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An artificial intelligence 
model for the radiographic 
diagnosis of osteoarthritis 
of the temporomandibular joint
Wael M. Talaat 1,2,3,4*, Shishir Shetty 1,2, Saad Al Bayatti 1, Sameh Talaat 5,6, Louloua Mourad 7, 
Sunaina Shetty 8 & Ahmed Kaboudan 9,10,11

The interpretation of the signs of Temporomandibular joint (TMJ) osteoarthritis on cone-beam 
computed tomography (CBCT) is highly subjective that hinders the diagnostic process. The objectives 
of this study were to develop and test the performance of an artificial intelligence (AI) model for the 
diagnosis of TMJ osteoarthritis from CBCT. A total of 2737 CBCT images from 943 patients were used 
for the training and validation of the AI model. The model was based on a single convolutional network 
while object detection was achieved using a single regression model. Two experienced evaluators 
performed a Diagnostic Criteria for Temporomandibular Disorders (DC/TMD)-based assessment 
to generate a separate model-testing set of 350 images in which the concluded diagnosis was 
considered the golden reference. The diagnostic performance of the model was then compared to an 
experienced oral radiologist. The AI diagnosis showed statistically higher agreement with the golden 
reference compared to the radiologist. Cohen’s kappa showed statistically significant differences in 
the agreement between the AI and the radiologist with the golden reference for the diagnosis of all 
signs collectively (P = 0.0079) and for subcortical cysts (P = 0.0214). AI is expected to eliminate the 
subjectivity associated with the human interpretation and expedite the diagnostic process of TMJ 
osteoarthritis.

Osteoarthritis is a chronic inflammatory disease that has serious consequences affecting the quality of life. This 
common disease leads to pain and dysfunction that negatively impact the quality of sleep and the ability to work1. 
The consistently increasing prevalence of osteoarthritis is a major cause of concern to the health authorities 
especially considering the complexities and the high cost of treatment. Osteoarthritis was ranked as the second 
cause of the “increase in years lived with disability” following diabetes2,3. The etiology of TMJ osteoarthritis is 
complex and multifactorial, and the disorder is characterized by a progressive cartilage and bone degradation 
and remodeling4. The inflammatory arthritic condition has been attributed to the increased level of inflamma-
tory cytokines that is regulated by monocyte chemoattraction and the decreased biomechanical properties of 
the disc leading to loss of the adaptive capacity of the TMJ5. It has been shown that the escalated turnover of 
the subchondral bone accounts for the initiation and progression of osteoarthritis. The increased turnover has 
been attributed to the increased expression of the genes responsible for the osteoclastic activity and increased 
osteoclastogenesis6.

The management of temporomandibular disorders (TMD) often suffers from the inconsistency and controver-
sies that surrounds the diagnostic and treatment protocols and the lack of evidence related to the contemporary 
management principles. This often results in delays in the diagnosis and progression of the disorders to more 
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advanced forms7,8. In addition, TMD-related referred pain obscures the origin of TMD pain, as the pain spreads 
to other locations that are distant from the joint and the related muscles which aggravates the complexity of the 
diagnostic procedure9. In spite of the remarkable value of the early diagnosis of TMD in stopping the progression 
to the severe forms of these disorders, however the process is hindered by the mentioned complexities as well as 
the subjectivity of the diagnosis that was evident in several studies3,10–12.

A reliable diagnostic protocol for TMD was published in 2009 as the Research Diagnostic Criteria for Tem-
poromandibular Disorders (RDC/TMD)13, and was updated in 2014 as the Diagnostic Criteria for Temporo-
mandibular Disorders (DC/TMD)14. The diagnostic criteria integrates diagnostic decision trees that rely on the 
clinical and radiographic diagnostic criteria (Axis-I) and the psychosocial condition and pain-related disabilities 
(Axis-II). The reliability of the DC/TMD for the diagnoses of the different TMD classes has been reported as 
excellent15. The DC/TMD defines the degenerative joint disease as a disorder that involves degeneration of the 
articular tissues combined with osseous changes on the condyle and the articular eminence that are detected 
on computed tomography (CT) and CBCT in the form of subchondral (subcortical) cyst, erosions, sclerosis, 
flattening and osteophyte16. The interpretation of these signs is highly subjective and there is an urgent need to 
eliminate this subjectivity to enhance the diagnosis of TMJ osteoarthritis17,18.

Deep learning is a category of AI that has been successfully utilized to facilitate diagnosis and enhance deci-
sion making in clinical dentistry. The dominant AI model that is used in medical imaging is the neural network 
applications. When applied to radiomic data, deep learning can identify the complex patterns within the dataset 
and thus can lead to the objective diagnosis of TMJ osteoarthritis. The AI-supported clinical decision making 
in the field of TMD may significantly reduce the percentage of cases that progress to the complicated forms of 
TMD by allowing early diagnosis19. This study aimed to develop and test the performance of an AI model based 
on neural networks for the diagnosis of TMJ osteoarthritis from CBCT. We hypothesized that there is a high 
degree of conformity between the expert clinicians and AI in diagnosing TMJ osteoarthritis.

Methodology
The study was approved ethically by the Institutional Review Board at the University of Sharjah (REC-20-09-
21-01). The ethical principles for medical research involving human subjects as mentioned in the Declaration of 
Helsinki and the “Strengthening the Reporting of Observational studies in Epidemiology” (STROBE)20 guidelines 
were applied in this study. Patients aged 18–80 years who visited the Oral Diagnosis and Urgent Care Clinic at 
the University Dental Hospital Sharjah from November 2020 to November 2022 were enrolled in the study and 
divided into two groups; the TMJ Osteoarthritis and Control groups, respectively. TMJ clinical examination 
was done for all subjects as part of the initial screening. All subjects were informed about the aim of the study 
and were requested to sign consent forms before participation. The inclusion criteria for the TMJ Osteoarthritis 
group involved all the signs and symptoms of osteoarthritis as crepitus, joint pain in the last 30 days, deviation 
on mouth opening and limitation in opening. Patients were evaluated using the DC/TMD Axis-I assessment 
instruments as pain screener21, symptom questionnaire22 and demographic questionnaire22 and Axis-II assess-
ment instruments as pain drawings, Graded Chronic Pain Scale23, disability score21 and Jaw Functional Limitation 
Scale21. Only patients with acute or serious dysfunction symptoms according to Helkimo’s clinical dysfunction 
index (Di)24 were entitled for CBCT exposure. All subjects in the Control group were assessed for the absence of 
all the clinical and radiographic signs and symptoms of TMD and were recruited when they had CBCT records 
for reasons other than TMD. Pregnant women, patients who had past TMD treatment and patients who had 
systemic conditions that could cause joint deformity were excluded. The initial screening procedures were done 
by a clinical tutor and the DC/TMD assessment was done by an oral and maxillofacial surgeon (W.T.) with more 
than 20 years’ experience in the management of TMD and an oral radiologist (S.A.) with more than 25 years’ 
experience and both were blinded to the results of the initial screening. The evaluators were calibrated prior to 
the start of the study by examining the same 20 patients independently following the DC/TMD protocol. The 
CBCT examinations were conducted using GALILEOS 3-D X-ray systems (SIRONA Dental Systems, York, PA). 
The CBCT protocol was: tube voltage: 85 kV, scanning time: 14 s, tube current: 7 mA, effective dose: 75 mSv, voxel 
size: 150 mm (screen resolution 1366 × 768), field of view: 15 × 15 cm, and slice thickness 1.0 mm. The TMJs 
were evaluated from the medial pole to the lateral pole in sagittal, coronal and axial planes. The radiographic 
criteria that were used to confirm the diagnosis of osteoarthritis were subcortical cyst (radiolucent area that 
may be just below the cortex or in the trabecular bone) (Fig. 1a), flattening of the articular surfaces (disappear-
ance of the even convexity or concavity of the articular surfaces) (Fig. 1b), osteophyte (bony outgrowth arising 
from a mineralized joint surface) (Fig. 1c) and surface erosion (condylar surface irregularities) (Fig. 1d)25. The 
CBCT radiographs were assessed twice on a 1-week interval by 2 evaluators (W.T. and S.A.) independently. The 
2 evaluators then reassessed the records in which there was a disagreement collectively on a third occasion to 
reach consensus. To ensure a strict blinding protocol, two other researchers (A.K. and S.T.) were responsible for 
the data entry, training, and testing of the AI model. A total of 2737 images, saved as TIFF files, were used for 
the training and validation of the AI model, including 1986 cross-sectional images and 751 tangential images. 
The images used for training and validation were selected from the CBCT records of 943 patients who had 792 
osteoarthritic joints and 1094 normal joints (Fig. 2). The images were rescaled to 640 × 640 pixels, and the area 
of interest was marked in a rectangle and converted to XY coordinates using the LabelImg software (Tzutalin. 
LabelImg. Git code 2015). The cross-sectional images were used to detect flattening, subcortical cyst and surface 
erosion, whereas the tangential images were used to detect osteophytes.

Development, training and testing of the AI model
Our model was based on the You Only Look Once (YOLO) system that uses a single convolutional network 
to concurrently predict several bounding boxes and generate the class probabilities26,27. YOLO achieves object 
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Figure 1.   The radiographic criteria used to confirm the diagnosis of osteoarthritis. (a) Subcortical cyst 
(radiolucent area that may be just below the cortex or in the trabecular bone). (b) Flattening of the articular 
surfaces (disappearance of the even convexity or concavity of the articular surfaces). (c) Osteophyte (bony 
outgrowth arising from a mineralized joint surface). (d) Surface erosion (condylar surface irregularities).

Figure 2.   Sample CBCT images used in the validation of the AI model.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15972  | https://doi.org/10.1038/s41598-023-43277-6

www.nature.com/scientificreports/

detection using a single regression model from the pixels to the coordinates of the bounding boxes and the class 
probabilities. The model trains on full images and directly optimizes the detection performance. During object 
detection, the input image is divided into an S × S grid. If the center of an object falls into a grid cell, that grid 
cell is responsible for detecting that object. Each grid cell predicts bounding boxes and confidence scores for 
those boxes (Fig. 3). The YOLO model used in the present study was YOLO5v7 Large with 477 layers, 76,185,580 
parameters, 76,185,580 gradients, 110.5 billion floating-point operations per second (GFLOPs). Optimization 
of the model used the Stochastic Gradient Descent (SGD) with parameter groups 131 weight (decay = 0.0), 135 
weight (decay = 0.0005) and 135 bias. The model environment was composed of a central processing unit (CPU) 
with 12th Generation Intel(R) Core i9-12900K, 3.19 GHz, 128 GB RAM and NVIDIA RTX 3090 Ti, 24,564 GB. 
The network has convolutional layers that recognize features of the image followed by totally connected lay-
ers that undergo prediction of the probabilities27,28. Alternating 1 × 1 convolutional layers reduce the features 
space from preceding layers. Training of the network was performed for about 135 epochs on the training and 
validation datasets using a batch size of 64 using Python 3.9.16, PyTorch 1.13.1 and CUDA 11.7. The training 
hyperparameters were: learning rate = 0.01, momentum = 0.937, weight decay = 0.0005, warmup epochs = 3.0, 
warmup momentum = 0.8, warmup bias learning rate = 0.1, box = 0.05, cumulative layout shift (cls) = 0.5, cls_
poisitive weight = 1.0, objectness loss gain (obj) = 1.0, objectness positive weight = 1.0, training intersection over 
union (IoU) threshold = 0.5. The learning rate schedule was 10−3 for the first epochs then raised to 10−2 for 75 
epochs, then 10−3 for 30 epochs then 10−4 for the last 30 epochs. A completely separate testing set composed of 
350 images (250 cross-sectional images and 100 tangential images) was used for testing the model. The set had 
a single image for each TMJ of 175 patients.

During the testing phase, two experienced evaluators (W.T. and S.A.) performed a DC/TMD-based assess-
ment, including the evaluation of the CBCT records, on the 350 patients constituting the testing set. The CBCT 
radiographs were assessed twice on a 1-week interval by the 2 evaluators independently and reassessed in case of 
disagreement collectively on a third occasion to reach consensus. The concluded diagnosis generated from this 
assessment was considered as the golden reference. The performance of the AI model in diagnosing osteoarthritis 
from the CBCT images was then compared to an oral radiologist (S.S.) against the golden reference. The oral 
radiologist had 15 years of clinical experience and was blinded to the research protocol.

The diagnostic performance measures used for the assessment of the diagnostic performance of the AI model 
were sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), intersection over 
union between detected object and ground truth polygon (IoU), test accuracy and the Kappa coefficient of agree-
ment. Sensitivity is defined as the proportion of true positive results to all positive results (Sensitivity = true posi-
tives/(true positives + false negatives)). Specificity is the proportion of true negative results to all negative results 
(Specificity = true negatives/(true negatives + false positives)). PPV is the proportion of positive test results which 
are actually positive, according to the golden reference, to the total positive test results (PPV = true positives/(true 
positives + false positives)). NPV is the proportion of negative test results which are actually negative, according 
to the golden reference, to the total negative test results (NPV = true negatives/(true negatives + false negatives)). 
IoU is the ratio of the overlapping between the predicted bounding box and the ground truth bounding box. 
Test accuracy is the proportion of all the true test results to all test results (Test Accuracy = (true positives + true 
negatives)/(sum of All results)).

Statistical analysis
Statistical analysis was performed by SPSS (version 20). Percentages of agreement were compared using Z test 
of two proportions. The level of significance was set at P < 0.05. Two Tailed tests were assumed throughout the 
analysis for all statistical tests.

Figure 3.   Object detection was achieved using a single regression model from the pixels to the coordinates of 
the bounding boxes and the class probabilities The input image is divided into an S × S grid. If the center of an 
object falls into a grid cell, that grid cell is responsible for detecting that object. Each grid cell predicts bounding 
boxes and confidence scores for those boxes.
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Results
According to the DC/TMD-based golden reference, the testing set had 73 condylar flattening, 134 subcortical 
cysts, 11 surface erosions and 38 osteophytes. The performance measures of the AI model are shown in Table 1. 
The diagnostic performance measures of the AI model and the oral radiologist against the golden reference are 
shown in Tables 2 and 3 respectively. The AI diagnosis showed statistically higher agreement with the golden 
reference compared to the oral radiologist. Cohen’s kappa showed statistically significant differences in the agree-
ment between the AI and the oral radiologist with the golden reference for the diagnosis of all signs collectively 
(P = 0.0079) and for the diagnosis of subcortical cysts (P = 0.0214). The differences in agreement were not signifi-
cant for the diagnosis of condylar flattening (P = 0.0595), surface erosion (P = 0.1581) and osteophyte (P = 0.3886). 
The osteophytes had the lowest agreement whereas the surface erosions showed the highest agreement with the 
golden reference. Both the AI model and the oral radiologist showed high test accuracy (> 0.95), however the AI 
model showed equal or better test accuracy compared to the oral radiologist (Table 4). The agreement between 
the AI model diagnosis and the oral radiologist diagnosis is shown in Table 5.

Discussion
Osteoarthritis of the TMJ comprises complex pathophysiological processes and necessitates comprehensive 
evaluations to detect the remodeling and degeneration of the bone and cartilage. Increasing attention has now 
focused on the early diagnosis of osteoarthritis to stop the disease progression and prevent or decrease the 
permanent joint damage3. The clinical diagnosis of TMJ osteoarthritis relies on the radiographic features of the 
joint components that involve early signs of osseous remodeling like flattening and sclerotic changes followed 
by erosive, attrition, osteophytes and cyst-like lesions. The diagnostic accuracy, safety and reliability of CBCT 

Table 1.   The performance measures of the AI model. PPV positive predictive values, mAP mean average 
precision, IoU intersection over union.

PPV (95% confidence limits) Sensitivity (95% confidence limits)
Test accuracy (95% confidence 
limits) mAP50% IoU Total training time

0.96 (0.93–0.98) 0.98 (0.96–1.00) 0.99 (0.98–0.99) 94% 0.9308 5 h

Table 2.   The diagnostic performance of the AI diagnosis against the golden reference. **Statistically highly 
significant. PPV positive predictive values, NPV negative predictive values.

Diagnostic performance

Cohen’s kappa Kappa index P value
Sensitivity (95% 
confidence limits)

Specificity (95% 
confidence limits)

PPV (95% 
confidence limits)

NPV (95% 
confidence limits)

Test accuracy (95% 
confidence limits)

Condylar flattening 0.96 (0.91–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.99 (0.98–1.00) 0.99 (0.98–1.00) 0.97 Near perfect agree-
ment 0.0000**

Subcortical cyst 0.99 (0.98–1.00) 0.98 (0.96–1.00) 0.96 (0.93–0.99) 1.00 (0.99–1.00) 0.98 (0.97–1.00) 0.96 Near perfect agree-
ment 0.0000**

Surface erosion 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 Perfect agreement 0.0000**

Osteophyte 0.97 (0.92–1.00) 0.98 (0.97–1.00) 0.86 (0.76–0.96) 1.00 (0.99–1.00) 0.98 (0.97–0.99) 0.90 Near perfect agree-
ment 0.0000**

All signs 0.98 (0.96–1.00) 0.99 (0.98–1.00) 0.96 (0.93–0.98) 1.00 (0.99–1.00) 0.99 (0.98–0.99) 0.96 Near perfect agree-
ment 0.0000**

Table 3.   The diagnostic performance of the oral radiologist against the golden reference. **Statistically highly 
significant. PPV positive predictive values, NPV negative predictive values.

Diagnostic performance

Cohen’s kappa Kappa index P value
Sensitivity (95% 
confidence limits)

Specificity (95% 
confidence limits)

PPV (95% 
confidence limits)

NPV (95% 
confidence limits)

Test accuracy (95% 
confidence limits)

Condylar flattening 0.89 (0.82–0.96) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 0.97 (0.95–0.99) 0.98 (0.96–0.99) 0.93 Near perfect agree-
ment 0.0000**

Subcortical cyst 0.93 (0.88–0.97) 0.98 (0.96–1.00) 0.96 (0.93–0.99) 0.95 (0.93–0.98) 0.96 (0.94–0.98) 0.91 Near perfect agree-
ment 0.0000**

Surface erosion 0.91 (0.74–1.00) 1.00 (1.00–1.00) 1.00 (1.00–1.00) 1.00 (0.99–1.00) 1.00 (0.99–1.00) 0.96 Near perfect agree-
ment 0.0000**

Osteophyte 0.95 (0.88–1.00) 0.98 (0.97–1.00) 0.86 (0.75–0.96) 0.99 (0.98–1.00) 0.98 (0.96–0.99) 0.89 Near perfect agree-
ment 0.0000**

All signs 0.92 (0.88–0.95) 0.99 (0.98–1.00) 0.96 (0.93–0.98) 0.98 (0.97–0.99) 0.98 (0.97–0.98) 0.92 Near perfect agree-
ment 0.0000**
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in detecting the bony changes associated with osteoarthritis have been reported to be superior to other imaging 
modalities25,29. The primary diagnosis of TMD has been changed after the CBCT assessment in 26.08% of cases 
in one study25 and in 58% of cases in another study30. Several factors may hinder the early diagnosis of osteoar-
thritis and these include the variability in the examination methods, diagnostic criteria and taxonomy between 
different clinical and research centers8. Among these factors is the subjectivity of the radiographic diagnosis of 
the disorder. The inconsistency in the diagnosis of osteoarthritis was evident in one study that showed that 206 
patients consulted an average of 30 providers from 44 different specialties to seek treatment for their TMD31. 
Another study showed that 101 orofacial pain patients had multiple consultations with 15 different specialties 
to diagnose and treat their pain32. The urgent need to eliminate the subjectivity in the interpretation of the 
radiographic signs of osteoarthritis was emphasized in several studies to facilitate and expedite the diagnosis of 
TMJ osteoarthritis17,33. Thus, an automated and precise diagnostic system is warranted to improve the accuracy 
of the diagnosis of TMJ osteoarthritis.

AI aims to match and surpass the cognitive abilities of humans and secure a new era of improved standards of 
care in medicine. Date-driven AI or deep learning utilizes the data generated by humans to train mathematical 
models and build a cognitive system that is able to analyze and reach a diagnosis. Neural networks are a subset 
of deep learning that is inspired by the nervous system and contain layers of interconnected neurons. Neural 
networks transfer signals between the different layers of neurons through a convolutional process to learn the 
features within the data34. Object detection systems in general starts by detecting the potent features in the input 
images, then use classifiers to identify the objects in space. The classifiers are applied over a sliding window on 
the image or on particular areas of the image35. In the present study, the AI model was based on YOLO; a detec-
tor that is trained to detect a diversity of objects simultaneously. YOLO puts structural constrains on the grid 
cell proposals which support multiple simultaneous recognitions of the same object. The system suggests only 
98 bounding boxes for one image compared to 2000 for other object recognition systems then incorporates the 
individual components into a single rectified model26,27. The results have shown that the diagnostic performance 
measures of the AI model were in statistically higher agreement with the golden reference compared to the 
oral radiologist. Both the AI model and the oral radiologist had high test accuracy over 0.95, however the AI 
model had always equal or better test accuracy compared to the oral radiologist. Similar results were obtained 
in a study that compared the performance of dental clinicians and a multilayer perceptron neural network in 
diagnosis of orofacial pain and TMD and found that the performance of the neural network was significantly 
higher than the dental clinicians36. Another study used the Karas’ ResNet AI model for the radiographic diagnosis 
of TMJ osteoarthritis from orthopantomograms and compared the diagnostic performance of the model with 
an oral radiologist11. Their model lacked in performance in one the categories of TMJ osteoarthritis, however 
their model exhibited equal sensitivity to that of the oral radiologist and better balance between sensitivity and 
specificity. A Neural network was used in another study to classify the condylar morphology on CBCT records 
and evaluate the correlations between groups of biomarkers in patients with TMJ osteoarthritis37. The neural 
network staging of osteoarthritis as compared to the clinicians’ consensuses had a 91.2% accuracy, which is in 
accordance with the results of the present study. A natural language processing-based model utilizing artificial 
neural networks was able to diagnose TMD according to the analysis of the patient’s chief complaint and the 
measurement of the maximal mouth opening38. In the present study, the high test accuracy achieved by the AI 
model and the excellent agreements between the model and the radiologist can be attributed to several factors. 
Firstly, the criteria used for the radiographic diagnosis of osteoarthritis from CBCT records were based on the 
DC/TMD that was reported to have excellent sensitivity, specificity and interexaminer reliability and is considered 

Table 4.   Test accuracy of the AI model compared to the oral radiologist. *Statistically significant.

AI model Oral radiologist z P value

Condylar flattening 0.99 0.98 1.52 0.12863

Subcortical cyst 0.98 0.96 1.99 0.04614*

Surface erosion 1.00 1.00 Equal values

Osteophyte 0.98 0.98 0.26 0.79408

All signs 0.99 0.98 2.33 0.01984*

Table 5.   The agreement between the AI model diagnosis and the oral radiologist diagnosis. **Statistically 
highly significant.

Percentage of agreement (95% confidence limits) Cohen’s kappa P value

Condylar flattening 98.57% (97.33–99.81%) 0.95 0.0000**

Subcortical cyst 97.43% (95.77–99.09%) 0.95 0.0000**

Surface erosion 99.71% (99.16–100.00%) 0.96 0.0000**

Osteophyte 99.71% (99.16–100.00%) 0.99 0.0000**

All signs 98.86% (98.30–99.41%) 0.96 0.0000**
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the most universally accepted standardized protocol14. Secondly, the training database used in the present study 
was relatively increased compared to several previous studies. Finally, the AI model was trained to learn the 
detection of the radiographic signs that appear on the cross-sectional CBCT views independently of the training 
used to learn the signs on the tangential CBCT views.

The performance of object detectors is commonly challenged by several factors as the different resolution 
input compared to that used in training, foreground or background imbalance, smaller sized objects, low com-
putational resources, small datasets and imprecise localizations during predictions. In general, the detection 
accuracy of two-stage object detectors exceed that of single-stage detectors, however with the development of 
the single-staged YOLO, its accuracy has surpassed several two-staged detectors27. YOLO has several advan-
tages over other detection systems. Firstly, as YOLO is built as a single regression problem, it does not require a 
complex structure like other models and accordingly it is much faster. The YOLO network operates at a speed 
of 45 frames per second and the fast version at 150 frames per second. The network concomitantly predicts the 
bounding boxes, extracts the features and performs the circumstantial reasoning. Secondly, YOLO accomplishes 
at least double the mean average precision of the other object detection systems. Thirdly, YOLO analyzes the 
whole image while making detections and does not depend on region proposals and sliding windows like other 
systems. YOLO is trained on generalized presentations of objects so it generates less than half the average number 
of background errors compared to other systems27. In a recent study, YOLO-V3 has been compared to two other 
object detection algorithms; Single Shot Detection and Faster Region based Convolutional Neural Networks. 
The overall performance of YOLO-V3 was superior to the other two algorithms. YOLO-V3 was the fastest while 
maintaining excellent accuracy39. The main limitation of YOLO is the difficulty of the detection of objects in 
new and unfamiliar aspect ratios or presentation, however this limitation is not applicable to the diagnosis of 
osteoarthritis from CBCT records27.

The timely identification of signs of TMJ osteoarthritis and the detection of patients at risk of progression to 
advanced forms may facilitate the development of more effective treatment approaches. This requires the pro-
gression of the current binary classifications to multinomial regression functions that recognize the clinical and 
radiographic findings in addition to the different biomarkers and classify the early, moderate and severe forms 
of TMJ osteoarthritis. The development of multinomial deep learning classifiers in the field of TMJ osteoarthritis 
can promote a line of research that investigates the possibility of diagnosis at an early reversible phase40. The 
present study validated an AI model that diagnosed the early and late radiographic signs of TMJ osteoarthritis 
and can be considered a base for further research to build such multinomial deep learning models.

Conclusion
The AI model used in the present study had equal or better diagnostic performance for TMJ osteoarthritis 
compared to the human expert. The adoption of AI in the radiographic diagnosis of osteoarthritis is expected 
to eliminate the subjectivity associated with the human interpretation and expedite the diagnostic process thus 
reducing the probability of the disease progression. Further studies are required to refine the network capabili-
ties and develop a multimodal cognitive system that analyzes the patients’ history, radiographic and clinical 
examination data to diagnose osteoarthritis and other forms of TMD efficiently.

Data availability
The data that support the findings of this study are available from the authors upon request.
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