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Physics‑informed neural network 
with transfer learning (TL‑PINN) 
based on domain similarity 
measure for prediction of nuclear 
reactor transients
Konstantinos Prantikos 1,2, Stylianos Chatzidakis 1, Lefteri H. Tsoukalas 1 & 
Alexander Heifetz 2*

Nuclear reactor safety and efficiency can be enhanced through the development of accurate and fast 
methods for prediction of reactor transient (RT) states. Physics informed neural networks (PINNs) 
leverage deep learning methods to provide an alternative approach to RT modeling. Applications of 
PINNs in monitoring of RTs for operator support requires near real‑time model performance. However, 
as with all machine learning models, development of a PINN involves time‑consuming model training. 
Here, we show that a transfer learning (TL‑PINN) approach achieves significant performance gain, as 
measured by reduction of the number of iterations for model training. Using point kinetic equations 
(PKEs) model with six neutron precursor groups, constructed with experimental parameters of 
the Purdue University Reactor One (PUR‑1) research reactor, we generated different RTs with 
experimentally relevant range of variables. The RTs were characterized using Hausdorff and Fréchet 
distance. We have demonstrated that pre‑training TL‑PINN on one RT results in up to two orders of 
magnitude acceleration in prediction of a different RT. The mean error for conventional PINN and 
TL‑PINN models prediction of neutron densities is smaller than 1%. We have developed a correlation 
between TL‑PINN performance acceleration and similarity measure of RTs, which can be used as a 
guide for application of TL‑PINNs.

Physical and engineering dynamical systems can be modeled with either ordinary differential equations (ODEs) 
or partial differential equations (PDEs), which can be solved analytically or numerically using finite difference 
method (FDM) and the finite element method (FEM). However, a new approach for solving differential equa-
tions (DE) has emerged recently that involves the use of deep learning neural networks (DNNs), which can be 
executed on special purpose hardware systems. DNNs were first proposed for solution of differential equations 
in 1998 by  Lagaris1, which was later developed by  Raissi2,3 and  Karniadakis4 into physics-informed neural net-
works (PINNs). PINNs take advantage of the universal approximation feature of neural networks for solution 
of differential equations while offering a mesh- free approach without the domain discretization. Compared to 
traditional numerical solvers, such as FEM and FDM, PINNs utilize automatic  differentiation5,6 (AD) which is 
an optimization technique. AD computes the derivatives using the chain rule for accumulation of values instead 
of relying on derivative symbolic expressions. PINNs integrate physical laws by incorporating governing ODEs/
PDEs and initial conditions (IC) and boundary conditions (BC) into loss functions. This process establishes 
theoretical constraints and biases to supplement measurement data. PINNs can be applied to both supervised 
and unsupervised learning  tasks7–9, as well as to forward and inverse  problems10. PINNs training process requires 
substantially less data than for most deep learning methods because PINN performance is not directly related to 
the volume of training data. PINNs have attracted significant interest from researchers in a wide range of tech-
nical disciplines, including heat  transfer11,12, structural  dynamics13,14, fluid  mechanics15–18, solid  mechanics19,20, 
and nuclear reactor  kinetics21,22.

In this work, we study the application of PINNs to monitoring nuclear reactor performance. Nuclear reactors 
are dynamic systems, in which reactor power can be regulated by the operator through a control mechanism. 

OPEN

1School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA. 2Nuclear Science and 
Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. *email: aheifetz@anl.gov

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43325-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16840  | https://doi.org/10.1038/s41598-023-43325-1

www.nature.com/scientificreports/

Development of advanced computational methods enhances the ability to model nuclear system transients, 
which equips reactor operator with tools to achieve better performance efficiency. The focus of our work is to 
expedite PINN training runtime using RTs modeling operation of Purdue University Reactor Number One 
(PUR-1) small research reactor. By using the system of point kinetic equations (PKEs), one can accurately model 
the operation of a small nuclear reactor, such as PUR-1. The PKEs consist of a system of stiff nonlinear ordinary 
differential equations that model time-dependent neutron flux density and several precursor groups. In this 
paper, to model reactor transients (RTs), we developed PKEs with the coefficients obtained from Monte Carlo 
N-Particle (MCNP) simulations of PUR-1.

Previous efforts utilized PINNs to solve PKEs and neutron diffusion models with promising  results23–25. 
However, these approaches considered only hypothetical transients, not representative of experimental systems. 
For example, some authors solved simplified PKEs models that did not include neutron source for the start-up 
case, or did not consider six groups for the production of delayed neutron precursors. In our prior  work21,22, 
we developed a solution of PKEs using conventional PINNs to model reactor start-up transient. In particular, 
we obtained PINN solution for six-group PKEs with a neutron source, and demonstrated interpolation and 
extrapolation capabilities of PINNs.

Using PINNs for reactor operator support applications is contingent on PINNs ability to execute in near-real 
time. In all machine learning based approaches, including PINNs, time-consuming model training and testing is 
required to achieve low error, i.e. in the range of  10–5 to  10–4, in model prediction. In this paper, we demonstrate 
that a transfer learning (TL-PINN) approach achieves significant performance gain, as measured by reduction 
of the number of iterations for model training. Transfer learning is the process of pre-training a neural network 
on similar data to enhance performance in a new task. Recent studies have investigated coupling of PINNs with 
transfer learning for several select  applications26–29. To the best of our knowledge, the work in this paper is the 
first reported result on development of PINNs with transfer learning for monitoring a nuclear reactor.

In this paper, we developed a set of different RTs through computer simulations of PKEs for different reactivity 
insertion schedules. In all RTs, the range of neutron density values spans approximately nine orders of magnitude 
during time interval of several hundred seconds, which is consistent with the range of experimental values for 
typical PUR-1 performance. The RTs were characterized using Hausdorff distance, partial curve mapping (PCM), 
Fréchet distance, area between two curves, and dynamic time warping distance. First, we train PINN models, 
constructed using PKEs and fully connected feed forward neural network, to predict of neutron density and six 
groups of precursor densities. Next, PINN models pre-trained on one type of transients, are used to train and 
predict different types of RTs. Results show that TL-PINN approach provides order of magnitude performance 
acceleration compared to that of a conventional PINN model. Through numerical experiments, we have devel-
oped a correlation between TL-PINN performance gain and similarity measure of RTs, which can be used as a 
guide for application of TL-PINNs in a practical scenario.

The paper is organized as follows. The “Results” section discusses the details of numerical experiments involv-
ing prediction of different RTs with PINN and TL-PINN. The “Discussion” section summarizes performance 
benchmarking of PINN and TL-PINN. The “Methods” section describes the PKE model, the schematics of 
PUR-1, the architecture of PINNs, and similarity metrics for characterization of RTs.

Results
Five nuclear reactor transients (RT-1, RT-2, RT-3, RT-4, and RT-5) were generated using ODE45 FDM solver 
of PKEs, which were constructed using experimental parameters of PUR-1. All five reactor transients consist 
of 742 s-long transients of neutron density n(t) and delayed neutron precursor density concentration ci(t) for 
six groups. All RTs were generated via a positive reactivity insertion, as discussed in the Methods section. The 
range of values of n(t) in all RTs is consistent with order of magnitude of typical experimental observations of 
PUR-1 operation. Transients of reactivity insertion schedules for five RTs are plotted on the normalized time 
domain t ∈ [0, 1] s in Fig. 1a. Resulted transients of n(t) , scaled in the amplitude in the range of [0, 0.4] n/cm2s 
, are shown in Fig. 1b.

For RT-1, n(t) initially rises with approximately six-fold increase in the amplitude, reaching the maximum 
value at approximately 250 s (when reactivity begins to decrease), followed by decay to steady state. For RT-2, 
where the initial reactivity is larger by 70 pcm than that for RT-1, n(t) increases by approximately a factor of 10, 
reaching the maximum value at approximately 280 s (when reactivity insertion begins to decrease), followed by 
decay to steady state. For RT-3, where the initial reactivity insertion is larger than that for RT-2 by 20 pcm, n(t) 
increases by approximately a factor of 15, reaching the maximum value at approximately 270 s (when reactivity 
insertion begins to decrease), followed by decay to steady state. For RT-4, where the initial reactivity is larger 
than that of RT-3 by 10 pcm, n(t) increases by approximately a factor of 17, reaching the maximum value at 
approximately 250 s (when reactivity insertion begins to decrease), followed by decay to steady state. For RT-5, 
where the initial reactivity insertion is the same as for RT-4, but with later reactivity insertion reduction, n(t) 
increases by approximately a factor of 19, with the maximum value achieved at approximately 300 s (when 
reactivity insertion begins to decrease), followed by decay to steady state.

Using five RTs, we performed 25 numerical experiments, in which the PINN algorithms were developed 
to predict n(t) and ci(t) for six groups. As discussed in the Methods section, PINN was implemented using 
a fully connected feed forward neural network (FFNN). The list of Experiments indicating the training and 
testing domains in given in Tables 1 and 2 in the Discussion section. Examples of PINN performance (without 
transfer learning) are displayed in Fig. 2 for Experiments 1 and 16, which involve predictions of RT-1 and RT-4, 
respectively.

In Experiment 1, PINN algorithm required 95,000 iterations to converge, with training/prediction wall time 
of 62.94 s. Figure 2a display n(t) along with PINN training points and predictions. One can observe that PINN 
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predictions closely follow the transients of n(t) for the entire computational domain. Similar results, not shown 
here, were obtained for other six groups c1(t) through c6(t) . Figure 2c displays the graphs of convergence of 
training and testing losses, and the test metric. The training and testing losses start at the value of 1.63 ×  102 
and decrease to the values of 6.58 ×  10–5 and 8.08 ×  10–5, respectively. The test metric starts at the value of 1 and 
decreases to the value 1.19 ×  10–4. The training and testing losses, and the test metric decrease by factors of  107 
and  106, respectively, which suggests low errors for the PINN algorithm tracking of RT-1. Figure 2e shows the 
residual error for n(t) . The largest outlier error is approximately 6%, while the majority of errors are below 1%.

Figure 1.  (a) Reactivity insertion schedules in normalized time domain ρ1(t) (green), ρ2(t) (purple), ρ3(t) 
(yellow), ρ4(t) (blue) and ρ5(t) (black), (b) Corresponding scaled neutron density n(t) for RT-1 (green), RT-2 
(purple), RT-3 (yellow), RT-4 (blue), and RT-5 (black).

Table 1.  Model structures, reactor transients, computational costs, MSEs, and relative errors. The total 
number of iterations in an operational sequence can be obtained by adding the corresponding number of 
iterations for PINN and TL-PINN models.

Experiment Model Pre-train
Predicted 
transient Iterations Learning rate Time [s] Train loss (MSE) Test loss (MSE)

Test metric 
 (L2)

1 PINN – RT-1 95,000 0.0003 62.94 6.58·10–5 8.08·10–5 1.19·10–4

2 TL-PINN RT-2 RT-1 4000 0.001 2.65 2.36·10–4 2.86·10–4 1.62·10–4

3 TL-PINN RT-3 RT-1 7000 0.001 4.14 1.52·10–4 1.27·10–4 1.66·10–4

4 TL-PINN RT-4 RT-1 9000 0.002 5.06 3.63·10–4 3.72·10–4 1.98·10–4

5 TL-PINN RT-5 RT-1 10,000 0.001 5.48 2.91·10–4 2.83·10–4 2.64·10–4

6 PINN – RT-2 95,000 0.0003 63.37 8.15·10–5 8.81·10–5 2.50·10–4

7 TL-PINN RT-1 RT-2 5000 0.0003 3.08 2.31·10–4 2.06·10–4 4.69·10–4

8 TL-PINN RT-3 RT-2 3000 0.001 2.01 2.37·10–4 2.27·10–4 3.77·10–4

9 TL-PINN RT-4 RT-2 4000 0.001 2.56 2.39·10–4 2.11·10–4 2.65·10–4

10 TL-PINN RT-5 RT-2 6000 0.0003 3.63 1.89·10–4 2.02·10–4 4.36·10–4

11 PINN – RT-3 93,000 0.0003 68.22 8.04·10–5 8.76·10–5 3.22·10–4

12 TL-PINN RT-1 RT-3 12,000 0.002 6.62 2.57·10–4 2.55·10–4 4.24·10–4

13 TL-PINN RT-2 RT-3 9000 0.0001 5.37 3.96·10–4 4.42·10–4 4.52·10–4

14 TL-PINN RT-4 RT-3 3000 0.0006 2.03 6.45·10–5 7.45·10–5 2.74·10–4

15 TL-PINN RT-5 RT-3 3000 0.001 2.06 4.89·10–4 6.01·10–4 2.82·10–4

16 PINN – RT-4 95,000 0.0003 68.36 5.47·10–5 8.89·10–5 2.76·10–4

17 TL-PINN RT-1 RT-4 18,000 0.001 9.83 2.05·10–4 2.07·10–4 4.74·10–4

18 TL-PINN RT-2 RT-4 13,000 0.0001 7.48 3.55·10–4 4.85·10–4 5.11·10–4

19 TL-PINN RT-3 RT-4 0 – 0.19 8.04·10–5 8.76·10–5 3.22·10–4

20 TL-PINN RT-5 RT-4 6000 0.0003 3.69 3.39·10–4 4.32·10–4 2.94·10–4

21 PINN – RT-5 105,000 0.0003 72.63 1.04·10–4 1.11·10–4 4.64·10–4

22 TL-PINN RT-1 RT-5 14,000 0.0003 7.84 1.29·10–4 1.40·10–4 4.86·10–4

23 TL-PINN RT-2 RT-5 15,000 0.0001 8.53 2.06·10–4 2.49·10–4 4.99·10–4

24 TL-PINN RT-3 RT-5 15,000 0.0001 8.38 5.84·10–5 6.04·10–5 5.01·10–4

25 TL-PINN RT-4 RT-5 7000 0.0003 4.03 8.21·10–5 7.95·10–5 4.12·10–4
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In Experiment 16, PINN algorithm required 95,000 iterations to converge (same as for Experiment 1), with 
the training/prediction wall time of 68.36 s (slightly larger than for Experiment 1). The results in Fig. 2b display 
n(t) transient along with PINN training points and predictions. One can observe that PINN predictions closely 
follow n(t) for the entire computational domain. Similar results, not shown here, were obtained for other six 
groups c1(t) through c6(t) . Figure 2d displays evolution of losses during 95,000 iterations. The training and test-
ing losses start at the value of 1.85 ×  102, and decrease to the values of 5.47 ×  10–5 and 8.89 ×  10–5, respectively. 
The test metric starts at the value of 1 and decreases to the value of 2.67 ×  10–4. The training and testing losses, 
and the test metric decrease by a factor of  107 and  106, respectively, which suggests low performance errors of 
the PINN algorithm. Figure 2f shows the residual error for n(t) . The majority of the errors is below 1%. The 
largest error appears to be an outlier, with the value of slightly above 6%, which occurs for prediction at the start 
of the transient.

Examples of TL-PINN performance for Experiment 4 where RT-1 was predicted with the TL-PINN model 
pre-trained on RT-4, and Experiment 17 where RT-4 was predicted with TL-PINN model pre-trained on RT-1, 
are displayed in Fig. 3. In Experiment 4, we obtained similar results for predictions of n(t) as those shown in 
Fig. 2a. In contrast to Experiment 1, the TL-PINN algorithm required 9000 iterations to converge in training on 
RT-1, with the training/prediction wall time of 5.06 s. Figure 3a displays the history of loss for up to 9000 itera-
tions. The train and test loss have initial values of 3.68 and decrease to 1.65 ×  10–4 and 1.64 ×  10–4, respectively. 
The test metric starts at the value of 1.29 ×  10–1 and decreases to 2.25 ×  10–4. The train and test loss, and test 
metric decrease by factor of  104 to  103, respectively, which gives an expectation of low performance errors of 
PINN algorithm. Figure 3c shows the residual percentage error plot of the neutron density concentration n(t) . 
The largest outlier error is approximately 8.5%, but the majority of the errors are below 1%.

In Experiment 17, we obtained similar results for predictions of n(t) and ci(t) as those shown in Fig. 2a and b. 
In contrast to Experiment 16, the TL-PINN algorithm required 18,000 iterations to converge in training on RT-4, 
with the training/prediction wall time of 9.83 s. Figure 3b displays the history of loss after 18,000 iterations. The 
train and test loss start at the value of 5.35 ×  10–1 and decreases to 2.05 ×  10–4 and 2.07 ×  10–4, respectively. The 
test metric starts at 1.14 ×  10–1 and decreases to 4.74 ×  10–4. The train and test losses, and test metric decrease 
by a factor of  103, which gives an expectation of low errors in PINN prediction. Figure 3d displays the residual 
percentage error plot of n(t) , randomly sampled at 127 points. The largest outlier error of approximately 5.5%, 
but the majority of errors are below 1%.

Table 2.  Mean residual errors of neutron and precursors density for PINN and TL-PINN predictions of RT-1, 
RT-2, RT-3, RT-4, and RT-5.

Experiment Model Pre-train Predicted transient

Mean residual error [%]

n c1 c2 c3 c4 c5 c6

1 PINN – RT-1 0.3303 0.0029 0.0054 0.0166 0.0418 0.0887 0.5519

2 TL-PINN RT-2 RT-1 0.4908 0.0049 0.0066 0.0270 0.0512 0.2166 0.3638

3 TL-PINN RT-3 RT-1 0.4097 0.0035 0.0077 0.0210 0.0443 0.3189 0.5575

4 TL-PINN RT-4 RT-1 0.8729 0.0051 0.0082 0.0336 0.6106 0.1432 2.0064

5 TL-PINN RT-5 RT-1 0.7955 0.0072 0.0098 0.0272 0.0826 0.3615 2.1812

6 PINN – RT-2 0.4371 0.0045 0.0113 0.0360 0.0778 0.1577 0.3585

7 TL-PINN RT-1 RT-2 0.6549 0.0102 0.0231 0.0665 0.1311 0.2545 0.7020

8 TL-PINN RT-3 RT-2 0.5835 0.0073 0.0199 0.0602 0.1139 0.1735 0.5727

9 TL-PINN RT-4 RT-2 0.5477 0.0075 0.0113 0.0328 0.0809 0.1965 1.0983

10 TL-PINN RT-5 RT-2 0.8738 0.0219 0.0444 0.1263 0.2372 0.4429 0.4070

11 PINN – RT-3 0.5498 0.0071 0.0159 0.0445 0.0895 0.1673 0.3081

12 TL-PINN RT-1 RT-3 0.6625 0.0091 0.0186 0.0577 0.1151 0.2337 1.4637

13 TL-PINN RT-2 RT-3 0.5490 0.0132 0.0234 0.0641 0.1161 0.1982 0.8151

14 TL-PINN RT-4 RT-3 0.5230 0.0057 0.0134 0.0413 0.0810 0.1613 0.3776

15 TL-PINN RT-5 RT-3 0.5715 0.0077 0.1301 0.0418 0.0818 0.1839 0.3742

16 PINN – RT-4 0.5211 0.0061 0.0134 0.0378 0.0807 0.1596 0.2976

17 TL-PINN RT-1 RT-4 0.6739 0.0078 0.0229 0.0659 0.1239 0.2336 0.9247

18 TL-PINN RT-2 RT-4 0.5927 0.0160 0.0273 0.0724 0.1269 0.2177 0.7603

19 TL-PINN RT-3 RT-4 0.5498 0.0071 0.0159 0.0446 0.0895 0.1673 0.3081

20 TL-PINN RT-5 RT-4 0.5076 0.0080 0.0141 0.0391 0.0845 0.1614 0.4719

21 PINN – RT-5 0.6049 0.0094 0.0229 0.0648 0.1146 0.2197 0.4187

22 TL-PINN RT-1 RT-5 0.6898 0.0010 0.0244 0.0637 0.1195 0.2219 0.4050

23 TL-PINN RT-2 RT-5 0.5569 0.0093 0.0243 0.0661 0.1239 0.2361 0.5579

24 TL-PINN RT-3 RT-5 0.6715 0.1179 0.0252 0.0699 0.1232 0.2186 0.4777

25 TL-PINN RT-4 RT-5 0.5722 0.0079 0.0203 0.0568 0.1058 0.1967 0.5602
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Discussion
In this paper, we have demonstrated that TL-PINN, allows for significant acceleration of model training and 
testing. Five different RTs were generated via ODE45 solution of PKEs with coefficients taken from PUR-1. 
The transients, RT-1, RT-2, RT-3, RT-4, and RT-5, consist of reactor response to positive reactivity insertion. 
Summary of results of numerical experiments is presented in Table 1. The hypothetical sequence of operations 
involves two reactor transients. The first transient is predicted with PINN, and the second transient is predicted 
with TL-PINN. Acceleration of performance is achieved when using TL-PINN to predict the second transient 
instead of a PINN. Numerical experiments 1, 6, 11, 16, and 21 present the results for the first transient prediction 
with PINN, which provide the baseline performance metrics for TL-PINN performance evaluation. Numerical 
experiments in which the second transient is predicted with TL-PINN are grouped by the predicted RT. The 5th 
column of Table 1 lists the number of iterations for convergence. The learning rate for PINN models to reach 

Figure 2.  (a) Experiment 1: RT-1 n(t) along with PINN training points and predictions. (b) Experiment 16: 
RT-4 n(t) along with PINN training points and predictions. (c) Experiment 1: History of the training (blue) and 
testing (orange) losses, and the test metric (green) for PINN. (d) Experiment 16: History of the training (blue) 
and testing (orange) loss, and the test metric (green) for PINN algorithm. (e) Experiment 1: Residual error of 
n(t) at randomly sampled 127 points. (f) Experiment 16: Residual error of n(t) at randomly sampled 127 points.
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convergence was determined to be 0.0003, while the learning rate for TL-PINN models in the 6th column of 
Table 1 ranges from 0.0001 to 0.002. Columns 7, 8, 9, and 10 list the values of model runtimes (wall clock), train 
loss calculated as MSE, test loss calculated as MSE, and test metric calculated as  L2, respectively.

According to the results in Table 1, the pre-trained TL-PINN models require fewer iterations for convergence 
compared to conventional PINN models. In Experiments 2 to 5, TL-PINN models predicting RT-1 converge 
after 4000, 7000, 9000, and 10,000 iterations, respectively, as compared to 95,000 iterations for a PINN model in 
Experiment 1. This represents a nearly tenfold to 24-fold acceleration in prediction of RT-1 if another transient 
was previously learned. The training/testing time for RT-1 prediction decreases from approximately 63 s with 
PINN to approximately 2–6 s with TL-PINN, which places TL-PINN performance in the range of near real-time 
operation.

In Experiments 7 to 10, TL-PINN models predicting RT-2 converge after 3000, 4000, 5000, and 6000 itera-
tions, respectively, as compared to 95,000 iterations for a PINN model in Experiment 6. This represents a nearly 
16-fold to 32-fold acceleration for prediction of RT-2 if another transient was previously learned. The training/
testing time for prediction of RT-2 decreases from approximately 64 s with PINN to approximately 2–4 s with 
TL-PINN, which places TL-PINN performance in the range of near real-time operation.

Similar performance acceleration is achieved for TL-PINN models predicting RT-3, RT-4, and RT-5. For 
almost all RTs, the train losses, test losses, and test metrics are approximately an order of magnitude smaller for 
conventional PINNs relative to TL-PINNs, mainly due to the different convergence criteria. Experiments 14, 19, 
22, 23, 24, and 25 that utilize TL-PINN models, achieve similar or lower train losses, test losses, and test metrics 
compared to conventional PINN models.

As an example, we consider an operational sequence consisting of the transient RT-1 followed by the transient 
RT-2. Using PINNs only (Experiments #1 and #6 in Table 1) would require 95,000 iterations for predicting each 
transient, for a total of 190,000 iterations in this operational scenario. On the other hand, using TL-PINN for 
RT-2 pre-trained on RT-1 (Experiment #7 in Table 1) would involve 5000 iterations, reducing the total number 
of iterations in this operational scenario to 100,000.

Table 2 lists the mean residual errors for PINN and TL-PINN predictions of 25 neutron and 150 neutron 
precursor densities for RT-1, RT-2, RT-3, RT-4, and RT-5. For all five RTs, the mean residual errors for PINN 
and TL-PINN predictions are of the same order of magnitude for respective variables.

Figure 3.  (a) Experiment 4: History of the loss function of TL-PINN for training (blue) and testing (orange) 
loss, and the test metric (green). (b) Experiment 17: History of the loss function of TL-PINN for training 
(blue) and testing (orange) loss, and test metric (green). (c) Experiment 4: Residual error plot of n(t) randomly 
sampled at 127 points. (d) Experiment 17: Residual error plot of n(t) at randomly sampled 127 points.
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The general trend is that for all cases, the average for n(t) is slightly larger for predictions with TL-PINN. 
However, the average errors in prediction of n(t) for all 25 experiments in this study are below 1%, which is 
sufficient accuracy for reactor monitoring. The average errors in prediction of n (t) with PINN are in the range 
0.33 to 0.61%, and the errors in predictions of n(t) with TL-PINN are in the range 0.41 to 0.87%. The errors for 
146 neutron precursor densities range from 0.0029 to 0.92%. The exceptions are outliers for TL-PINN predic-
tions of four neutron precursor densities c6 with mean errors of 1.09%, 1.46%, 2%, and 2.18%. Unlike neutron 
density, the precursor density is not experimentally measurable. The average residual errors in predictions of 
ci(t) are generally smaller than those of n(t) . The general trend for all five RTs is that the errors for ci(t) are larger 
for predictions with TL-PINNs compared to those of conventional PINNs.

To elucidate the criteria for performance of transfer learning for different domains, we calculated the Haus-
dorff distance similarity measure between different RTs. Table 3 lists the values of Hausdorff distance similarity 
measure between scaled RTs, as shown in Fig. 1b. Hausdorff distance is symmetric, with zero value indicating 
maximum similarity between two curves. According to the values of Hausdorff distance, RT-1 is most similar 
to RT-2, with similarity progressively decreasing RT-3 and RT-4, and RT-5. For RT-2, the order of transients in 
decreasing similarity is RT-3, RT-1, RT-4 and RT-5. RT-3 is most similar with RT-4. RT-5 is most similar to RT-3, 
but shows the largest Hausdorff distance value among all RTs.

Figure 4a shows the number of iterations for TL-PINNs’ convergence as a function of the Hausdorff distance. 
The data points were divided into two groups to highlight the following trend. Group 1 includes the results where 
TL-PINN was pre-trained on RTs with lower respective amplitudes than those of the predicted RTs. Group 2 
includes the cases where TL-PINN algorithms were pre-trained on RTs with larger respective amplitudes than 
those of the predicted RTs. TL-PINNs of Group 1 needed more iterations to converge compared to TL-PINNs of 
Group 2 for all experiments except experiment 19. In addition, the statistical measure R2 of the linear regression 
was calculated. The best linear fit to data in Fig. 4a has the value of R2 = 0.41 . The relation between Hausdorff 
distance and transfer learning performance does not appear to be linear, but the general trend is that smaller 
Hausdorff distances between RTs correlates with better transfer learning performance.

To further demonstrate the trends, the data for Groups 1 and 2 in Fig. 4a was decomposed into Fig. 4b and 
c, respectively. Figure 4b indicates that as Hausdorff distance value becomes larger, the number of iterations 
needed for TL-PINN algorithms to converge fluctuates to larger values. More specifically, the relation between 
Hausdorff distance and transfer learning performance does not seem to be linear, as the iterations needed for 
convergence gradually increase but decline in four cases to lower values when the Hausdorff distance is equal to 
0.105, 0.161, 0.202, and 0.272. However, a pattern shows that usually when Hausdorff distance is shorter, better 
transfer learning performance is achieved. The plotted line shows the best linear fit to data and has the value of 
R2 = 0.57 . Figure 4c shows that as Hausdorff distance value becomes larger, the number of iterations needed for 
TL-PINN algorithms to converge increases or remain the same for every experiment tested, except experiment 
15. The relation between Hausdorff distance and transfer learning performance appears to be linear. The strong 
relation is captured by the plotted best linear fit line that has the value of R2 = 0.87.

In the numerical experiments conducted in this study it was found that the best TL-PINN performance was 
obtained when using the smallest Hausdorff distance pre-trained on RTs with smaller maximum amplitude than 
the predicted RTs. According to these results, in a real-world scenario, the reactor operator should be able to 
identify the most suitable pre trained TL-PINN algorithm for a target RT, using the Hausdorff distance metric 
and the maximum amplitude of target RT.

Furthermore, TL-PINN algorithms presented low computational time (ranging from 0.2 to 10 s) that can offer 
near real-time operation using conventional hardware. Real-world nuclear applications that leverage higher-level 
hardware, can potentially minimize the TL-PINN runtime from seconds to milliseconds, achieving real-time 
prediction. In the future work, we will investigate prediction of experimental PUR-1 transients using TL-PINN 
model pre-trained using computer simulations of different transients. We anticipate that the error in TL-PINN 
predictions will depend on the degree of agreement between the DE model and the experimental observations.

Methods
Point kinetics equations (PKEs)
The PKEs consist of a system of stiff nonlinear coupled differential equations, which model the kinetics of reactor 
variables, including neutron density concentration, the delayed neutron precursor density concentration for six 
groups, and reactivity. PKEs are the reduced order model of the Boltzmann neutron transport equation and the 
Bateman equation describing 3D spatial and temporal kinetics of a nuclear reactor. The PKEs are derived under 
the approximation that both the shape of the neutron flux and the neutron density distribution are ignored, thus 
assuming that the reactor acts as a  point30. This approximation is generally valid for small reactors under the 

Table 3.  Hausdorff distance similarity measure between RT-1, RT-2, RT-3, RT-4, and RT-5.

RT RT-1 RT-2 RT-3 RT-4 RT-5

RT-1 0 0.105 0.202 0.232 0.272

RT-2 0.105 0 0.097 0.127 0.174

RT-3 0.202 0.097 0 0.038 0.138

RT-4 0.232 0.127 0.038 0 0.161

RT-5 0.272 0.174 0.138 0.161 0
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condition of relatively small reactivity insertion. Solution of PKEs provides information of the nuclear reactor 
power level and the power fluctuation during reactivity transient. The PKEs for i groups of delayed neutrons 
are given  as30:

where, n represents the neutron density concentration, ci is the delayed neutron precursor density concentration 
for group i , ρ is the reactivity feedback which is function of time t  , βi is the delayed neutron fraction for each 
group, β =

∑
βi is the sum of the delayed neutron fractions. In addition, � is the mean neutron lifetime in the 

reactor core, and �i is the mean neutron precursor lifetime for each group i . At time t = 0 , the reactor is in steady 
state, and we use the following initial  conditions30:

where the values of βi , �i , and � are suggested by the experimental data. In most systems, βi/(�i ·�) ≫ 1, and 
therefore under steady state conditions we obtain ci ≫ n30. Because of stiffness of the ODE system, numerical 
solution of the PKEs requires using relatively small time steps in the computational domain to achieve accurate 
solution.

(1)
dn(t)

dt
=

ρ(t)− β

�
· n(t)+

∑

i

�i · ci(t),

(2)
dci(t)

dt
=

βi

�
· n(t)− �i · ci(t),

(3)n(0) = n0,

(4)ci(0) =
βi

�ι ·�
· n0,

Figure 4.  (a) Number of iterations for convergence vs. Hausdorff distance. Group 1: TL-PINNs were pre-
trained on RTs with lower respective amplitudes than those of the predicted RTs. Group 2: TL-PINNs were 
pre-trained on RTs with larger respective amplitudes compared to the predicted RTs. The linear regression fit is 
R
2
= 0.41 . (b) Number of iterations for convergence vs. Hausdorff distance for the TL-PINN for Group 1. The 

best linear fit has R2
= 0.57 . (c) Number of iterations for convergence vs. Hausdorff distance for Group 2. The 

best linear fit has R2
= 0.87.
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Reactivity ρ defined as the deviation of an effective multiplication factor keff  from unity, is a measure of the 
state of a reactor relative to critical  state30. When ρ < 0 the reactor is subcritical, when ρ = 0 the reactor is 
critical, and when ρ > 0 the reactor is supercritical. Reactivity is a dimensionless number, but it is commonly 
expressed in per cent mile or pcm units.

In this work, we generate five RTs (RT-1, RT-2, RT-3, RT-4, and RT-5), which are responses to five different 
reactivity insertion schedules. All reactivity curves start with positive values, with the range of initial values 
between 500 and 600 pcm. The reactivity curves remain constant for approximately the first 200 s, gradually 
decreases to zero value between 200 and 500 s, and remains at zero until the end of the transient at 742 s. In 
developing reactivity insertion schedules, the objective was to obtain five different neutron density transients 
with values in the range of typical experimental observations for PUR-1 operation. Because Python library 
computations are performed on normalized time domain t ∈ [0, 1] s, as discussed in the Methods section, the 
reactivity values were scaled to be two orders of magnitude higher than typical values of PUR-1. Table 4 lists 
the reactivity schedule equations in the normalized time domain, and neutron density initial conditions for the 
five reactor transients.

Purdue university reactor number one (PUR‑1)
PUR-1 is an all-digital 10kWth material test reactor (MTR) – pool type, with flat plate type fuel by BWXT 
 Technologies31. Fuel material consists of high essay low enriched uranium (19.75% 235U) in the form of  U3Si2 – Al. 
There are 16 total assemblies, where each standard assembly has up to 14 fuel elements. The core is submerged 
into a 5.2 m deep water pool, where water is used for both neutron moderation and fuel heat removal. Average 
thermal neutron flux in the fuel region is 1.2 ×  1010 n/cm2·s, with the maximum thermal flux reaching the value 
of 2.1 ×  1011 n/cm2·s. The reactor power is controlled with three control rods. Two of them are borated stainless 
steel shim safety rods (SS1 and SS2), and the third one is 304 stainless steel regulating rod (RR). Figure 5 shows a 
schematic drawing of PUR-1 and an inset panel with the relative locations of the fuel elements and control rods. 
In principle, correlations can be established between reactivity and position of control  rods21.

The PKEs with six groups of delayed neutron precursors were constructed using coefficients obtained from 
MCNP simulations of PUR-1. The values of βi and �i are listed in Table 5, while � = 1.2 · 1010s.

Physics‑informed neural network (PINN) architecture
The architecture of PINN algorithm developed in this paper is shown in Fig. 6. The PINN is consisted of the 
surrogate and the residual network. The input of the surrogate network is a point in the computational time 
domain, also called the collocation point. A feed-forward neural network (FFNN) delivers the PKEs approxi-
mated solution, that is the state vector [n(t), c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)]T . The weights of the surrogate 

Table 4.  Reactivity schedule equations in the normalized time domain and neutron density initial values.

Transient Reactivity schedule [pcm] Neutron density initial values [n/cm2·s]

RT-1 ρ1(t) = 500e−20(t−0.49)/
(
1+ e

−20(t−0.49)
)

n1(0) = 0.2 · 105

RT-2 ρ2(t) = 570e−14(t−0.55)/
(
1+ e

−14(t−0.55)
)

n2(0) = 0.2 · 106

RT-3 ρ3(t) = 590e−14(t−0.51)/
(
1+ e

−20(t−0.51)
)

n3(0) = 0.2 · 106

RT-4 ρ4(t) = 600e−20(t−0.49)/
(
1+ e

−20(t−0.49)
)

n4(0) = 0.2 · 107

RT-5 ρ5(t) = 600e−14(t−0.59)/
(
1+ e

−14(t−0.59)
)

n5(0) = 0.2 · 108

Figure 5.  Schematics of PUR-1.
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network are trainable. The input to the residual network is the output of the surrogate network. The residual 
network includes the governing PKEs and the ICs, and calculates the residual that is used as a loss function to 
optimize the surrogate network. The loss function L is defined by the sum of the mean squared residual of the 
governing equations and initial conditions. The total loss is written as:

where wf  and wi are the scalar weights for the ODEs and the ICs, respectively. The scalar weights keep the loss 
terms balanced at the start of the training, so each term contributes equally. The FFNN’s weights and biases are 
the parameter θ. The variables Tf  and Ti are the training points inside the domain and at the IC’s. These sets of 
points are referred to as the residual points. The terms Lf  and Li are the mean squared error (MSE) of the residu-
als for the ODEs and ICs, respectively:

where û is the approximate numerical solution obtained from the surrogate network. The derivatives in the loss 
function are calculated using automatic differentiation.

In this work, PINN implementation is based on FFNN, consisting of four-layers with hyperbolic tangent 
(tanh) as the activation function. The same activation function is applied to all layers, except for the output layer, 
which does not use any activation function. The FFNN input layer comprises of a single input variable, which is a 
point in the time domain. The hidden layers consist of 32 neurons. The output layer produces the final prediction 
of seven quantities, which are the neutron density concentration n and the delayed neutron precursor’s density 
concentration ci for six groups. The Xavier Glorot method is used to initialize the weights of the FFNN, which 
is the most suitable initialization method when tanh is the activation  function32. The Adam optimizer with a 
learning rate of � = 0.0003 is used to minimize the loss function. The training data set is obtained using the 
ODE45 solver, and consists of 32 collocation points. The training data are divided into 30 training points inside 

(5)L(θ;T) = wfLf

(
θ;Tf

)
+ wiLi(θ;Ti),

(6)Lf

(
θ;Tf

)
=

1∣∣Tf

∣∣
∑

xǫTf

∥∥∥∥f
(
x;

dû

dx

)∥∥∥∥
2

2

,

(7)Li(θ;Ti) =
1

|Ti|

∑

xǫTi

�I
(
û, x

)
�
2

2
,

Table 5.  Parameters of PUR-1 for the PKE model development.

Variable Value [s]

Term 1 2 3 4 5 6

βi 0.000213 0.001413 0.001264 0.002548 0.000742 0.000271

�i 0.01244 0.0305 0.1114 0.3013 1.1361 3.013

Figure 6.  Schematic of PINN for solving the PKEs with ICs. The input to surrogate network is time t, and 
the output is the solution vector [n(t), c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)]T . The residual network tests if the 
solution vector satisfies the PKE governing equations and the ICs.
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the solution domain, and two training points at the ICs. The collocation points are distributed according to the 
Sobol sequence. The testing data consists of randomly distributed 127 points. The residuals are evaluated in the 
computational domain of the reactor transient time t ∈ [0, 742]s . Implementation of PINN  DeepXDE33 library 
utilized in this paper requires feature scaling, which is a common procedure in machine learning. Therefore, 
the time domain was normalized to be in the range [0, 1], and the neutron density concentration n(t) was scaled 
to the range [0, 1]. Delayed neutron precursors density concentrations ci(t) were scaled correspondingly. After 
training, PINN predictions were scaled up to the original “physical” range of values.

Transfer learning with PINNs was performed by storing the matrix of coefficients from training/testing on 
one transient, and then using these values as initial guesses for training/testing on another transient. Table 6 
describes the sequence of steps of PINN and TL-PINN algorithm.

All calculations were performed on Windows PC with AMD Ryzen 7 5800H with Radeon Graphics, 8 cores 
processor, and 32 GB of RAM. The training and testing losses are calculated as the mean squared error (MSE) for 
n(t) and six ci(t) . We chose to calculate the test metric as L2 relative error of n(t) because neutron density can be 
measured experimentally. The data for test metric consists of randomly distributed 127 points. The convergence 
criterion for conventional PINNs and TL-PINNs was set as follows. PINN algorithms were trained until training 
loss, testing loss, and test metric reached simultaneously the range of  10–5,  10–5, and 5·10–4 respectively, and up 
to maximum of 105,000 iterations. TL-PINN algorithms were trained until training loss, testing loss, and test 
metric reached simultaneously the range of  10–4,  10–4, and 5·10–4 respectively. This criterion ensured that the 
mean error of n(t) stays below 1%. Conventional PINNs convergence criterion is stricter than TL-PINNs because 
pre training in more accurate solutions facilitates faster convergence of TL-PINN algorithms.

Similarity measures
To elucidate the criteria for performance of transfer learning for different domains, this study investigated sev-
eral similarity measures between reactor transient curves. The metrics include partial curve mapping (PCM), 
Fréchet distance, area between two curves, dynamic time warping distance, and Hausdorff distance. Different 
similarity metrics indicated to the same relationship between reactor transient curves, with Fréchet distances 
numerically equal to Hausdorff distance for all transients. Therefore, in this paper we limit the presentation to 
Hausdorff  distance34 similarity measure.

The Hausdorff distance is a measure of dissimilarity between two point sets. The directed Hausdorff distance 
Ȟ between two point sets A and B is not symmetric, and gives the maximum of distances between each point 
x ∈ A and its nearest neighbor y ∈ B . The directed Hausdorff distance is given as:

where ‖x, y‖ is the Euclidean distance function. The Hausdorff distance H is the maximum of the directed Haus-
dorff distances in both directions, and thus it is symmetric. The Hausdorff distance is given as:

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

(8)Ȟ(A,B) = maxx∈A
{
miny∈B{�x, y�}

}
,

(9)H(A,B) = max
{
Ȟ(A,B), Ȟ(B,A)

}
.

Table 6.  Sequence of steps in PINN and TL-PINN algorithms.

Step # PINN procedure

Step 1 Specify the computational domain

Step 2 Specify the system of ODEs

Step 3 Specify the training data, their distribution, and volume

Step 4 Construct a FFNN

Step 5 Define a model by combining the system of ODEs and the FFNN

Step 6 Set the optimization hyperparameters

Step 7 Train the network using specified initialization

Step 8 Predict the ODEs solution

Step 9 Save the model

– TL-PINN procedure

Step 10 Repeat steps 1–6

Step 11 Restore model from Step 9

Step 12 Train the network using restored model’s initialization

Step 13 Predict the ODEs solution
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The codes used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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