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A ResNet‑LSTM hybrid model 
for predicting epileptic seizures 
using a pretrained model 
with supervised contrastive 
learning
Dohyun Lee 1, Byunghyun Kim 1, Taejoon Kim 2, Inwhee Joe 1, Jongwha Chong 3, 
Kyeongyuk Min 4* & Kiyoung Jung 5*

In this paper, we propose a method for predicting epileptic seizures using a pre‑trained model utilizing 
supervised contrastive learning and a hybrid model combining residual networks (ResNet) and long 
short‑term memory (LSTM). The proposed training approach encompasses three key phases: pre‑
processing, pre‑training as a pretext task, and training as a downstream task. In the pre‑processing 
phase, the data is transformed into a spectrogram image using short time Fourier transform (STFT), 
which extracts both time and frequency information. This step compensates for the inherent 
complexity and irregularity of electroencephalography (EEG) data, which often hampers effective data 
analysis. During the pre‑training phase, augmented data is generated from the original dataset using 
techniques such as band‑stop filtering and temporal cutout. Subsequently, a ResNet model is pre‑
trained alongside a supervised contrastive loss model, learning the representation of the spectrogram 
image. In the training phase, a hybrid model is constructed by combining ResNet, initialized with 
weight values from the pre‑trained model, and LSTM. This hybrid model extracts image features 
and time information to enhance prediction accuracy. The proposed method’s effectiveness is 
validated using datasets from CHB‑MIT and Seoul National University Hospital (SNUH). The method’s 
generalization ability is confirmed through Leave‑one‑out cross‑validation. From the experimental 
results measuring accuracy, sensitivity, and false positive rate (FPR), CHB‑MIT was 91.90%, 89.64%, 
0.058 and SNUH was 83.37%, 79.89%, and 0.131. The experimental results demonstrate that the 
proposed method outperforms the conventional methods.

Epilepsy is a chronic neurological disorder that affects about 50 million people, which is approximately 1% of 
the world’s population. Seizures are typical clinical manifestations of epilepsy, characterized by sudden and 
temporary neurobehavioral symptoms caused by abnormally hypersynchronous electrical discharges from 
overexcited neurons in the  brain1,2. Except for a few special cases, seizures occur irregularly, and patient’s 
premonitory symptoms are uncertain. Moreover, the exact onset time cannot be estimated because it differs 
among individuals. Because of this unpredictability, people with epilepsy are limited in their social activities 
and exposed to trauma and danger, which substantially impacts their quality of  life3. Furthermore, patients with 
severe epilepsy are hospitalized and managed throughout the day by medical personnel. However, the medical 
personnel are insufficient to manage all patients, and correct judgments cannot be made based solely on patient 
behavior monitoring. As a result, various studies related to epilepsy are being conducted to ensure the stability 
of daily lives for epilepsy  patients4 and enable precise prevention and treatment with limited medical resources.

Due to the fact that EEG detects electric signals generated by the brain during seizures, absence seizures and 
focal seizures without awareness can also be  identified5. Therefore, from the 1970s to the present, EEG data has 
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been widely utilized in seizure prediction studies. Research fields relating to epilepsy are primarily separated 
into seizure  detection6–8 and prediction. Both studies are essential, and current research mostly focuses on 
seizure prediction, starting with seizure detection. Early studies of seizure prediction included manual feature 
extraction techniques, which are unsuitable for deriving distinct patterns from massive datasets. Consequently, 
recent research on seizure prediction employs deep learning algorithms suitable for recognizing complicated 
patterns in large datasets.

Our main contributions can be summarized as follows: (1) we propose a pre-processing method in which 
EEG data compensates for the deficiencies of training data in deep learning and makes ResNet advantageous 
for feature extraction. (2) we pre-train the image representation to achieve the best performance possible with 
small amounts of data. (3) To extract various features from time-sequence image data, we propose a hybrid 
model combining ResNet and LSTM.

Related work
The presence of differences between pre-ictal and inter-ictal brain waves was the fundamental assumption of 
seizure  prediction9,10. Philippa et al. and Shufang Li et al. linearly assessed the spike rate in the segment using an 
EEG raw signal to predict  seizures11. Ali Shahidi Zandi et al. collected features using the positive zero-crossing 
approach and forecasted them by classifying inter-ictal and pre-ictal seizures using the Bayesian Gaussian Mixture 
 model12, respectively. Dongrae Choet al. decomposed spectral components using various filtering techniques, 
including bandpass filtering, emergency mode degradation, and multivariate empirical mode degradation, 
and made predictions by comparing the phase synchronization of the gamma frequency band to that of other 
frequency  bands13. The majority of past research has focused on signal analysis techniques, which are unsuitable 
for irregular and complex EEG data. To extract the frequency components of EEG data, numerous researchers use 
empirical mode  decomposition14, continuous wavelet transform (CWT)15, discrete wavelet transform (DWT)16, 
and  STFT17. Furthermore, many efforts have been made to extract meaningful information from EEG data, such 
as principal component analysis (PCA)16, approximate  entropy18, and the Hjorth  parameter19.Various classifiers 
classified the extracted features as pre-ictal and inter-ictal. Machine learning techniques such as Bayesian 
Gaussian  Mixture12, Support Vector Machine (SVM)20,21, and K-Nearest Neighbor (KNN)22 have begun showing 
impressive outcomes. In addition, recent research employing deep learning models, which is closely related to this 
study, has shown advanced results. In contrast to prior studies, Haidar Khan et al. transformed signals using the 
Wavelet Transform (WT) and projected changes in the probability distribution and Convolution Neural Networks 
(CNN) using Kullback-Leibler divergence (KL divergence), a probability distribution of data method. Kostas et 
al. predicted, using an LSTM model capable of reflecting the information of time sequence  signals23. Liu et al. 
proposed a novel patient-independent approach in epilepsy research by applying the advanced form of LSTM 
known as the Bidirectional Long Short-Term Memory (Bi-LSTM)  network24. Until recently, research utilizing 
CNN-based deep learning models such as 3D-CNN25,26 and  ResNet27 have been used as classification methods.

Extraction and classification methods, as described in the previous study, are equally crucial for all 
classification algorithms. When determining the method for feature extraction and classification, it is necessary 
to consider the characteristics and limitations of the data. Variable patient characteristics make it difficult to 
use EEG data for patient-independent seizure  prediction28. Therefore, we performed patient-specific seizure 
prediction. Data scarcity is a disadvantage of patient-specific methods. Additionally, the inherent disadvantages 
of EEG data are their complexity and  irregularity29. To achieve superior performance with limited data, we 
propose a specific pre-trained model consisting of ResNet and supervised contrastive loss. We also augment the 
data with a band-stop filter and temporary cutout. Moreover, we propose a hybrid model that combines ResNet 
and LSTM to reflect both types of information during training. We use STFT to transform the irregular and 
complex shortcomings of the EEG into data with frequency-time information.

Database
The dataset used in this research can be classified according to the reference electrode selection method, using 
two methods: ’Unipolar reference’ and ’Bipolar reference’. The SNUH dataset was measured using the ’Unipolar 
reference’ method, while the CHB-MIT dataset used the ’Bipolar reference’ method. In the ’Unipolar reference’ 
method, the GND value is determined by averaging all the electrodes and converting them into digital signals, 
with all electrodes sharing the same GND. The difference between the individual signal and the signal measured 
at the common ground is recorded. However, this method is susceptible to fine noise or common-mode signals, 
which can also be amplified and output. On the other hand, in the ’Bipolar reference’ method, each adjacent 
electrode is used as a GND to convert it into a digital signal. This method is resistant to noise from the common 
signal between electrode attachment points, as the measurement procedure eliminates it. However, it makes it 
difficult to observe brain waves at a specific location. A description of the two datasets is included below.

CHB‑MIT scalp EEG dataset
The CHB-MIT dataset serves as a validated dataset primarily utilized in research related to seizure detection 
and prediction. It comprises data gathered from Children’s Hospital Boston, encompassing a total of 844 hours 
of data and 245 recorded seizures. The scalp EEG information was recorded using 22 electrodes with a sampling 
rate of 256Hz and extracted using the bipolar method. Among the 22 electrode channels, 18 common channels 
(’FP1-F7’, ’F7-T7’, ’T7-P7’, ’P7-O1’, ’FP1-F3’, ’F3-C3’, ’C3-P3’, ’P3-O1’, ’FP2-F4’, ’F4-C4’, ’C4-P4’, ’P4-O2’, ’FP2-F8’, 
’F8-T8’, ’T8-P8’, ’P8-O2’, ’FZ-CZ’, ’CZ-PZ’) were used for training purposes.
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SNUH scalp EEG dataset
This study was approved by the Institutional Review Board of the Seoul National University Hospital (IRB No. 
H-1710-030-891). Written informed consent from the patients was waived by the Institutional Review Board 
of Seoul National University Hospital. All methods were carried out in accordance with relevant guidelines and 
regulations. The SNUH dataset was collected from Seoul National University Hospital and included 845 h of data 
and 78 seizures. Scalp EEG information was recorded using 21 electrodes with a sampling rate of 200 Hz and was 
extracted with a unipolar reference. All 21 electrode channels (’Fp1-AVG’, ’F3-AVG’, ’C3-AVG’, ’P3-AVG’, ’Fp2-
AVG’, ’F4-AVG’, ’C4-AVG’, ’P4-AVG’, ’F7-AVG’, ’T1-AVG’, ’T3-AVG’, ’T5-AVG’, ’O1-AVG’, ’F8-AVG’, ’T2-AVG’, 
’T4-AVG’, ’T6-AVG’, ’O2-AVG’, ’Fz-AVG’, ’Cz-AVG’, ’Pz-AVG’) were used for training.

Pre‑processing
The amount of data, the model, and the characteristics of the data all significantly influence the performance 
of models in data-based supervised learning. EEG data has three disadvantages: a class imbalance between 
pre-ictal and inter-ictal, an insufficient data quantity, and the complexity and irregularity of the data, making 
analysis difficult. These disadvantages directly affect the model’s performance. We addressed these issues during 
the pre-processing phase.

Data sampling
As illustrated in Fig. 1, we defined the period before ictal onset as “pre-ictal” and set the durations to 10, 15, 
and 30 min. “Inter-ictal” is defined as the period more than 3 hours away from the seizure, when the seizure 
waveform is absent from the  EEG30. The validation datasets, CHB-MIT and SNUH, exhibit a class imbalance 
between pre-ictal and inter-ictal due to the relatively small number of ictals in comparison to the total length. 
When there is a large difference in the number of classes in the dataset, classes with a high distribution are given 
more weight during training. In the case of a seizure dataset with a substantial proportion of inter-ictal, overall 
accuracy may increase while sensitivity decreases. As sensitivity directly related to the patient’s life, resolving the 
difference in distribution between the two classes can lead to improved performance. To resolve the imbalance, 
we employed undersampling to extract data of the same length as pre-ictal and inter-ictal data, as depicted in 
Fig. 1. Additionally, oversampling was conducted to supplement the existing limited data and compensate for 
information loss during undersampling. As shown in Fig. 2, the window size was set to 10 s, and the sliding 
window algorithm was applied every 1s to generate overlapping data. Through data sampling, the data imbalance 
was resolved, and insufficient data were supplemented.

STFT
The irregular and complex raw EEG data presented in Fig. 3a was transformed into a spectrogram image with the 
x-axis indicating time and the y-axis representing frequency using STFT, as shown in Fig. 3b. As a spectrogram, 
the power value of the frequency band at a particular time can be easily observed, and it can be analyzed using 
both the time information on the x-axis and the image characteristics.

Figure 1.  Definition of pre-ictal and inter-ictal period.
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Equation (1) is converted into a discrete digital signal using STFT. Here, x[n] represents the raw signal in the time 
domain, m and n denote the time axes, and ω signifies the frequency axis. w[] refers to the window function. For 
continuous data analysis, the Hanning window function with a window length of 1 s and 50 % overlap was applied 
to enhance the time  resolution31. As depicted in Fig. 3c, the data were constructed using only the information-
rich data in the 0 ∼ 60 Hz band. Difficult-to-analyze EEG were transformed into spectrograms containing time-
frequency information, and a preprocessing step was performed to facilitate feature extraction from the data.

Pretext task: pre‑training
We conducted pre-training to achieve high performance with a limited data. The original data were augmented 
using a band-stop filter and temporary cutout, and then trained within a model consisting of ResNet and super-
vised contrastive loss. Training with augmented data can prevent overfitting, and the image representation is 
acquired in advance. Even with a small dataset, the training model could determine optimal parameters through 
the use of the pre-trained ResNet.

Data augmentation
The augmentation method has primarily been employed in image processing within the field of  vision32, and it 
has also found applications in signal  processing33 and other domains. For EEG data, which contains both signal 
information and STFT-converted image data, a band-stop filter and temporal cutout were employed to satisfy 
both requirements. The STFT-applied image takes the form of a horizontally and vertically cropped representa-
tion when specific frequency band and time zone information is removed. The images shown in Fig. 3d, e were 
generated through augmentation. The temporal cutout was vertically cropped, and 6 of 10 s were removed at 
random. The temporal cutout involved vertical cropping, removing 6 out of 10 seconds at random. Experiments 
were performed to determine the removed time and length of frequency information. Augmented images were 
used as input for the pre-trained model.

(1)STFT{x(n)}(m,ω) ≡ X(m,ω) = �∞
n=−∞x[n]w[n−m]e−jωn

Figure 2.  The sliding window algorithm is employed to apply oversampling with a 10 s window that overlaps by 
1 s.

Figure 3.  This is a pre-processing procedure for a single channel. The data shown in (a) is in its original form, 
referred to as raw EEG data. The spectrogram image depicted in (b) has undergone the application of STFT. The 
image (c) represents data that has been truncated to a frequency range of 0–60 Hz. For the pre-training phase, 
data augmentation techniques were applied to images (d, e). Specifically, temporal cut-out and band-stop filters 
were utilized.
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Residual learning
CNN34, which is effective in analyzing patterns in images, has been widely utilized in the field of computer 
vision. Deeper layers within CNN models are recognized as crucial for determining the model’s performance. 
However, contrary to initial expectations, increasing the depth of layers in CNN-based models often leads to 
degradation  issues35. ResNet was introduced as a solution to address this degradation problem. It employs the 
model structure of VGGNet (Visual Geometry Group Net)36 and incorporates shortcut connections to add input 
values to output  values35.

In this study, we employ ResNet-18, the shallowest model in the ResNet architecture. This decision is 
influenced by the experimental dataset, consisting of small images with dimensions of (21x60). Smaller images 
inherently carry less information, making it more challenging to effectively capture essential features and patterns 
within deeper networks. ResNet-18 consists of the five blocks, as illustrated in Fig. 4. Each block includes 
batch normalization, Rectified Linear Unit (ReLU), and max pooling. The input dimensions for CHB-MIT and 
SNUH datasets are (18 × 21 × 60) and (21 × 21 × 60), respectively. These dimensions represent the number of 
electrodes, the temporal information derived from a window size of 1 second and 50% overlap, and the frequency 
components.For CHB-MIT, the resulting feature maps from each block are as follows: (64 × 21 × 60), (64 × 21 × 
60), (128 × 11 × 30), (256 × 6 × 15), and (512 × 3 × 8). The final feature map obtained from ResNet is transformed 
into a 512-dimensional vector through adaptive average pooling and a flatten layer. Throughout the pre-training 
and training processes, the output from ResNet is utilized as input values for the supervised contrastive loss and 
the LSTM layer, respectively.

Supervised contrastive learning
Contrastive learning has its origins in metric  learning37 and is currently primarily studied as a learning technique 
for pre-trained models. Among the notable approaches are self-supervised contrastive  learning38 and super-
vised contrastive  learning39. Self-supervised contrastive learning is an unsupervised learning algorithm that is 
appropriate for large quantities of unlabeled data, but it cannot outperform supervised learning. The proposed 
method to address these deficiencies is supervised contrastive learning. In contrast to self-supervised contras-
tive learning, loss values are allocated based on class. In other words, it is a method of supervised learning using 
labeled data. Equation (2) represents self-supervised contrastive loss, while Equation (3) denotes supervised 
contrastive learning.

The symbol · represents the dot product, and τ is the hyperparameter. When the batch size is N and I ≡ {1 . . . 2N} 
is the index of an augmented sample, 2N indexes are included. zj(i) represents a single positive sample, which 
is the remaining augmented image, while 2(N − 1) indexes represent negative samples, denoted by za . In the 
denominator, equation zi · za represents similarity comparisons for negative samples, and it is repeated 2(N − 1) 
times. Only one image augmented from the same image has its numerator zi · zj(i) compared for similarity. With 
the exception of one augmented image, all images are considered negative.

Equation (3) P(i) represents a sample from the same class considered as positive. Positive and negative samples are 
separated by class, and the loss is calculated as the mean similarity value for all positive  samples39. In supervised 
contrastive loss during training, the loss is determined by comparing data within the same batch. Therefore, 
the larger the positive sample size and batch size, the better the performance. We conducted pre-training using 
supervised contrastive learning, which clearly demonstrates distinctions between objects (Fig. 5).

(2)Lself = −�i∈I log
exp(zi · zj(i)/τ)

�a∈A(i) exp(zi · za/τ)

(3)Lsup = −�i∈I
1

|p(i)|
�p∈P(i)log

exp(zi · zp/τ)

�a∈A(i) exp(zi · za/τ)

Figure 4.  ResNet-18 architecture.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1319  | https://doi.org/10.1038/s41598-023-43328-y

www.nature.com/scientificreports/

Figure 5.  Our proposed method comprises two key modules: the Pretext task and the Downstream task. In 
the Pretext task, the data augmentation technique involving a band-stop filter and temporary cutout is applied, 
followed by the training of a pre-trained ResNet model with a supervised contrastive loss. This results in the 
generation of a pre-trained representation for the augmented data. In the Downstream task, fine-tuning is 
performed on the LSTM using the pre-trained ResNet, and training is conducted on the preprocessed original 
data.
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Downstream task: training
LSTM
As a deep learning model derived from the Recurrent Neural Network (RNN), the LSTM model has proven 
effective in multiple fields with time-dependent or sequence-based data, including speech recognition, language 
modeling, and translation. Additionally, to address the gradient vanishing phenomenon that occurs on long-term 
dependency data of RNN, it is possible to transmit information over long distances without losing it through the 
cell state. Figure 6 illustrates the internal structure of the LSTM cell state, encompassing the forget gate, input 
gate, and output gate.

• The LSTM’s calculation procedure is as follows: Ct represents the cell state value, ht denotes the hidden state 
value, xt is the input value, σ signifies the sigmoid function, tanh is the Hyperbolic Tangent function, and ft , 
it , C̃t and ot represent the output values of each gate. 

(a) Equation (4) represents a forget gate. The sigmoid function produces a value ranging between 0 and 
1, indicating the extent to which past information should be discarded. A value closer to 0 implies 
less retention of information. 

(b) Equations (5) and (6) correspond to the input gate, responsible for selecting crucial information from 
incoming data. Equation (5) defines the value to be updated using the sigmoid function, while equa-
tion (6) calculates a new candidate value vector C̃t , which will contribute to updating the cell state. 

(4)ft = σ(Wf · [ht−1, xt ] + bf )

Figure 6.  Structure of the LSTM cell.
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(c) Equation (7) updates C(t−1) to Ct . This process involves updating the new cell state through a com-
bination of addition and multiplication involving the data from the preceding steps. Specifically, Ct 
is updated by multiplying the previous cell state C(t−1) with the output ft from the forget gate, and it 
is further updated through a combination of multiplication and addition involving the values from 
the input gate. 

(d) Equations (8) and (9) represent an output gate responsible for generating the final output. In Equa-
tion (8), the sigmoid function determines the value of xt to be output. Ultimately, in Equation (9), 
the output is determined by multiplying the result obtained from Equation (8) with Ct.

  

As demonstrated in the previous equation, the cell state selectively discards irrelevant past information, incor-
porates pertinent current information, and iteratively updates itself using the gates. This enables the LSTM 
model to exhibit outstanding performance, even when dealing with data that exhibits long-term  dependencies40.

ResNet‑LSTM hybrid model
The STFT pre-processing step produces image data with time information along the x-axis and frequency infor-
mation along the y-axis. In this study, time and frequency information was used to extract data characteristics 
using a hybrid model combining ResNet and LSTM. ResNet was used to extract the image features, which were 
extracted as 512-dimensional vector values. It was delivered to the LSTM as an input. Time-series analysis was 
performed on the extracted features using LSTM with one hidden layer. It was classified using a linear classifier 
with the dropout and ReLU layers in the output layer.

Result and discussion
EEG data has three disadvantages in seizure prediction: complexity and irregularity, a small number of datasets, 
and imbalance. Patient-specific seizure prediction is more restricted by the separation of patient-specific data. 
Therefore, we developed a pre-trained model that can be applied to the prediction of seizures. To address the 
potential issue of overfitting due to limited training data, we employed the model described in the Pretext task 
process, as depicted in Fig. 5. This approach helped us reduce the risk of overfitting and improve the generaliza-
tion of our model. Moreover, it provided initial weight values to determine the optimal training model param-
eters. The proposed method’s pseudocode is shown in Algorithm 1 and 2.

We defined a single data as 10 s and predicted seizures by classifying pre-ictal and inter-ictal data. Leave-one-
out cross-validation was employed to aggregate the results effectively. In this approach, a pair of pre-ictal and 
inter-ictal data instances were treated as a singular unit, with N-1 units used for training while the remaining 
unit served as the testing set. This process was iterated N times. Evaluation metrics such as sensitivity, specificity, 
accuracy, and False Positive Rate (FPR) were employed and are detailed in Table 1. Furthermore, we conducted 
statistical testing on the means of each patient’s performance using a paired t-test. The training process utilized the 
window-based PyTorch framework and the Stochastic Gradient Descent (SGD) optimizer, which demonstrated 
superior performance in terms of generalization compared to adaptive optimization  methods41. This offered 
an advantage in addressing overfitting concerns when dealing with limited data. For the pre-training phase, a 
batch size of 512, an epoch of 300, and a learning rate of 0.05 were employed. During the subsequent training 
phase, an epoch of 100, a learning rate of 0.01, and the same batch size were utilized. Each hyperparameter was 
determined through a series of experiments.

In this paper, the SNUH and CHB-MIT datasets were utilized for validation. Both datasets share the same 
number of patients, as detailed in the “DATABASE” section. However, the SNUH dataset contains 78 fewer 
instances of ictals and is measured using the noisier unipolar reference method. In our experimental setup, we 
defined the pre-ictal period as 10, 15, and 30 min, with subsequent evaluation metrics confirming the outcomes 
for each respective period. Tables 2, 3, 4 and 5 present patient-specific the results. Tables 3 and 5 are the results 

(5)it =σ(Wi · [ht−1, xt ] + b)

(6)C̃t =tanh(Wc · [ht−1, xt + bc])

(7)Ct = ft ∗ Ct−1 + it ∗ C̃t

(8)ot =σ(Wo[ht − 1, xt ] + bo)

(9)ht =σt ∗ tanh(Ct)

Table 1.  Evaluation metrics.

Evaluation metrics Calculation formula

Accuracy (TP + TN)/(TP + TN + FP + FN)

Sensitivity TP/(TP + FN)

Specificity TN/(TN + FP)

FPR FP/(FP + TN)
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of ResNet-LSTM without applying the pre-trained model, and Tables 3 and 5 are the results of applying the pre-
train model. A summary of the results’ performance is provided in Tables 6 and 7. According to Table 6, all results 
using pre-train were enhanced, with sensitivity showing improvement relative to specificity in the 10 and 15 min 
data. In the case of the 30-min data, a higher rate of increase in specificity and FPR led to an improvement in 
accuracy. Similar to the results obtained from the CHB-MIT, all SNUH results in Table 7 also improved, and the 
sensitivity of the 10 and 15 min results improved even further. In addition, the specificity was enhanced in the 30 
min data. Experiments conducted on both datasets yielded comparable outcomes. The 30 min pre-ictal period 
presented fewer extractable data compared to the 10 and 15-min periods, and seizure signs tended to weaken 
as time distanced from the ictal event. Consequently, when comparing the 30 min data to other time intervals, 
further enhancements in specificity were observed. In the context of seizure prediction, defining the pre-ictal 
period is a significant consideration. Extending the pre-ictal period offers the advantage of advanced patient 
preparation, but it comes with the trade-off of reduced accuracy and increased patient anxiety. As demonstrated 
in Fig. 7, using the two datasets, CHB-MIT had the highest value at 15 min, while SNUH had the highest value 
at 10 min, and both datasets had similar values at 10 and 15 min. Even with a small amount of data, accuracy 
for 10, 15 min was ensured in SNUH, and in the paired t-test results of Tables 6 and 7, the numerical values 
according to the presence or absence of pre-training showed a significant difference in the overall result (p<0.05), 
indicating that pre-training plays a significant role in improving the numerical value.

STFT conversion transforms the EEG data into a spectrogram image with represented on the x-axis and 
frequency on the y-axis. For training, we used a hybrid model that combines ResNet and LSTM to reflect both 
types of information. The experimental outcomes for pre-train + ResNet and pre-train + ResNet-LSTM are 
outlined in Table 8. As a result of the experiment, improved results were obtained for both datasets, confirming 
the benefits of the hybrid model.

Table 9 shows a previous study conducted on patient-specific seizure prediction using the CHB-MIT dataset. 
Contemporary research trends involve extracting data in the frequency domain as features and utilizing machine 
learning and deep learning methodologies as classifiers. Ongoing investigations aim to enhance sensitivity and 
reduce FPR by addressing challenges such as data imbalance and insufficient samples, both inherent in EEG. 
Jemal et al.46 obtained a high sensitivity of 96.1% from 23 patients but with low specificity, and they employed 

Table 2.  Seizure prediction results obtained with the CHB-MIT dataset. We include experimental results from 
all 24 patients. The experiment utilized pre-ictal intervals of 10, 15, and 30 min. The experiment utilized pre-
ictal intervals of 10, 15, and 30 min. The corresponding table represents the outcome of without pre-training 
from ResNet-LSTM. Patient 11’s 30 min result was excluded from the analysis due to insufficient data.

Patient

Pre-ictal: 10 min Pre-ictal: 15 min Pre-ictal: 30 min

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

ResNet-LSTM

chb01 99.58 99.69 99.63 0.003 98.58 98.71 98.64 0.013 88.27 93.30 90.79 0.067

chb02 79.36 86.63 82.99 0.134 72.11 85.13 78.62 0.149 61.03 95.70 78.36 0.043

chb03 83.76 96.82 90.29 0.032 86.84 99.61 93.22 0.004 91.61 99.33 95.47 0.007

chb04 69.33 92.64 80.99 0.074 79.57 92.90 86.24 0.071 66.75 94.42 80.58 0.056

chb05 72.67 90.99 81.83 0.090 79.29 91.78 85.54 0.082 79.36 91.70 85.53 0.083

chb06 93.25 95.98 94.62 0.040 91.12 98.29 94.70 0.017 87.48 95.72 91.60 0.043

chb07 94.75 96.90 95.83 0.031 96.89 96.52 96.71 0.035 97.52 97.97 97.75 0.020

chb08 99.36 98.68 99.02 0.013 99.37 99.12 99.25 0.009 90.91 79.40 85.15 0.206

chb09 50.04 87.35 68.70 0.126 51.52 88.97 70.24 0.110 56.11 87.07 71.59 0.129

chb10 81.97 89.12 85.55 0.109 80.87 88.18 84.53 0.118 78.50 78.91 78.71 0.211

chb11 100.00 99.66 99.83 0.003 99.89 95.23 97.56 0.048 N/A N/A N/A N/A

chb12 94.97 97.00 95.98 0.030 87.49 92.88 90.19 0.071 71.80 93.38 82.59 0.066

chb13 73.85 90.45 82.15 0.095 77.24 85.90 81.57 0.141 75.30 89.07 82.18 0.109

chb14 79.55 91.60 85.58 0.084 79.52 88.27 83.89 0.117 64.67 73.28 68.97 0.267

chb15 68.20 61.39 64.80 0.386 52.06 86.49 69.28 0.135 52.18 66.14 59.16 0.339

chb16 78.82 82.64 80.73 0.174 74.10 90.91 82.51 0.091 7.43 89.67 48.55 0.103

chb17 97.63 98.20 97.91 0.018 97.61 98.99 98.30 0.010 97.34 98.32 97.83 0.017

chb18 71.49 97.76 84.62 0.022 74.89 97.03 85.96 0.030 73.99 95.53 84.76 0.045

chb19 86.97 99.83 93.40 0.002 96.35 98.88 97.62 0.011 96.65 99.66 98.16 0.003

chb20 98.22 98.31 98.27 0.017 98.95 98.90 98.92 0.011 92.02 99.25 95.63 0.008

chb21 78.09 83.21 80.65 0.168 82.94 78.73 80.84 0.213 77.96 47.01 62.49 0.530

chb22 82.06 94.02 88.04 0.060 87.21 100.00 93.60 0.000 91.35 99.39 95.37 0.006

chb23 99.72 93.23 96.47 0.068 99.78 96.63 98.20 0.034 98.86 97.89 98.37 0.021

chb24 82.39 80.45 81.42 0.196 83.97 84.03 84.00 0.160 75.12 78.98 77.05 0.210

Average 84.00 91.77 87.89 0.082 84.51 93.00 88.75 0.070 77.05 88.74 82.90 0.113
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5-fold cross-validation instead of Leave-one-out cross-validation as the performance validation method. Table 9 
includes two  approaches42,44 employ STFT, the same method applied in this study. Among these, Yang et al.42 
experimental results demonstrated low sensitivity of 59.9%, 66%, and 56% for patients 2,9, and 14, respectively. 
For patients 2 and 9, limited pre-ictal data relative to the total duration was a factor, while patient 14 had a 
shorter recording duration, indicating less effective training. The majority of studies on seizure prediction using 
CHB-MIT reported poor patient outcomes due to the aforementioned issues. As demonstrated in Table 3, the 
experimental results of our study revealed that the 10 min sensitivity for all three patients exceeded 80%, and 
patient 9’s sensitivity improved by nearly 40%. The inter-ictal weight concentration phenomenon was resolved by 
addressing the class imbalance. By generating a pre-trained model, the representation was acquired in advance, 
enabling the model to determine the optimal weight values during the actual training process. Through these 
interventions, we succeeded in enhancing outcomes for patients with previously low sensitivity. Table 9 does 
not present results based on all 24 patients, as certain experimental patient data was lacking and there was no 

Table 3.  Seizure prediction results obtained with the CHB-MIT dataset. We include experimental results 
from all 24 patients. The experiment utilized pre-ictal intervals of 10, 15, and 30 min. The experiment utilized 
pre-ictal intervals of 10, 15, and 30 min. The corresponding table demonstrates the outcomes of deploying the 
pre-train model to ResNet-LSTM. Patient 11’s 30 min result was excluded from the analysis due to insufficient 
data. Significant values are in bold.

Pre-ictal: 10 min Pre-ictal: 15 min Pre-ictal: 30 min

Patient
Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Pre-train + ResNet-LSTM

chb01 99.75 99.15 99.45 0.008 96.50 96.82 96.66 0.032 93.08 97.49 95.28 0.025

chb02 87.56 89.85 88.71 0.102 82.27 89.00 85.63 0.110 79.56 95.59 87.58 0.044

chb03 79.12 99.83 89.48 0.002 98.88 99.97 99.42 0.000 96.41 100.00 98.20 0.000

chb04 95.64 95.05 95.35 0.049 88.64 95.62 92.13 0.044 69.71 96.23 82.97 0.038

chb05 79.40 84.39 81.90 0.156 84.79 91.95 88.37 0.081 74.86 98.77 86.81 0.012

chb06 93.44 98.08 95.76 0.019 92.54 97.08 94.81 0.029 91.11 96.92 94.02 0.031

chb07 92.39 96.79 94.59 0.032 94.73 97.94 96.33 0.021 95.25 99.01 97.13 0.010

chb08 99.59 99.59 99.59 0.004 100.00 99.24 99.62 0.008 97.07 79.97 88.52 0.200

chb09 89.72 97.50 93.61 0.025 91.08 98.20 94.64 0.018 89.36 97.65 93.51 0.023

chb10 80.47 91.59 86.03 0.084 97.45 90.81 94.13 0.092 95.03 95.74 95.38 0.043

chb11 99.83 100.00 99.92 0.000 99.94 97.92 98.93 0.021 N/A N/A N/A N/A

chb12 98.96 99.26 99.11 0.007 93.96 97.66 95.81 0.023 79.23 92.18 85.71 0.078

chb13 92.14 93.57 92.86 0.064 94.84 96.39 95.61 0.036 82.55 97.17 89.86 0.028

chb14 83.38 90.74 87.06 0.093 72.39 94.16 83.28 0.058 70.32 83.45 76.88 0.165

chb15 72.80 58.64 65.72 0.414 68.05 76.81 72.43 0.232 36.13 84.76 60.44 0.152

chb16 78.75 90.56 84.65 0.094 72.67 83.56 78.11 0.164 12.76 82.52 47.64 0.175

chb17 99.66 99.10 99.38 0.009 99.18 99.85 99.51 0.001 98.57 98.46 98.51 0.015

chb18 75.30 96.70 86.00 0.033 73.18 95.48 84.33 0.045 74.58 99.64 87.11 0.004

chb19 97.72 99.49 98.60 0.005 84.96 96.97 90.97 0.030 99.05 99.83 99.44 0.002

chb20 99.27 99.13 99.20 0.009 99.16 98.73 98.94 0.013 97.18 99.05 98.12 0.009

chb21 78.68 85.15 81.92 0.148 84.68 79.63 82.15 0.204 80.63 62.80 71.71 0.372

chb22 81.11 96.11 88.61 0.039 100.00 99.66 99.83 0.003 84.37 99.47 91.92 0.005

chb23 100.00 98.08 99.04 0.019 100.00 95.77 97.89 0.042 98.41 98.06 98.23 0.019

chb24 85.51 82.16 83.83 0.178 81.45 90.44 85.95 0.096 80.13 77.50 78.81 0.225

Average 89.17
(+5.17)

93.35
(+1.58)

91.26
(+3.37)

0.066
(− 0.016)

89.64
(+5.13)

94.15
(+1.15)

91.90
(+3.15)

0.058
(− 0.012)

81.54
(+4.49)

92.71
(+3.97)

87.12
(+4.22)

0.073
(− 0.040)
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common channel. The proposed method’s experimental results were presented for all patients, including those 
used in the previous  method42. We obtained higher sensitivity and lower FPR compared to conventional methods.

Conclusion
In this paper, we propose a method for predicting epilepsy seizures based on a pre-trained model that employs 
supervised contrastive learning and a hybrid model that combines ResNet and LSTM. In the pre-processing 
phase, the data were transformed using STFT to ensure that the training model could efficiently perform feature 
analysis, and the class imbalance between pre-ictal and inter-ictal as well as the insufficient data were addressed 
by sampling and oversampling. During pre-training, data were augmented and pre-trained with a ResNet and 
supervised contrastive loss model so that the training model could find the optimal parameter with fewer data. 
During the training phase, image features and time series data were extracted using a hybrid model comprised 
a pre-trained ResNet and LSTM. The experimental results reveal that CHB-MIT demonstrates optimal perfor-
mance for the 15 min pre-ictal period, while SNUH performs best for the 10 min pre-ictal period. We demon-
strated greater sensitivity and a lower FPR than conventional methods.

Table 4.  Seizure prediction results obtained with the SNUH dataset. We include experimental results from all 
24 patients. The experiment utilized pre-ictal intervals of 10, 15, and 30 min. The experiment utilized pre-ictal 
intervals of 10, 15, and 30 min. The corresponding table represents the outcome of without pre-training from 
ResNet-LSTM.

Pre-ictal: 10 min Pre-ictal: 15 min Pre-ictal: 30 min

Patient
Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

ResNet-LSTM

snuh01 55.67 77.33 66.50 0.227 66.78 72.33 69.56 0.277 62.84 32.47 47.65 0.675

snuh02 98.76 98.42 98.59 0.016 95.40 81.00 88.20 0.190 83.14 90.71 86.93 0.093

snuh03 70.20 89.63 79.91 0.104 70.32 82.09 76.21 0.179 77.42 86.03 81.72 0.140

snuh04 7.87 94.84 51.35 0.052 8.02 93.77 50.90 0.062 52.82 82.38 67.60 0.176

snuh05 70.52 47.93 59.22 0.521 81.34 58.95 70.15 0.410 61.47 66.89 64.18 0.331

snuh06 78.68 72.45 75.57 0.275 76.50 66.33 71.41 0.337 80.78 61.25 71.02 0.387

snuh07 99.07 92.72 95.90 0.073 98.60 99.49 99.05 0.005 92.38 98.58 95.48 0.014

snuh08 86.59 77.75 82.17 0.223 81.00 82.55 81.78 0.175 62.94 89.89 76.42 0.101

snuh09 81.95 53.69 67.82 0.463 46.20 70.45 58.32 0.296 75.56 67.37 71.47 0.326

snuh10 39.42 81.50 60.46 0.185 56.27 72.65 64.46 0.273 43.70 72.66 58.18 0.273

snuh11 21.88 49.13 35.50 0.509 25.07 38.53 31.80 0.615 24.40 45.11 34.76 0.549

snuh12 98.82 79.61 89.21 0.204 98.15 92.87 95.51 0.071 81.74 80.68 81.21 0.193

snuh13 21.83 97.38 59.60 0.026 67.79 86.14 76.96 0.139 96.40 67.17 81.78 0.328

snuh14 68.02 68.02 68.02 0.320 60.61 66.39 63.50 0.336 69.37 67.36 68.37 0.326

snuh15 54.60 84.04 69.32 0.160 49.83 81.41 65.62 0.186 69.10 73.81 71.46 0.262

snuh16 93.15 99.41 96.28 0.006 87.37 98.18 92.77 0.018 80.96 95.48 88.22 0.045

snuh17 72.25 96.33 84.29 0.037 69.66 95.96 82.81 0.040 82.30 95.81 89.06 0.042

snuh18 96.05 96.11 96.08 0.039 94.91 96.67 95.79 0.033 95.38 95.68 95.53 0.043

snuh19 64.21 94.42 79.31 0.056 66.89 94.67 80.78 0.053 42.38 95.78 69.08 0.042

snuh20 30.40 68.98 49.69 0.310 23.27 66.59 44.93 0.334 52.28 59.54 55.91 0.405

snuh21 90.44 95.71 93.08 0.043 84.81 93.70 89.25 0.063 76.69 91.35 84.02 0.087

snuh22 63.96 79.58 71.77 0.204 54.79 74.15 64.47 0.259 56.72 61.81 59.26 0.382

snuh23 82.66 93.32 87.99 0.067 73.06 94.16 83.61 0.058 87.91 95.78 91.85 0.042

snuh24 40.27 80.88 60.58 0.191 45.68 82.27 63.97 0.177 28.92 47.01 37.97 0.530

Average 66.14 82.05 74.09 0.180 65.93 80.89 73.41 0.191 68.23 75.86 72.05 0.241
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Table 5.  Seizure prediction results obtained with the SNUH dataset. We include experimental results from all 
24 patients. The experiment utilized pre-ictal intervals of 10, 15, and 30 min. The experiment utilized pre-ictal 
intervals of 10, 15, and 30 min. The corresponding table demonstrates the outcomes of deploying the pre-train 
model to ResNet-LSTM. Significant values are in bold.

Pre-ictal: 10 min Pre-ictal: 15 min Pre-ictal: 30 min

Patient
Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Sensitivity 
(%)

Specificity 
(%)

Accuracy 
(%) FPR

Pre-train + ResNet-LSTM

snuh01 88.66 98.39 93.53 0.016 91.75 97.64 94.70 0.024 86.52 76.35 81.43 0.236

snuh02 99.10 100.00 99.55 0.000 88.18 99.63 93.90 0.004 86.99 99.94 93.47 0.001

snuh03 85.42 97.10 91.26 0.029 90.35 95.86 93.11 0.041 90.37 98.40 94.39 0.016

snuh04 99.83 9.81 54.82 0.902 99.10 11.84 55.47 0.882 98.99 35.34 67.17 0.647

snuh05 90.27 77.66 83.97 0.223 95.88 63.44 79.66 0.366 93.29 86.46 89.87 0.135

snuh06 83.99 89.68 86.84 0.103 88.15 89.88 89.01 0.101 90.51 73.05 81.78 0.269

snuh07 99.92 97.88 98.90 0.021 99.94 98.82 99.38 0.012 98.49 97.77 98.13 0.022

snuh08 86.46 80.88 83.67 0.191 79.24 83.39 81.31 0.166 71.00 88.24 79.62 0.118

snuh09 97.46 42.47 69.97 0.575 83.16 41.94 62.55 0.581 81.35 90.77 86.06 0.092

snuh10 41.29 87.48 64.38 0.125 61.17 80.73 70.95 0.193 59.45 89.65 74.55 0.103

snuh11 55.22 80.15 67.68 0.199 49.38 72.43 60.91 0.276 41.11 69.31 55.21 0.307

snuh12 100.00 100.00 100.00 0.000 99.49 100.00 99.75 0.000 87.13 81.27 84.20 0.187

snuh13 54.57 100.00 77.28 0.000 99.05 100.00 99.52 0.000 100.00 96.23 98.12 0.038

snuh14 92.30 82.66 87.48 0.173 85.02 85.91 85.47 0.141 73.06 91.12 82.09 0.089

snuh15 81.56 90.86 86.21 0.091 90.72 96.00 93.36 0.040 66.76 93.17 79.96 0.068

snuh16 91.24 99.53 95.39 0.005 84.93 99.02 91.98 0.010 92.03 98.23 95.13 0.018

snuh17 85.90 98.03 91.96 0.020 90.39 99.63 95.01 0.004 93.90 98.77 96.33 0.012

snuh18 94.87 97.97 96.42 0.020 93.98 98.95 96.46 0.010 96.18 98.62 97.40 0.014

snuh19 99.58 98.82 99.20 0.012 71.38 98.48 84.93 0.015 86.85 98.94 92.90 0.011

snuh20 49.86 84.21 67.03 0.158 48.48 77.52 63.00 0.225 64.30 73.89 69.10 0.261

snuh21 94.30 99.69 97.00 0.003 89.75 97.66 93.71 0.023 84.22 97.87 91.04 0.021

snuh22 51.95 78.79 65.37 0.212 50.24 79.09 64.67 0.209 58.80 78.67 68.74 0.213

snuh23 31.73 98.31 65.02 0.017 43.94 98.20 71.07 0.018 65.94 98.32 82.13 0.017

snuh24 61.93 94.16 78.05 0.058 46.86 81.54 64.20 0.185 10.52 85.46 47.99 0.145

Average 79.89
(+13.75)

86.86
(+4.81)

83.37
(+9.28)

0.131
(− 0.049)

80.02
(+14.09)

85.32
(+4.43)

82.67
(+9.26)

0.147
(− 0.044)

78.24
(+10.01)

87.33
(+11.47)

82.78
(+10.73)

0.127
(− 0.114)

Table 6.  The corresponding table presents a comparison and summary of the experimental results obtained 
using pre-trained models on the CHB-MIT dataset. The left and right sides of the table show the results before 
and after the pre-trained model application, respectively. The p-value represents the result of the paired t-test. 
Significant values are in bold.

Sensitivity (%) Specificity (%) Accuracy (%) FPR Sensitivity (%) Specificity (%) Accuracy (%) FPR p-value

10 min 84.00 91.77 87.89 0.082 89.17
(+5.17)

93.35
(+1.58)

91.26
(+3.37)

0.066
(− 0.016) 0.009

15 min 84.51 93.00 88.75 0.070 89.64
(+5.13)

94.15
(+1.15)

91.90
(+3.15)

0.058
(− 0.012) 0.024

30 min 77.05 88.74 82.90 0.113 81.54
(+4.49)

92.71
(+3.97)

87.12
(+4.22)

0.073
(− 0.040) 0.002
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Table 7.  The corresponding table presents a comparison and summary of the experimental results obtained 
using pre-trained models on the SNUH dataset. The left and right sides of the table show the results before 
and after the pre-trained model application, respectively. The p-value represents the result of the paired t-test. 
Significant values are in bold.

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR

Sensitivity 
(%)

Specificity 
(%) Accuracy (%) FPR p-value

10 min 66.14 82.05 74.09 0.180 79.89
(+13.75)

86.86
(+4.81)

83.37
(+9.28)

0.131
(− 0.049) 0.044

15 min 65.93 80.89 73.41 0.191 80.02
(+14.09)

85.32
(+4.43)

82.67
(+9.26)

0.147
(− 0.044) 0.001

30 min 68.23 75.86 72.05 0.241 78.24
(+10.01)

87.33
(+11.47)

82.78
(+10.73)

0.127
(− 0.114) 0.000

Figure 7.  The graph provides the comparison of two models, ResNet-LSTM and Pre-train + ResNet-LSTM. 
The evaluation metrics comprised sensitivity, accuracy, and FPR.

Table 8.  The following table displays the hybrid model’s performance verification results. The left side of the 
table presents outcomes for the pre-trained ResNet, the right side displays the results for the hybrid model that 
integrates both pre-trained ResNet and LSTM. The table is organized with the outcomes for the CHB-MIT 
dataset in the upper section and the SNUH dataset in the lower section. Significant values are in bold.

Dataset Method

Pre-train + ResNet Pre-train + ResNet - LSTM

Sensitivity (%) Specificity (%) Accuracy (%) FPR Sensitivity (%) Specificity (%) Accuracy (%) FPR

10 min 88.94 92.33 90.64 0.076 89.17
(+0.23)

93.35
(+1.02)

91.26
(+0.62)

0.066
(− 0.010)

CHB-MIT 15min 89.14 93.92 91.53 0.06 89.64
(+0.50)

94.15
(+0.23)

91.90
(+0.37)

0.058
(− 0.020)

30 min 81.08 91.67 86.38 0.083 81.54
(+0.46)

92.71
(+1.04)

87.12
(+0.74)

0.073
(− 0.010)

10 min 73.84 85.43 79.64 0.146 79.89
(+6.05)

86.86
(+1.43)

83.37
(+3.73)

0.131
(− 0.015)

SNUH 15 min 75.05 85.22 80.14 0.148 80.02
(+4.97)

85.32
(+0.10)

82.67
(+2.53)

0.147
(− 0.001)

30 min 75.53 84.01 79.77 0.16 78.24
(+2.71)

87.33
(+3.32)

82.78
(+3.01)

0.127
(− 0.033)
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Data availibility
The CHB-MIT data used in this study are public database, which could be accessed and downloaded from https:// 
archi ve. physi onet. org/ physi obank/ datab ase/ chbmit/. The SNUH data used in this study are not publicly available. 
The data may be made available from the corresponding authors upon reasonable request subject to permission 
and approval from the corresponding organizations and institutional review boards.
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