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X‑ray dynamical diffraction 
by quasi‑monolayer graphene
Olena S. Skakunova , Stepan I. Olikhovskii , Taras M. Radchenko , Svitlana V. Lizunova , 
Tetyana P. Vladimirova  & Vyacheslav V. Lizunov *

We study the processes of dynamical diffraction of the plane X‑ray waves on the graphene film/SiC 
substrate system in the case of the Bragg diffraction geometry. The statistical dynamical theory of 
X‑ray diffraction in imperfect crystals is applied to the case of real quasi‑two‑dimensional systems. The 
necessity of the taking into account of the variability of the lattice parameter of multilayer graphene, 
as well as the influence of thickness on the thermal Debye–Waller factor at the calculation of the 
complex structural factors and Fourier components of polarizability, is demonstrated. It is shown 
that the change of the structural characteristics of the 3‑layer graphene/substrate system, as well as 
its strained state, leads to a significant change in the diffraction profiles, which makes it possible to 
determine the characteristics by the X‑ray diffraction method.

The development of modern physical materials science is inseparably linked with the determination of structural 
characteristics of materials. This is due to the material structure mainly determines their most important physi-
cal and exploitation properties. At the same time, the main characteristics of materials (mechanical, electrical, 
magnetic, optical, etc.) as a rule strongly depend on their defect structure. Therefore, the problem of creation 
of the materials with predetermined properties is closely related to the improvement of already known and the 
development of new methods of characterization of the material structure.

Among other perspective materials, graphene has unique mechanical, electrical properties and can be used 
in many areas. At the same time, the properties of the graphene film depend significantly on the method of its 
preparation. In particular, chemical vapor deposition (CVD)1–3 and SiC substrate  annealing4–6 are effective 
methods for large-scale graphene production. Since the properties of graphene depend, in particular, on its 
structural parameters, it is important to carry out an accurate quantitative characterization of the structure of 
the graphene film on the substrate.

For structural characterization of thin films, multilayer systems, superlattices, etc. nondestructive diffraction 
methods are widely  used7–11. The effectiveness of any diffraction method is largely determined by the analytical 
expressions that provide an adequate description of the scattering pattern. Both the kinematical approximation 
and the dynamical theory are used in the X-ray characterization of crystalline materials.

The kinematical description gives a simple expression for the scattering amplitude, which, in fact, is the 
Fourier transform of the electron density of the crystal. However, the kinematical approximation is violated for 
crystals whose dimensions are comparable with the extinction length. In this case, dynamical effects (multiple 
scattering effects), namely the interaction between diffracted and transmitted waves, together with refraction 
and absorption, can become significant. At the same time, partially dynamical effects can be manifested even for 
‘thin’ crystals, so their rigorous description requires the use of dynamical scattering theory.

The dynamical scattering theory attracted an attention of researchers and got a development almost imme-
diately and intensively after the discovery of the radiation diffraction on crystal structures. However, only since 
1960s, when methods for growing almost perfect single crystals had developed, a rapid growth of a series of 
studies related to the dynamical diffraction was additionally motivated and stimulated. Particularly, the dynamical 
theories based on the Ewald–Bethe–Laue  approach12 and optical potential  method13–15 to describe the Borrmann 
effect were developed.

Then, the Takagi–Taupin equations became the fundamental base of a statistical dynamical diffraction theory 
proposed in Refs.16,17 for the case of incident spherical wave diffracted on the mosaic crystal. This theory was 
repeatedly verified experimentally (see, e.g., Ref.18).

The case of incident plane waves was considered for describing the angular distributions of the diffracted 
X-ray (see, e.g.19). Just that approach was used to calculate the distributions of X-ray intensity scattered by 
imperfect  crystals20–24.
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At the same time, Holý proposed another variant of dynamical theory based on the optical coherence 
 formalism25–28 and applied this approach for determining the parameters of the single crystals’  microdefects29–31. 
In addition, the distorted wave Born approximation was used for calculation of scattering patterns for the case 
when the microdefects are contained in the thin crystalline  layers32.

In  articles33–38, authors also pay attention to the dynamical effects in the diffuse scattering theory. For this 
purpose, the statistical dynamical theory of X-ray diffraction by imperfect single crystals with randomly distrib-
uted microdefects was  used37–40. This theory is based on the Ewald–Bethe–Laue approach, where the scattering 
problem is considered in the 3D momentum space. It makes possible establishing direct analytical formulas 
between Fourier components of the fluctuating part of crystal polarizability and defect characteristics. It is 
precisely this theory that uses in presented work.

Thus, the most studies and therefore obtained results describe mainly the bulk crystals. There is still a lack in 
the studying the quasi-two-dimensional (2D) systems, including the firstly know 2D material—graphene, which 
contributes to the motivation of the study. The characterization of quasi-monolayer structures by the methods of 
dynamical diffractometry has the specific and certain features. The scope of this article deals with extension of 
the statistical dynamical theory of X-ray diffraction in imperfect crystals to the case of realistic quasi-monolayer 
systems with inhomogeneous strain fields and microdefects.

Diffraction parameters
We consider the diffraction of the plane X-ray waves in the case of the Bragg diffraction geometry (the case of 
reflected radiation). According to the optical potential method, the polarizability of the crystal is represented 
as a complex  quantity41,42:

Accordingly, the Fourier component of polarizability can be represented as follows:

In the case of a non-centrosymmetrical crystal, the Fourier components χrH and χiH are also complex quanti-
ties proportional to the corresponding structural  factors43:

where Γ = re λ2/πvc, re is classical electron radius, λ is wavelength of X-ray radiation, vc = (3)1/2a2c/2 is unit cell 
volume, a i c—hexagonal lattice parameters, φj = 2π (hxj + kyj + lzj), h, k, l are Miller indices. The summation in 
(4) is carried out on the coordinates (xj, yj, zj) of the atoms in the unit cell, fr and fi are the real and imaginary 
parts of the atomic form factor:

where f0 and ∆f are the atomic form factors at absolute zero temperature and the dispersion correction respec-
tively, and exp(−M) is the thermal Debye–Waller factor. The atomic photoelectric absorption cross section has 
the  form44,45:

where (μ/ρ) is mass absorption coefficient, which was taken from Ref.46, Ma is atomic mass, NA is Avogadro 
constant, C = 1 or cos(2θB) is polarization factor, respectively, for σ- and π-polarization,

is Bragg angle.
An interpolation formula was used to calculate the atomic form  factors47:

where ai, bi, ci are tabulated parameters, S = sinθB/λ. Dispersion corrections ∆f were taken from  work46.
The exponent of thermal Debye–Waller factor in expression (5) was calculated using the formula that takes 

into account its  anisotropy48:
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X‑ray diffraction by quasi‑monolayer systems
As mentioned, one of the effective methods of preparation graphene is its growth by annealing the SiC substrate. 
The analytical expressions for the intensity of diffracted X-ray radiation on the graphene film/SiC substrate system 
were used the recurrence relations between the coherent components of the amplitude reflection coefficients of 
adjacent  layers49, which were obtained within the framework of the generalized dynamical theory of scattering 
in imperfect single crystals with randomly distributed  defects39.

The coherent component of the reflectivity of a multilayer crystal system, which consists of M layers and a 
substrate, in the case of the Bragg diffraction geometry is described as follows:

RM(∆θ) is calculated using the recurrence relation between the amplitude reflection coefficients of two systems 
consisting of M and (M − 1)  layers49:

where j = 1, …, M, R0 ≡ r0, ∆θ is angular deviation of the crystal from the Bragg angle. rj and tj are the amplitude 
coefficients of reflection and transmission of the jth layer, respectively:

where the index j indicates the connection of the corresponding value with the jth layer, b = γ0/|γH| is the param-
eter of the diffraction asymmetry, γ0 and γH are the direction cosines of the wavevectors of the incident and 
diffracted plane waves, respectively, H is the reciprocal-lattice vector, K = 2π/λ, dj is the thickness of jth layer, δ = 
1, 2. The accommodations of the strong Bragg wavevectors in the jth layer, Kδ

0j and Kδ
Hj , , are described as follows:

The normalized angular deviation yj in formulas (14) and (15) is determined by the deviation ∆H of the 
reciprocal-lattice vector of the substrate H ≡ H0 (j = 0) due to the sample rotation and by the deviations ∆Hj of 
the reciprocal-lattice vector Hj due to the average strain caused by defects or chemical composition of jth layer:

where ∆θj is the angular deviation of the jth layer from the substrate orientation due to strain, ψ is the angle 
between the crystal surface and the reflective planes. The parallel and normal strain components in the jth layer 
are described as follows:
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where R is a tension parameter (0 ≤ R ≤ 1) that represents or can be associated with a strain strength or percent-
age, D = 2c13/c33 is distortion factor, a0, c0 and aj, cj are lattice parameters for the substrate and layer, respectively, 
a0j  and c0j  are lattice parameters of the layer in the free state, l0 and lj are the components of Miller indices for 
substrate and layer, respectively.

Results of numerical calculations
At first, using formulas (3)–(8), the X-ray diffraction parameters of multilayer graphene with the packing of atoms 
of the A–B–A type (so-called Bernal-stacked multilayer graphene) were obtained. The geometry of diffraction 
experiment is presented on Fig. 1.

In the  article4, the parameter β was used for to describe of the structure of graphene layers. This parameter 
characterizes an occupancy of graphene layers (its value belongs the range [0, 1]). Thereby the used model has 
two fitting parameters for each layer: interlayer spacing and occupancy of graphene layer. In our calculation, we 
consider graphene layers as the completely occupied (β = 1).

It should be noted, that we characterize a quasi-two-dimensional object, which is such according to its 
physical properties. However, here it is assumed that in the plane, parallel to the surface of the system, all layers 
(graphene, buffer and substrate) are homogeneous. It is due to this that the diffraction problem can be considered 
as one-dimensional along the axis, which is perpendicular to the surface of the system, which is inhomogeneous 
in this direction.

Formula (8) takes into account the dependence of the root-mean-square displacement of lattice atoms U2
Z 

on the film  thickness44. It should be noted that the use of root-mean-square displacements for films of small 
thicknesses (about several atomic layers) corresponding to a bulk sample would lead to significant errors in the 
calculation of the thermal Debye–Waller factor and the Fourier components of the crystal polarizability and, as 
a result, to errors at the calculation of the reflection curves (RCs). This fact is illustrated Fig. 2, which shows RCs 
with and without taking into account the thickness dependence of the root-mean-square displacement of atoms 
at the calculation of diffraction parameters. The maximum difference between the curves is 20%.

Figure 3 shows the calculated RCs also taking into account the presence of a substrate for the (002) reflex of 
3-layer graphene for radiation with an energy of 10.2 keV. The interlayer distance in a graphene film depends 
on the conditions of its preparation, the number of layers, and the number of the layer from the  substrate4,50,51. 
So, as initial values of lattice parameters were used lattice parameters of graphite, namely a = 0.246 nm and c = 
0.6708 nm. The Fourier components of the polarizability were calculated for these lattice parameters.

Figure 3 shows, that the taking into account a substrate at the calculation of RCs leads the significantly shift 
of the diffraction peak from the graphene layers (Fig. 3, solid line).

For comparison, Fig. 4 shows the experimentally obtained RC for the system multilayer graphene/substrate 
6H-SiC (0001)4. It can be seen that the results of the calculations of this work and the experimental data are in 
good agreement to each other.

It should be noted, that one of the stages of creating multilayer graphene films on a SiC substrate is the 
formation of a buffer layer (a hexagonal carbon layer)52. This layer is not yet graphene, because it is partially 
connected to the substrate due to the presence of sp3-hybridized regions. According to Ref.53, the interplanar 
distance between the buffer layer and the SiC substrate is d = 0.216 nm.

Figure 5 shows the change of RCs at the taking into account the presence of the buffer layer for both cases pre-
sented in Fig. 3. It should be noted that the presence of the buffer layer for a system consisting only of multilayer 

Figure 1.  The geometry of X-ray diffraction on multilayer graphene. Two layers (AB) of Bernal-stacked 
multilayer graphene and incident and reflected beams are presented.
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Figure 2.  Calculated RCs of 3-layer graphene (reflex (002), CuKα1) with (black line) and without (red line) 
taking into account the thickness dependence of the root-mean-square atomic displacement at the calculation of 
diffraction parameters.

Figure 3.  The calculated RCs of 3-layer graphene (reflex (002), radiation energy is 10.2 keV) with (black line) 
and without (red line) taking into account the presence of 6H-SiC substrate.

Figure 4.  Experimental X-ray diffraction RC (markers) of a graphene film grown on a SiC (0001)  surface4. 
The solid line is the result of the calculation by authors of the  paper4. The interlayer distance d in the film was 
determined to be 3.30 ± 0.05 Å.
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graphene (without a substrate) (Fig. 5a) leads to an increase in the height of the peak and a shift of its maximum 
to the right. At the same time, the intensity of the peak for multilayer graphene on the substrate (Fig. 5b) with 
taking into account the presence of the buffer layer decreases and shifts to the left.

One of the remarkable properties of graphene—known as a strongest material ever tested—is its high flexibil-
ity along with strength. Such unique mechanical properties caused the development of the relatively new research 
direction in the physics of graphene and related 2D materials known as ‘straintronics’54–58 and ‘twistronics’59–61. 
Figure 6 shows RCs with taking into account the strain of the graphene layers. We considered the case when the 
corresponding translation vectors of the layer are rotated by 30° comparative to the substrate. Accordingly, a0 
in formulas (19) and (20) was replaced by a0cos30°. Poisson’s ratios for multilayer graphene νi = 0.15 (in-plane) 
and νo = − 0.09 (out-of-plane) were taken from the  work62.

It can be seen that the change in the strain state of the 3-layer graphene/substrate system leads to a change 
in the shape of RCs.

Conclusions
In this article, the statistical dynamical theory of X-ray diffraction of the plane X-ray waves in imperfect crystals 
is applied to the case of real quasi-two-dimensional systems. The case of the Bragg diffraction geometry is consid-
ered. The necessity of the taking into account of the variability of the lattice parameter of multilayer graphene, as 
well as the influence of thickness on the thermal Debye–Waller factor at the calculation of the complex structural 
factors and Fourier components of polarizability, is demonstrated. It is shown that the change of the structural 
characteristics of the 3-layer graphene/substrate system, as well as its strained state, leads to a significant change in 
the diffraction profiles, which makes it possible to determine the characteristics by the X-ray diffraction method.

The X-ray diffraction characteristics are sensitive to the structural strains independently on their types 
(stretching, shearing, twisting, etc.). Therefore, the XRD method can act as a powerful or at least additional tool 
for detecting of any responses in the structural changes occurring in graphene and other currently discovered 

Figure 5.  Calculated RCs for graphene (reflex (002), radiation energy is 10.2 keV) with the considering (black 
lines) and without the considering (red lines) the presence of the buffer layer: 3-layer graphene (a), system 
3-layer graphene/6H-SiC substrate (b).
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Figure 6.  Calculated RCs of the 3-layer graphene/6H-SiC substrate (reflex (002), radiation energy is 10.2 keV) 
with different stress parameters of the graphene layers: R = 0 (red line), 0.5 (green line), 1 (blue line).
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2D materials. Particularly, such the sensitivity can contribute to the overcoming the challenges dealing with 
detecting so-called magic angles in the twisted 2D material offering a method to modify its electronic properties.

The proposed dynamical approach, as an additional tool, allows describing correctly the diffraction profiles 
from such structures in the region of the Bragg peak from the substrate and its immediate vicinity. Due to this, 
we can expect to improve the reliability of the diffraction characterization and possibly obtain additional accurate 
information about the structure of the system, because the proposed method allows us to take into account the 
influence of the substrate and its defects on the formation of the total diffraction pattern.

Data availability
The data that support the findings of this study available from the corresponding author on reasonable request.
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