states
I have thus far emphasised the similarities in the state of mind as represented by a Hilbert space vector (or a 
density matrix), and the physical state of a quantum system as represented by the same scheme. There are, how-
ever, some important differences. The most important one, in my view, can be described through the following 
example. Suppose that the state of a quantum system is very close to one of the eigenstates |xk� of an observable 
X̂ , and that the measurement outcome yields the value xl , l  = k , for which the probability would have been very 
small. In this case, the interpretation of the event is the obvious one: a rare event has occurred. Now suppose 
instead that the state of mind is very close to one of the ‘certain’ states |xk� , in a situation where there is a correct 
choice to be made (for example, in deciding what had actually happened at an event in the past—as opposed to 
choices for which there need not be ‘correct’ outputs). In this case, if the correct choice happens to be |xl� , l  = k , 
and if the outcome xk is nonetheless chosen (even though objectively the correct choice should have been xl ), this 
evidently does not mean that an unlikely event had occurred. Rather, it means that the initial state of mind was 
a misguided one. Putting the matter differently, while a state of a quantum system represents the physical reality 
of the system, a state of mind merely represents the person’s perception of the state of the world. This difference 
between objective and subjective probabilities has important implications discussed below. There is also the 
suggestion that the state of a quantum system itself is entirely  subjective35, but this idea will not be explored here.

The subjective nature of psychological states gives rise to the following challenge. In psychology, it is not 
uncommon for a group of people having varying dispositions to be given some information (e.g., an article to 
read or a video clip to watch) and for their responses to be examined. An example arises in the study of confirma-
tion bias—a bias towards information that confirms their  views36,37. The idea is to investigate how people having 
diverging opinions respond differently to the ‘same’ information. The issue here is that the information content 
of the given message such as an article or a video clip is different to people with different opinions, even though 
it is an identical information source.

dψa = − 1

16
∇aVX dt + 1

4
∇aX dWt,

πkt = �−1
t pk e

xkξt− 1
2 x

2
k t
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To explain this more concretely, consider the simple example discussed above. Suppose that the preference, 
or the opinion, of people on a topic is represented by the choice observable X̂ . Then the information-providing 
observable representing an article discussing this topic is given by ξ̂ = X̂ + ε̂ . However, if the first person has the 
state of mind |ψ� and the second person |ϕ� , then the Lüders state resulting from observing ξ̂ is different. Hence, 
just because two people are given, say, the same article to read, to assert that they are given the same informa-
tion is factually false. That is, the mutual information contained in the article about the impending decision is 
different to different readers. Indeed, if the observed value of ξ̂ is given by ξ , then a calculation shows that the 
mutual information difference is

where pi = �xi|ψ�2 , qi = �xi|ϕ�2 and f(y) denotes the distribution of the noise term. One important consequence 
in psychology is that the various conclusions drawn from such experiments on how people’s behaviour might 
deviate from rational Bayesian updating require fundamental reexamination because they are not given the 
same information.

The subjective nature of psychological states also gives rise to a mathematical challenge. In communication 
theory, one is typically concerned with well-established communication channels, where the signal transmitted 
is assumed to represent an objective reality. Therefore, there is no ambiguity in interpreting the information-
carrying time series {ξ̂t} . However, if different receivers were to interpret the ‘same’ message differently, and if 
there is a need to apply statistical analysis to the behaviour of different people, then the question arises as to which 
information process (called the ‘filtration’ in probability theory) one should be using for statistical analysis. To 
my knowledge, this situation has hardly ever been examined in the vast literature of probability and stochastic 
analysis.

�J =
�

i

�

f (ξ − xi)



qi ln





�

j

qjf (ξ − xj)



− pi ln





�

j

qjf (ξ − xj)







dξ

+
�

i

�

pi ln pi − qi ln qi
�

,

Figure 1.  Flow of the negative gradient of the variance. In the case of a decision involving three alternatives, 
the corresponding state space M is a real projective plane. This two-dimensional manifold is not orientable 
and cannot be embedded straightforwardly in three dimensions. However, it can be interpreted as a sphere 
with antipodal points being identified. Thus the flow on M can be captured by examining the flow on the 
positive octant of the sphere. Here, a threefold decision is modelled by a choice observable X̂ with eigenvalues 
x1 = 1 , x2 = 2 , and x3 = 3 . The three axes, corresponding to the three corners of the octant, represent the three 
eigenstates of X̂ with no uncertainty. The flow −∇a

V  generated by the negative gradient of the uncertainty 
(shown in the left panel) takes an initial state into one of the states with no uncertainty: this is the tendency 
towards least surprise. The gradient ∇a

X of the mean is shown on the right panel for comparison. This term is 
multiplied by the Brownian increment dWt , which is normally distributed with mean zero and variance dt , so at 
any moment in time the direction of the flow generated by the Brownian fluctuation can go either way along the 
flow.
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Limitation of classical reasoning
Thus far I have assumed, for definiteness, that all decisions are compatible. What this means is that the quan-
tum formalism advocated here, while effective, can be reduced, if necessary, to a purely classical probabilistic 
formulation. It seems to me that this assumption does not fully reflect the reality, and that it is plausible that not 
all decisions can be made simultaneously by human brains, even if there are only a small number of decisions 
to be made. Indeed, there are empirical examples in behavioural psychology that strongly indicate that not all 
decisions or opinions are  compatible10,38,39. If so, the observables representing these choices will not commute.

The issue with the classical updating of likelihoods based on the Bayes formula is that it is not well suited to 
characterise changes of context, that is, changes in the sample space—represented, for example, by an arrival of 
information that reveals a previously unknown alternative  (see40–42 for discussions on contextuality in human 
decision making). In such a scenario, the prior probability of the new alternative is zero (because it was not 
even known), whereas the posterior can be nonzero. Hence, in the language of probability theory, the prior and 
the posterior are not absolutely continuous with respect to each other, prohibiting the direct use of the Bayes 
formula. In contrast, such a change of context can be modelled using incompatible observables, along with the 
von Neumann–Lüders projection postulate.

To see this, suppose that the prior state of mind is given by |ψ� =
∑

k ck|xk� when expanded in the eigenstates 
of X̂ , where cm = 0 for some m, and suppose that acquisition of information takes the form η̂ = Ŷ + ε̂ , where Ŷ  
cannot be diagonalised using the basis states {|xk�} . Then it is possible that the Lüders state �̂η|ψ�/√�ψ |�̂η|ψ� 
resulting from information acquisition, when expanded in {|xk�} , is such that cm  = 0 , thus circumventing the 
constraint of the classical Bayes formula. Therefore, in a situation whereby choice observables are not compatible, 
the quantum-mechanical formalism proposed here and  elsewhere11 becomes a necessity, because the modelling 
of the dynamical behaviour of a person cannot be achieved using the techniques of purely classical probability. 
As a simple example, consider two binary (yes/no) decisions that are represented by the choice observables

Evidently, X̂ and Ŷ  cannot be diagonalised simultaneously, unless φ = 0 (mod 2π ). Suppose further that the 
initial state of mind of a person is represented by a Hilbert space vector

for some θ . Then the probability that the person giving a ‘yes’ answer to question X̂ is cos2 1
2 θ ; whereas if question 

Ŷ were asked instead, then the likelihood of giving an affirmative answer is cos2 1
2 (θ − φ) . Note that strictly speak-

ing, according to the scheme introduced here, the state space for a pair of binary decisions is four-dimensional, 
if the two decisions (questions) are simultaneously considered. Here, I am interested in the effect of questions 
being asked sequentially, and for this purpose a two-dimensional representation suffices. Thus |ψ� represents an 
abstract state of mind for which a range of binary questions may be asked.

Now suppose that question Ŷ  is asked first, and subsequently question X̂ is asked. Then from the projection 
postulate, the probability of giving a ‘yes’ answer to question X̂ , irrespective of which answer was given to the 
first question, is 14 (2+ cos(θ)+ cos(θ − 2φ)) . For φ  = 0 this is different from the a priori probability cos2 1

2 θ 
of answering ‘yes’ to question X̂ . In other words, the so-called law of total probability in classical probability 
theory, that the unconditional expectation of a conditional expectation equals the unconditional expectation, is 
not applicable when one is dealing with incompatible propositions. Similarly, if question X̂ is asked before ques-
tion Ŷ  , then the probability of giving a ‘yes’ answer to question Ŷ  is cos2 1

2 θ cos
2 1
2φ + sin2 1

2 θ sin
2 1
2φ , which is 

different from cos2 1
2 (θ − φ) when φ  = 0.

This example is perhaps the simplest one to demonstrate that answers to questions can be dependent on the 
order in which questions are asked, if the questions are not compatible  (see43, Appendix 2, for a discussion on 
the order dependence). A more elaborate construction of this kind in higher dimension is found  in39; similarly, 
the use of positive operator-valued measures to analyse such order dependence is explored  in44. In any case, 
violation of the law of total probability shows that this empirical phenomenon of order-dependence cannot be 
explained using compatible observables.

For a pair of binary choices, an attempt is made  in10 to explain the experiment discussed  in45. The data 
presented  in45 show that when people are asked if Clinton is honest, about 50% answered ‘yes’, and if they are 
then asked if Gore is honest, some 60% answered ‘yes’; whereas if the order of the questions is reversed, then 
the figures change into 68% yes for Gore followed by 60% yes for Clinton. Note however that the explanation 
of this effect  in10 is incomplete because conditional probabilities are considered therein, whereas the data  in45 
concern total probabilities. The analysis of total probabilities considered here, on the other hand, shows that by 
setting θ ≈ 9π/20 and φ ≈ π/15 , the phenomenon reported  in45 can be explained within a ±10% error margin.

Discussion
I have illustrated how the Hilbert-space formalism used in quantum theory is highly effective in modelling cog-
nitive psychology, in particular, its dynamical aspects. I have shown how an important feature of the dynamics 
associated with Bayesian updating, or equivalently with the von Neumann-Lüders projection, namely, the uncer-
tainty-reducing trend, is made transparent in this formalism. This, in turn, provides an alternative information-
theoretic perspective on the free energy principle, because of the close relation between entropy and variance 
in communication theory. That is, the Lüders state is the one that minimises the Kullback–Leibler divergence 
 measure46 from the initial state.

X̂ =
(

1 0

0 − 1

)

and Ŷ =
(

cosφ sinφ
sin φ − cosφ

)

.

|ψ� =
(

cos 1
2 θ

sin 1
2 θ

)
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One important consequence of the foregoing analysis is that states of low uncertainty are always preferred 
ones, irrespective of whether they represent the correct choices. Therefore, if the state of mind happens to be 
close to one of the false choices, then with a rational updating it is difficult to escape from this neighbourhood, 
since to achieve this, entropy has to increase before it can be decreased again, and this is counter to biological 
 trends47. In such a situation, it appears that only the accidental effect of noise, which otherwise tends to be seen 
as a nuisance, can rescue the person from the false choice within a reasonable timescale, at least when all choices 
are compatible to each other. Hence noise can assist biological systems to conduct, in effect, a kind of simulated 
annealing—a closely related point of view has been put forward in the context of active  inference48.

The situation changes once we accept the thesis  of10 that real-world decisions are never compatible, thus 
making it a necessity to model cognitive behaviour within the quantum formalism. To see this, consider a 
pair of maximally incompatible (in the sense that their eigenvectors are maximally separated) binary decisions 
modelled by the pair

and suppose that the state of mind is given by

or else a state very close to |ψ� . Since Ŷ |ψ� = |ψ� , this means that the state of mind in relation to decision Ŷ  
is already fixed to the alternative labelled by the eigenvalue +1 , and that the likelihood of choosing the other 
alternative labelled by the eigenvalue −1 is zero, or else very close to zero anyhow. Suppose further that the 
‘correct’ choice is the one labelled by the eigenvalue −1 (in a situation where a correct alternative exists). The 
tenacious classical Bayesian  behaviour19 then implies that providing partial information η̂ = Ŷ + ε̂ about the 
truth will have little impact. Instead, if the person is given information, not about the choice Ŷ  , but about X̂ in 
the form ξ̂ = X̂ + ε̂ , where the magnitude of noise ε̂ is small, then after acquisition of this information the state 
will change into one of the two possible Lüders states that can result from the observations of ξ̂ . These two states 
will be close to one of the two eigenstates of X̂ . If partial information η̂ = Ŷ + ε̂ is subsequently provided, then 
irrespective of which Lüders state is chosen, the state of mind will now transform into one that is close to the 
truth with a high proobability. Thus the quantum formalism opens up a new possibility that was unavailable 
with the classical reasoning.

Let me conclude by speculating on possible implications in artificial intelligence. If one accepts the argu-
ments presented, for example, in  references11,12, for the premise that the probability assignment rules of quantum 
theory can describe human thinking more adequately than their classical counterparts, as supported by many 
empirical examples, then it follows that machine learning tools based on classical probability will ultimately 
fail to replicate human behaviour. In principle, artificial quantum intelligence (here I use the phrase to mean an 
artificial intelligence tool based on the quantum probability rules of von Neumann and Lüders, as opposed to a 
more commonly adopted notion of ‘quantum artificial intelligence’ using a quantum computer to enhance clas-
sical machine learning) can be implemented on classical computers (that is, without the need to build a quantum 
computer). However, for such an architecture to be useful, more research is needed to uncover the meaning and 
the implication of incompatible decisions in cognitive psychology.
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All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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