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Genetic risk score in multiple 
sclerosis is associated with unique 
gut microbiome
Noha S. Elsayed 1,2, Robert K. Valenzuela 1, Terrie Kitchner 1, Thao Le 3, John Mayer 4, 
Zheng‑Zheng Tang 5, Vishnu R. Bayanagari 1,6, Qiongshi Lu 5, Paula Aston 7, 
Karthik Anantharaman 8 & Sanjay K. Shukla 1,9*

Multiple sclerosis (MS) is a complex autoimmune disease in which both the roles of genetic 
susceptibility and environmental/microbial factors have been investigated. More than 200 genetic 
susceptibility variants have been identified along with the dysbiosis of gut microbiota, both 
independently have been shown to be associated with MS. We hypothesize that MS patients harboring 
genetic susceptibility variants along with gut microbiome dysbiosis are at a greater risk of exhibiting 
the disease. We investigated the genetic risk score for MS in conjunction with gut microbiota in the 
same cohort of 117 relapsing remitting MS (RRMS) and 26 healthy controls. DNA samples were 
genotyped using Illumina’s Infinium Immuno array‑24 v2 chip followed by calculating genetic risk 
score and the microbiota was determined by sequencing the V4 hypervariable region of the 16S rRNA 
gene. We identified two clusters of MS patients, Cluster A and B, both having a higher genetic risk 
score than the control group. However, the MS cases in cluster B not only had a higher genetic risk 
score but also showed a distinct gut microbiome than that of cluster A. Interestingly, cluster A which 
included both healthy control and MS cases had similar gut microbiome composition. This could be 
due to (i) the non‑active state of the disease in that group of MS patients at the time of fecal sample 
collection and/or (ii) the restoration of the gut microbiome post disease modifying therapy to treat 
the MS. Our study showed that there seems to be an association between genetic risk score and gut 
microbiome dysbiosis in triggering the disease in a small cohort of MS patients. The MS Cluster A who 
have a higher genetic risk score but microbiome profile similar to that of healthy controls could be due 
to the remitting phase of the disease or due to the effect of disease modifying therapies.

Multiple sclerosis (MS), a disease that affects nearly 2.8 million people  worldwide1, is a chronic, inflammatory, 
autoimmune disease of the central nervous system with a complex, multifactorial  etiology2. The symptoms of MS 
range from fatigue, numbness, muscle spasms and weakness to various gastrointestinal and urinary malfunction 
 symptoms3. Pathologically, the disease manifests with demyelination and degeneration of neurons, and presence 
of white matter lesions on the brain and the spinal  cord1,3. What etiological factors drives the two phenotypes 
of MS : relapsing–remitting MS (RRMS) and primary progressive MS (PPMS)3 is not fully understood. The 
most common phenotype is the RRMS where the patient alternates between active and non-active episodes of 
symptoms. The active episodes are marked with motor, sensory and cognitive symptoms in addition to brain 
lesions detected by magnetic resonance  imaging4. The complex etiology of MS disease continues to being inves-
tigated through increasing understanding of genetic susceptibility and different triggering modalities arising 
from life-style and/or  environment5 such as smoking, low sun light exposure, high salt diet, viral infection(s), 
and microbe(s) or microbial metabolites emanating from gut microbiome  dysbiosis6–9. The gut microbiome with 
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its dynamic reservoir of trillions of microbes representing hundreds of species is of great interest to potentially 
link its role in genetically susceptible persons.

Indeed, genetic susceptibility to MS is complex and hundreds of genomic regions that are implicated are 
dispersed throughout the  chromosomes10. The genetic susceptibility accounts for 30% of the MS  cases11. Siblings 
of MS patients are seven times more susceptible for this disease than general  population12. However, the major 
histocompatibility complex (MHC) haplotypes on chromosome 6 have shown as the highest reproducible associa-
tions with MS susceptibility. Mostly MHC class II alleles, such as DQA1*01:01-DRB1*15:01 and DQB1*03:01-
DQB1*03:02 are  pivotal13. The strongest risk allele is HLA-DRB1*15:01 with an odds ratio of 3.0814. Usually, in 
complex diseases like MS, the more risk alleles the subject carries, the higher the predisposition to the  disease15. 
Thus, measuring the genetic risk score of the MS patients in comparison to the healthy controls can be used in 
revealing more precise genetic susceptibility to this complex disease.

While knowledge of genetic susceptibility to MS has enhanced our understanding of the disease, the precise 
source and role of the environmental factor(s) including microbial trigger(s) associated with MS is far from 
settled. The human gut microbiome with its rich source of microbial diversity, their antigens, and metabolites 
are being explored as a possible source of infectious triggers modulating the MS disease. Indeed, several recent 
studies have reported association of gut microbiome dysbiosis with the  MS2,6,16. A convincing role for the gut 
microbiome in the MS disease was supported by observation from an experimental autoimmune encephalo-
myelitis (EAE) disease mouse model analogous to MS. In this model, SJL/J mice were protected from MS when 
grown in germ free  conditions17. Furthermore, their susceptibility to EAE was restored by exposing these mice 
to the commensal bacteria from fecal material from specific pathogen-free  mice17. Additionally, the MS disease 
development was reproducible in a EAE mice model by transferring MS patient’s fecal material to  mice5. Since 
then, several studies have reported an association of MS with the gut microbiome dysbiosis involving different 
taxa. For examples Akkermansia and Methanobrevibacter were in higher relative abundance whereas Prevotella 
was in lower relative  abundance6,16,18. However, there seems to be discrepancies in different study results with 
respect to experimental details and statistical  analysis19, in genetic and environmental  dissimilarity11 among MS 
patient cohorts or even disease treatment  regimens20.

A role of host genetics selecting and/or modulating gut microbiome in both healthy and diseased cohorts 
have been described particularly in type 1 diabetes and rheumatoid  arthritis21,22. Genetic risk score enhances the 
predictive power of disease susceptibility and  outcome23. A population with both genetic and environmental risk 
factors (GxE) are at a greater disease  risk24. In this study, we showed that a cohort of MS patients have enhanced 
genetic risk score and also harbor a distinct gut microbiota which is different from the healthy controls suggest-
ing an association between the genetic risk score and gut microbiota.

Methods
Study approval
This study obtained approval from institutional research board (IRB) of Marshfield Clinic Health System under 
IRB protocol SHU10417 and all the included subjects signed a written informed consent. The research was 
performed according to relevant guidelines and regulations. The reporting of this study followed most of the 
STORMS checklist for microbiome reporting  studies25.

Study design
Two-hundred thirty-seven MS patients and 50 controls were recruited in this case–control study from the 
Marshfield Clinic health Center (MCHS) during 2018–2021 who have had a recent diagnosis of MS (< 2 years 
of disease duration) or established diagnosis of MS (> 2 years of disease duration) regardless of clinical subtype 
(PPMS and RRMS) and treatment modality. The exclusion criteria were patients taking antibiotics, laxatives, or 
probiotics or who underwent a colonoscopy or similar procedure during the last three months.

All 237 patients provided a ~ 5.0 ml of blood samples while only 214 patients provided their fecal sample. All 
50-control subjects provided both blood and fecal samples. We determined the 16S-based microbiota from 169 
cases and 33 controls. The 169 patients were binned into five groups: treated RRMS (Group 1), treated PPMS 
(Group 2), treatment naïve RRMS but diagnosed for > 2 years of disease duration (Group 3), treatment naïve 
RRMS diagnosed for < 2 years of disease duration (Group 4), and treatment naïve PPMS (Group 5) as shown in 
Fig. 1. The patients included in groups one and two were on disease-modifying treatments (DMT) within six 
months of their stool collection. The DMTs were Glatiramer acetate, Dimethyl fumarate, Fingolimod, Natali-
zumab, Ocrelizumab or Teriflunomide. Groups two, four, and five were excluded from further analysis because 
each included < 10 patients, and 36 cases from Group 1 and Group 3 and seven healthy controls samples were 
filtered out due to low sequencing reads. The final microbiome analysis was based on 117 MS cases and 26 con-
trol subjects, and their demographic data is found in Table 1. Complete electronic health records (clinical and 
medications data) were not available for some non-MCHS patients who just sought MS clinical consultation/
treatment at the MCHS.

Sample collection and storage
A self-collection fecal sample kit with detailed instructions was sent to each subject (patients and controls) 
or handed over by medical assistant of the caring physician to the MS patient during their routine visit with 
a provider. The fecal samples were returned in a boxed frozen cold pack to Dr. Shukla’s laboratory where they 
were divided into aliquots and stored at −80 °C until further analysis. In addition, the recruited patients and 
controls provided a blood sample during their regular visit to MCHS’s phlebotomy center. The blood samples 
were processed for serum, plasma, and buffy coat collection and stored at −80 °C.
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Figure 1.  Flow chart displaying both the recruited MS patients and the healthy controls, their grouping and 
inclusion in the final analysis.

Table 1.  Demographic characteristics of the MS patients and healthy control at the time of the stool collection. 
*Group 1 = treated RRMS patients. ** Group 3 = treatment naïve RRMS patients. ***EBV flag = Epstein-Barr 
virus previous infection. #  On two disease modifying therapy within six months of fecal sample collection. ## All 
healthy control were white race except for one American Indian or Alaskan native. ### Incomplete electronic 
health record.

Characteristic Group 1* (N = 83) Group3** (N = 34) Control (N = 26)

Age at diagnosis/enrollment in years (mean) 46.87 57.58 42.30

Sex (M/F) (28/55) (9/25) (8/18)

Race Caucasian Caucasian Caucasian##

BMI kg/m2 (mean) 30.35 28.33 27.64

EBV flag*** 5 0 0

Diabetes### 0 1 1

Hypertension### 18 12 3

Therapy

 Disease modifying therapy 76 0 0

 Fingolimod (oral) 26

 Natalizumab (injectable) 6

 Ocrelizumab (injectable) 19

 Teriflunomide (oral pill) 6

 Glatrimer acetate 6

 Dimethyl fumarate 11

 Interferon beta-1a (injectable) 1

 Ritiximab 1

Combination  therapy# 6
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DNA extraction and 16S rRNA amplification
The microbial DNA was extracted from the fecal material using PowerLyzer PowerSoil DNA Isolation Kit (MoBio 
Laboratories, Inc., Carlsbad, CA) by following the manufacturer’s protocol. Integrated DNA Technologies (Ames, 
IA) synthesized oligonucleotide primers (515F-806R) required for amplifying V4 region of 16S rRNA  sequences26 
where the reverse amplification primer contained a 12 base barcode sequence and both primers contain adaptor 
 regions27. The amplification was carried out using PE9700 thermocycler with the following run conditions initial 
denaturing temperature 94 °C for 2 min, 35 cycles of 94 °C for 45 s, 64 °C for 45 s and 72 °C for 45 s followed by 
a 10 min at 72 °C as final extension. SequalPrep™ Normalization Plate Kit was used to normalize the amplicon 
concentration (Thermofisher Scientific). Sequencing was done using the Illumina MiSeq Reagent Kit V2 with 
V4 sequencing primers as described by Caporaso et al. (2012)28. The total number of reads was 8,785,102 with 
an average read of 43,491.

Sequence data analysis
The demultiplexed paired-end reads from MiSeq were imported into Quantitative Insights Into Microbial Ecol-
ogy (QIIME2, version 2019.10)29 custom pipeline where the reads were assembled into one Fastq file identified 
with the sample names. Then, DADA2 plugin was used to denoise the  sequences30. A fragment insertion tree 
using the q2-fragment-insertion plugin was created depending on alignment with the Greengenes  database31. 
The generated Amplicon Sequence Variants (ASVs) from DADA2 were assigned to taxonomy using a pre-trained 
Naive Bayes classifier including the existing taxa in the 99% Greengenes 13_8 reference specific to the V4 hyper-
variable region corresponding to the primers we  used32. A sampling depth of 24,520 reads was used to normalize 
the features count in each sample. The 16S microbiome analysis was performed on 117 cases and 26 controls.

Microbiome analysis
Alpha diversity was computed using the Faith’s Phylogenetic Diversity (sum of the branch lengths of a phyloge-
netic tree connecting all species in the target  assemblage33), Pielou’s  evenness34 and Shannon indices using the 
Qiime 2 pipeline. Kruskal Wallis test was used to detect any significant differences between cases and controls 
in different indices of alpha diversity. Principal component analysis (PCA) based on unweighted  unifrac35 was 
carried out while doing the permutational multivariate analysis of variance (Permanova) test to detect if there 
was any significant difference between the clusters formed. Graphs were plotted using the ggplot2 package of 
the R statistical software 3.6.0. The relative abundance of a taxonomic unit for a grouping (e.g., Cluster A) was 
calculated by taking the average across each sample’s relative proportion for that taxonomic unit and dividing 
by the total and multiplying by 100 to yield percentage. Taxonomic units that had a relative abundance of less 
than 1% were combined into a “Rare_combined” group. Welch’s t-test was utilized to test for significant differ-
ences between groupings.

To detect a significant taxa at the phyla, family or genera level associated within the two clusters generated 
from PCA analysis, the Quasi-Conditional Association Test using General Estimating Equations (QCAT-GEE) 
was used, including a Permutation  test36. The QCAT-GEE composes of three tests: the zero-test, which assess 
presence or absence of taxa, the positive-test, which assesses differences in abundance of each taxa, and the two-
test, which combines the zero and positive-tests.

Genotyping and genetic risk score
Genotyping was performed on all 117 cases and 26 controls. Briefly, DNA from both the patients and healthy 
controls’ buffy coat was isolated using QIAamp DNA blood mini kit (Qiagen Inc; Germanton, MD). The DNA 
samples were genotyped using Illumina’s Infinium Immuno array-24 v2 chip at UW-Madison’s Gene Expression 
Center (GEC). Variants were clustered and genotyped using GenomeStudio Data Analysis software 2.0 along 
with the chip manifest files. The SNPs were retained for imputation based on standard criteria (e.g., minimum 
allele frequency > 0.05; missingness < 0.01; individual genotype rate > 0.99; and Hardy–Weinberg equilibrium 
p-value > 1e−07)37. Genetic coverage was increased through imputation using genome build 38 Genotype Impu-
tation HLA of the University of Michigan’s Imputation  Server38. A genetic risk score was calculated utilizing 
187 relevant variants (Table 2 and Supplemental Table 1) previously identified by Patsopolous et al. (2019)10. 
The genetic risk score as defined by Chatterjee et al. (2016) is the quantitative measurement of the total genetic 
risk of multiple susceptibility variants (common, intermediate, and rare) of the  disease23. The calculation of the 
genetic risk score for each subject was performed by summing the number of risk alleles for a given variant and 
multiplying the sum by the effect size obtained from Patsopolous et al., 2019. Plink software version 2.3.1 was 
then used to divide the score by the total number of  SNPs39.

Ethics approval and consent to participate
All included research subjects provided written consent and this research project was approved by the Institu-
tional Review Board of Marshfield Clinic Health System (approval # IRB-19-447 and MCR Code: SHU10417).

Results
Demographics and summary of electronic health record from the study participants
The number of patients in Group 1 and 3 were 83 and 34 respectively. The average age of MS patients in Group 
1 and Group 3 at diagnosis were 46.87 and 57.58 years respectively. Their average BMIs were 30.35 and 28.33 
for Group 1 and Group 3, respectively. Seventy-six patients in Group 1 were on a single DMT while six patients 
were on two different DMTs in the last 6 months of the time of fecal samples collection (Table 1).
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The gut microbiome profile of Group 1 (Treated RRMS) and Group 3 (Treatment naïve RRMS) 
MS cases and controls
The Faith’s phylogenetic diversity between the MS cases and non-MS healthy controls was significantly different 
(Fig. 2A, p = 0.002) and so was the Pielou’s evenness index (Fig. 2B, p = 0.03). However, the Shannon diversity 
index between the cases and controls was not significantly different (Fig. 2C). When we compared the Faith’s 
phylogenetic diversity between Group 1, Group 3, and healthy control group (see materials and methods), we 
observed that while both Group 1 and Group 3 were significantly different from the healthy control group, the 
difference was not significant between the two case groups (Fig. 3).

Identification of a unique MS patients’ cluster
When we performed the unweighted UniFrac principal component analysis (PCA) on microbiota of 117 cases 
and 26 controls, we observed two clusters, a large cluster named Cluster A consisting of 98 cases and 26 control 
(n = 124) and a smaller cluster named Cluster B consisting of 19 cases only (Fig. 4). PC1 accounted for 15.1% 
of the variation, while PC2 accounted for 9.94% of the variation. These two clusters were significantly different 
by the Permanova test (p = 0.01). However, differences in these two clusters were not associated with age, DMT 
used, number of MRI lesions or any other disease conditions like gastric issues.

Relative abundance analysis
We observed several differences in relative abundances of different phyla at 99% cutoff, but they were not sta-
tistically significant. For example, Actinobacteria showed a higher relative abundance in Cluster B whereas 
Verrucomicrobia showed a higher relative abundance in cluster A (Fig. 5A, and Supplemental Table 2). Both 
Bacteroidetes and Firmicutes showed comparable abundances in the two clusters. Interestingly, Proteobacteria was 
not detected in cluster A. As shown in Fig. 5B and Supplemental Table 3, Lachnospiraceae family showed small 
difference between the two clusters. At the genus levels, Cluster B lacks Phascolarctobacterium while cluster A 
lacks both Clostridium and Megasphaera genera (Fig. 5C and Table 3). Moreover, Bifidobacterium showed higher 
abundance in Cluster B while Akkermansia in cluster A.

The QCAT‑GEE tests showed difference between cluster A and cluster B
After applying all three tests of QCAT-GEE to the taxonomy table with all ranks from kingdom to genus, we 
observed that QCAT-GEE two-parts test and the positive test showed that only Porphyromonadaceae family was 
significantly different between two clusters A and B (p = 0.008).

Genetic risk scores associated with clusters A and B
Since MS has a strong genetic susceptibility component, we used a validated risk score method with MS 
 disease10,40 in our study. The genetic background of the patients were self-identified as Caucasian. Population 
stratification was examined by PCA where eight individuals were determined to be outliers and were removed 

Table 2.  Studied SNPs associated with MS inside MHC region. LST1 leukocyte specific transcript 1, 
LTA lymphotoxin-α, MCCD1 mitochondrial coiled-coil domain 1, NFKBIL1 NF-κB inhibitor-like protein 1.

SNPs OR Locus in the MHC region

rs1071743 0.69 HLA-A

rs17493811 0.83 AGPAT1

rs3819292 1.09 HLA-B

AA B position 45 TK 1.13 HLA-B

rs4081559 1.31 HLA-B

rs3135024 1.16 DPA1/DPB1

rs3097671 1.34 DPB1

rs9277626 0.92 DPB2

rs11751659 1.17 DPB2

AA DQβ1 position-5 L 1.24 DQB1

rs766848979 A 0.84 DRB1

rs67476479 CA 1.32 DRB1

HLA-DRB1*01:03 2.9 DRB1

rs9271366 1.57 intergenic (DRB1/DQA1)

rs114071505 0.78 Intergenic (RNF39/TRIM31)

rs9266629 0.82 intergenic (ZDHHC20P2/FGFR3P1)

rs2844482 1.35 LST1 (class III haplotype)

rs2229092 1.17 LTA

rs3093982 1.11 MCCD1

rs2523500 0.92 NFKBIL1



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16269  | https://doi.org/10.1038/s41598-023-43217-4

www.nature.com/scientificreports/

from further analysis. The analysis was repeated and it was determined that the impact on the results of these 
removals did not change the interpretations or conclusions. The healthy control subjects tended to have a lower 
genetic risk score (from 0.007 to 0.017) whereas, the MS cases tended to have a higher genetic risk score from 
0.007 to 0.022 (Fig. 6A). The t-test also showed high significant differences between the genetic risk scores 
between cases and controls (p = 2.682e−05). When considering both the microbiome diversity-based clusters 
and the genetic risk scores together (Fig. 6B), an interesting trend was observed where the gut-microbiome of 
subjects of Cluster A, which included a significant number of both cases and controls, tended to have a lower 
genetic risk scores compared to cluster B (higher genetic risk score) which consisted of cases only. The difference 
in genetic score between controls and two cases groups was statistically significant by t-test. This suggests that 
the patients with higher genetic risk score may be associated with a unique gut microbiome. Additionally, the 
cases with lower genetic risk scores tend to have their microbiome closer to the healthy controls compared to 
the cases with a higher genetic risk score.

Discussion
Unravelling the genetic-environmental factor(s) that control susceptibility to complex autoimmune diseases such 
as MS is challenging. Studies have identified the genetic susceptibilities to  MS10,12,13 and association of individual 
microbes and/or gut dysbiosis in  MS5,6,16. In this study, we calculated a genetic risk score of MS patients in our 

Figure 2.  (A) The boxplot representing (A) Faith’s Phylogenetic diversity (PD) where there was a significant 
difference between MS cases and control. (B) Pielou’s evenness index where there was a significant difference 
between cases and controls. (C) Shannon–wiener diversity index (H) where both MS cases and control 
microbiome were similar, Kruskal Wallis test was used to detect any significant differences between cases and 
controls in different indices of alpha diversity.
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cohorts and conducted gut microbiome analyses to see the association between high-risk cohorts and identify 
unique microbiota signatures in their gut. We calculated the genetic risk score based on a validated risk scores 
for the MS disease as described  before10. Since MS is a complex disease, many variants share the responsibility in 
increasing the patients’ susceptibility to this devastating disease. Surprisingly, we found that patients exhibiting 
the highest genetic risk score are the patients who had a distinct microbiome.

Through studying the demographics data of the patients enrolled in this study and their Epstein-Barr Virus 
(EBV) status in the electronic health record, we made several observations. Notably, only five out of the tested 
MS patients had evidence of EBV infection in their electronic health records (see Table 1). This was surprising 
as EBV was recently described as a virus that increases the risk for MS  susceptibility41. As expected, the female 
ratio was higher than males which is known in MS disease  epidemiology42.

We observed a significant difference in both Faith’s phylogenetic diversity and Pielou’s evenness indices 
between the MS cases and healthy controls. The higher significant faith phylogenetic diversity MS cases was 
in agreement with the unweighted UniFrac analysis. Absence of any significant differences in Shannon index 
between our MS case and healthy control cohorts was similar to a couple of previously published results, 

Figure 3.  Box plot representing the Faith’s phylogenetic diversity in MS patients group 1 (Group 1, treated 
RRMS), group 3 (Group 3, treatment naïve RRMS), and healthy controls. There was a significant difference 
between the control and each group of MS cases individually. On the other side, there was no significant 
difference between the two groups of MS cases.

Figure 4.  Unweighted UniFrac Principal Coordinate (PCoA) of groups one (treated RRMS), three (treatment 
naïve RRMS) and healthy controls showed two distinct clusters (A and B). Each dot represents a MS case or 
healthy control and the PCoA plot show the abundant taxa in each patient gut microbiota. The two chosen PC 
coordinates showed the most diversity and the diversity captured is represented in percentage on the axis.
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especially if the gut microbiome was collected during non-active episodes of the MS  disease4,43. Indeed, Chen 
et al. (2016) reported that patients with active episodes of RRMS have a decline in the species  richness16. There 
were no significant differences in alpha and beta diversity indices in patients treated with DMTs when compared 
with treatment naïve patients. Some studies have reported changes in gut microbiome composition after treat-
ment especially with glatiramer acetate (GA) and dimethyl fumarate (DMF)20,44. Future studies should consider 
assessing the gut microbiome of MS patients at different time points in RRMS to ascertain different dysbiosis 
state during the active and non-active phases of the disease. Surprisingly, we observed a significant number of 
MS patients who had a higher genetic risk score than the healthy controls but had a similar gut microbiome 
compared to the controls. We speculate that this could be due to fact that (i) 94% (91 out of 98) of the patients 
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were in remitting phase of which 68% (67 out of 98) were also on one or more DMTs. The unweighted UniFrac 
analysis is sensitive to rare lineages within a microbial  community45,46. Based on our QCAT analysis, Porphy-
romonadaceae, a typically low abundance family, was observed to be significantly higher in Cluster B. This family 
was also found to be associated with worse EAE outcomes in genetically susceptible  mice47. Moreover, its presence 
has been correlated with IL17, an interleukin known to be upregulated in MS which is also found to be high in 
ileum in other metabolic diseases like obesity and  diabetes48. Even in systemic inflammatory diseases such as 
ankylosing  arthritis49 and neurodegenerative disease such as Parkinson disease, the family Porphyromonadaceae 
was  enriched50. In our study, lower number of patient samples in Cluster B limited the identification of other 
significant taxa associated with high genetic risk score patients. Meanwhile, Akkermansia showed non-significant 
higher abundance in Cluster A as reported  before51.

Genetic studies conducted to detect the variants causing MS disease reported the modest effect to variant HLA 
DRB1*15:01 and many other loci with smaller  associations52. However, no study can point the risk of MS disease 
to a certain allele in the HLA class II because all of the alleles in this region, especially, in European ancestors 
are inherited together due to intense linkage  disequilibrium54. Moreover, some of these detected SNPs for MS 
risk in the literature are common and can be present in healthy unaffected  individuals53. Thus, genetic risk score 
measurement is suitable in this complex disease to reveal the cumulative risk to MS. Good predictability was 
achieved by measuring this score before in other diseases (prostate cancer and systemic lupus erythematosus) 
including MS  disease55–57. In our cohort, as expected the MS patients have higher genetic risk score than healthy 
controls. However, we found a unique cohort with the highest risk score having a unique gut microbiome. It is 
not clear at this stage, whether the dysbiotic gut microbiome increased the MS risk together with the genetic 
susceptibility or the host genotype affected the gut microbiome composition. For instance some studies have 
suggested the heritability of the gut  microbiome5. Studies have also suggested that host genes affect the shape 
of the gut habitat thereby leading to variation in the gut  microbiome58. Furthermore, in case of the MS, vari-
ants in MHC region in general could affect the shaping the gut microbiome through restricted colonization of 
some bacterial species through either their immune elimination or their inability to adhere to the intestinal 
 epithelium59 through the IgA mediated  selection60. In addition, MHC region affects the T-cells maturation which 
subsequently can affect its  autoreactivity61. Indeed, all of these studies support the interaction of genes and gut 
microbiome in precipitating different diseases.

Conclusion
In summary, we showed that a small cohort of MS patients showed high genetic risk score who also harbored 
a distinct microbiota in the gut. This observation drove the idea that indeed, genetic susceptibility in combina-
tion with the dysbiosis of the gut microbiome is associated with MS albeit in a smaller number of patients in 
our study. While future studies with larger cohorts of patients are needed to confirm the relationship between 
the genetic risk score and the MS gut microbiome, we believe our study provides a foundation for such a study.

Table 3.  Comparative relative genera abundance between cluster A and cluster B.

Genus Cluster A (%) Cluster B (%)

Blautia 18.06 16.50

Coprococcus 9.28 8.89

Akkermansia 8.92 5.51

Bacteroides 6.58 5.73

Ruminococcus 9.38 9.82

Bifidobacterium 4.10 6.17

Collinsella 2.95 4.41

Streptococcus 3.07 2.72

Roseburia 2.75 1.02

Faecalibacterium 3.33 2.06

Methanobrevibacter 2.41 2.12

Dorea 2.33 3.28

Prevotella 1.07 1.08

Alistipes 1.00 1.09

Clostridium 0 1.52

Oscillospira 1.41 1.61

Phascolarctobacterium 1.05 0

Megasphaera 0 1.52
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Data availability
All sequence files and metadata for all samples used in this study have been deposited in NCBI under BioProject 
number PRJNA889427. A full record of all statistical analysis is included as supplementary files 1 and 2.

Figure 6.   (A) A Histogram showing the distribution of genetic risk score in our cohort of both healthy controls 
(red bars) and MS cases (blue bars). Here, the histogram showed the controls having low genetic risk scores in 
comparison to the MS cases. The genetic risk scores were tested using SNPs both inside MHC region (Table 2) 
and outside MHC region (supplementary Table 1). T test showed high significant difference between cases and 
control (p = 2.682e−05). (B) The genetic risk score of the subjects included in the two generated clusters (A and 
B) and the healthy controls in cluster A from the Unweighted unifrac analysis. This plot showed the rising of 
genetic risk scores from low values in healthy controls to higher values in the both clusters comprising of MS 
cases. However, the cluster B showed the highest genetic risk score. T test to check difference in means between 
control and cluster A (p = 3.48e−5) and control and cluster B (p = 5.52e−5) showed significant difference. T test 
showed significant difference between cluster A and B (p = 0.048).
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