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Artificial intelligence based system 
for predicting permanent stoma 
after sphincter saving operations
Chih‑Yu Kuo 1, Li‑Jen Kuo 2,3,4 & Yen‑Kuang Lin 5*

Although the goal of rectal cancer treatment is to restore gastrointestinal continuity, some patients 
with rectal cancer develop a permanent stoma (PS) after sphincter-saving operations. Although many 
studies have identified the risk factors and causes of PS, few have precisely predicted the probability 
of PS formation before surgery. To validate whether an artificial intelligence model can accurately 
predict PS formation in patients with rectal cancer after sphincter-saving operations. Patients with 
rectal cancer who underwent a sphincter-saving operation at Taipei Medical University Hospital 
between January 1, 2012, and December 31, 2021, were retrospectively included in this study. A 
machine learning technique was used to predict whether a PS would form after a sphincter-saving 
operation. We included 19 routinely available preoperative variables in the artificial intelligence 
analysis. To evaluate the efficiency of the model, 6 performance metrics were utilized: accuracy, 
sensitivity, specificity, positive predictive value, negative predictive value, and area under the 
receiving operating characteristic curve. In our classification pipeline, the data were randomly divided 
into a training set (80% of the data) and a validation set (20% of the data). The artificial intelligence 
models were trained using the training dataset, and their performance was evaluated using the 
validation dataset. Synthetic minority oversampling was used to solve the data imbalance. A total 
of 428 patients were included, and the PS rate was 13.6% (58/428) in the training set. The logistic 
regression (LR), Gaussian Naïve Bayes (GNB), Extreme Gradient Boosting (XGB), Gradient Boosting 
(GB), random forest, decision tree and light gradient boosting machine (LightGBM) algorithms were 
employed. The accuracies of the logistic regression (LR), Gaussian Naïve Bayes (GNB), Extreme 
Gradient Boosting (XGB), Gradient Boosting (GB), random forest (RF), decision tree (DT) and light 
gradient boosting machine (LightGBM) models were 70%, 76%, 89%, 93%, 95%, 79% and 93%, 
respectively. The area under the receiving operating characteristic curve values were 0.79 for the LR 
model, 0.84 for the GNB, 0.95 for the XGB, 0.95 for the GB, 0.99 for the RF model, 0.79 for the DT 
model and 0.98 for the LightGBM model. The key predictors that were identified were the distance of 
the lesion from the anal verge, clinical N stage, age, sex, American Society of Anesthesiologists score, 
and preoperative albumin and carcinoembryonic antigen levels. Integration of artificial intelligence 
with available preoperative data can potentially predict stoma outcomes after sphincter-saving 
operations. Our model exhibited excellent predictive ability and can improve the process of obtaining 
informed consent.

Artificial intelligence (AI), which refers to the ability of machines to mimic human cognitive functions and 
achieve particular goals by using input data1, has become prevalent in most fields. AI is widely applied in medi-
cal research and health care for, for example, diagnostic imaging analysis, pathological interpretation, disease 
prognosis prediction, complication prevention, skills training, and assessment2. In the present study, we used 
AI to build a model to precisely predict the probability of a permanent stoma (PS) forming before patients with 
rectal cancer underwent a sphincter-saving operation.

Obtaining surgical informed consent is a crucial component of modern medicine that enhances patient com-
pliance and satisfaction3. However, in rectal cancer treatment, the process of obtaining surgical informed consent 
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is frequently inadequate4. Many patients with rectal cancer refuse therapy or opt out of surgery because they fear 
developing a PS. In addition, a misunderstanding of and unrealistic expectations for surgery may reduce patient 
satisfaction and lead to legal disputes. Although the goal of rectal cancer treatment is to restore gastrointestinal 
continuity, 3–25% of patients with rectal cancer experience a PS after a sphincter-saving operation5,6. Therefore, 
surgeons must provide information regarding the possibility of a PS forming when they obtain informed consent 
before surgery. Although many studies have identified risk factors for PS, few studies have precisely predicted 
the probability of a PS forming before surgery.

Although PS formation is a multifactorial and complex problem, deep learning, a mode of AI, can be used 
to construct models that learn logical patterns from a large amount of routinely available preoperative data to 
predict the probability of PS formation. In the current study, we developed an individualized model for the 
accurate prediction of PS formation. This AI model can be integrated into the process of obtaining informed 
consent before a sphincter-saving operation.

Materials and methods
Patient selection and follow‑up
We obtained the data of 428 patients who underwent a sphincter-saving operation for rectal cancer between 
January 1, 2012, and December 31, 2021, at Taipei Medical University Hospital. The malignancy of the rectum 
had been confirmed through biopsy for all patients, and endoscopic findings revealed that all lesions had a 
distal border within 12 cm of the anal verge. We excluded patients who had stage IV disease and had undergone 
emergency surgery or abdominoperineal resection (APR). After the operation, the patients were followed up 
at 3-month intervals for the first 2 years and then at 6-month intervals until the end of 5 years. After 5 years of 
follow-up, we followed these patients annually until their death or loss to follow-up. All patients were followed 
at least 1 year. A patient was considered to have a PS if their stoma was still present at the end of the follow-up 
period (post-operative follow till December 31, 2022). This study was performed in accordance with the guide-
lines of the Declaration of Helsinki. This study was approved by the Joint Institutional Review Board of Taipei 
Medical University (TMU-JIRB No.: N202212085), and the review board waived the requirement to obtain the 
informed consent.

Preoperative clinical variables
The following 19 preoperative variables were included in the AI analysis: age, sex, body mass index (BMI), comor-
bidities (diabetes mellitus [DM], hypertension, heart disease, chronic obstructive pulmonary disease [COPD], 
chronic kidney disease [CKD], and liver disease), smoking status, the distance of the lesion from the anal verge, 
whether receiving neoadjuvant concurrent chemoradiotherapy (CCRT), American Society of Anesthesiologists 
(ASA) score, preoperative laboratory data (hemoglobin [Hb], albumin, and carcinoembryonic antigen [CEA]), 
clinical T stage, clinical N stage and clinical stage. All data were obtained from medical records and imaging 
findings obtained a few days before operation. The distance from the lesion to the anal verge was measured 
during preoperative colonoscopy. The clinical stage was confirmed on the basis of the findings of total-body 
contrast-enhanced computed tomography and magnetic resonance imaging of the pelvis.

Statistical analysis
The target variable of this study was the development of a PS after a sphincter-saving operation, and this variable 
was evaluated on the basis of both demographic and clinical data. Identifying where a patient will develop a PS 
is a typical classification task in machine learning. We employed the following machine learning models: logistic 
regression (LR), random forest (RF), decision tree (DT), Gaussian Naïve Bayes (GNB), extreme gradient boosting 
(XGB), gradient boosting (GB), and light gradient boosting machine (LGBM). We analyzed the performance of 
each model and compared the features selected by these 7 models. In our classification pipeline, the data were 
randomly divided into training set (80% of the data) and a validation set (20% of the data). The models were 
trained using the training dataset. The performance of the models was evaluated using the validation dataset. 
The 7 models used in this study are described in the following.

LR is commonly used to solve binary classification problems in which the goal is to predict the probability of 
an event occurring (e.g., whether a customer will make a purchase) on the basis of a set of features or predictors 
(e.g., demographic information and purchase history).

RF is a machine learning algorithm widely used to perform both classification and regression tasks. RF is an 
ensemble learning method that involves constructing a collection of DTs during training and identifying the class 
that represents the mode of the classes (for classification) or the mean prediction (for regression) of individual 
trees. An advantage of RF is its ability to reduce overfitting, which can occur in a single DT.

The DT provides a graphical representation of a series of decisions or actions, with each decision or action 
leading to 1 or more possible outcomes. The tree is composed of nodes, which represent the decisions or actions, 
and edges, which connect the nodes and represent the possible outcomes. In a DT, the root node represents the 
starting point, and each subsequent node represents a decision or action that can be taken on the basis of avail-
able information. At each node, the decision is made on the basis of a set of conditions or rules, and the outcome 
determines the branch of the tree to be followed. The final nodes of the tree are called leaf nodes and represent 
the predicted outcome or decision.

GNB is a simple probabilistic algorithm used in machine learning to perform classification tasks. GNB is 
based on Bayes’ theorem, which is used to calculate the probability of a class with some observed features. GNB 
assumes that the features of each class are normally distributed, with a mean and variance that are specific to 
that class. For a new set of features, GNB can calculate the probability of each class by using Bayes’ theorem and 
select the class with the highest predicted probability.
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XGB is a widely used machine learning algorithm that falls under the category of boosting algorithms. It is 
a highly scalable, efficient, and accurate algorithm used for regression, classification, and ranking tasks. XGB 
sequentially builds an ensemble of DTs, with each tree correcting errors made by the previous tree. During the 
training phase, XGB optimizes an objective function that measures the difference between predicted and actual 
values. XGB uses GB and regularization techniques to improve the performance of the algorithm and prevent 
overfitting.

GB involves the construction of a series of simple prediction models, such as DTs, that are combined in an 
additive manner to produce a final prediction model. GB sequentially fits new models to the residuals (i.e., the 
errors) of previous models. Each new model is trained to predict the negative gradient of the loss function with 
respect to current predictions. With the addition of these new models to the ensemble, the overall error of the 
model is gradually reduced.

LGBM is a machine learning algorithm used to perform classification, regression, and ranking tasks. It 
is based on a GB framework and uses a histogram-based approach to speed up training and reduce memory 
consumption.

To evaluate the efficiency of the models, we used 6 performance metrics: accuracy, sensitivity, specificity, 
positive predictive value, negative predictive value, and area under the receiver operating characteristics curve 
(AUROC). Accuracy was determined by dividing the sum of true positive and true negative predictions by the 
total number of positive and negative samples. Sensitivity refers to the true positive rate, which is the proportion 
of actual positives that are correctly identified by a binary classification model. Sensitivity is used to measure 
how efficiently a model can detect positive cases when they are present. Specificity refers to the ability of a test 
or measure to correctly identify individuals who do not have a particular condition or characteristic. AUROC 
is a measure of the performance of a binary classification model. The receiver operating characteristic (ROC) 
curve is a plot of the true positive rate against the false positive rate for different threshold values of a model’s 
predicted probability. The AUROC is a measure of how efficiently the model can distinguish between the 2 classes. 
An AUROC score of 1.0 indicates perfect discrimination between positive and negative classes, whereas a score 
of 0.5 indicates random guessing. The AUROC is a commonly used metric for binary classification problems, 
especially in the contexts of medical research and machine learning. This metric is preferred over other metrics, 
such as accuracy, when classes are imbalanced or when the cost of false positives and false negatives is unequal.

In the present study, the data imbalance was solved using the synthetic minority oversampling technique 
(SMOTE). SMOTE is a data augmentation technique commonly used in machine learning to address class 
imbalance problems in a classification task. Imbalance can cause a machine learning model to be biased toward 
the majority class and exhibit poor predictive performance for the minority class. SMOTE creates synthetic 
samples from the minority class by interpolating between existing samples. SMOTE selects a minority sample 
and identifies its k-nearest neighbors. Subsequently, it creates synthetic samples along line segments connecting 
the selected sample to each of its k-nearest neighbors. This generates synthetic minority samples that are similar 
to the existing minority samples.

Results
Patient characteristics
There were 530 patients diagnosed rectal cancer in Taipei Medical University Hospital from January 1, 2012, to 
December 31, 2021. We excluded 55 stage IV disease cases, 13 emergency surgery cases and 34 APR cases (Fig. 1). 
A total of 428 patients were included in this study, and their data were used in the training set. After a median 
follow-up of 59.3 (range 12–132) months, 58 (13.6%) of the 428 patients were confirmed to have a PS (Fig. 1).

Table 1 lists the baseline characteristics of all patients. We noted that 59.5% of the patients in the stoma-free 
group were men, and 55.2% of the patients in the PS group were women. The distance of the lesion from the 
anal verge considerably differed between the stoma-free and PS groups (7.0 vs 4.5 cm). A higher proportion of 
the patients in the PS received neoadjuvant CCRT (82.8% vs 73.0%). In the training dataset, over 60% of the 
patients had stage III disease.

Model development and selection
Seven machine learning models (LR, RF, DT, GNB, XGB, GB, and LGBM) were used to predict the probability 
of PS formation after a sphincter-saving operation. When these candidate prediction models were applied to the 
training dataset, a wide range of AUROC values (0.792–0.988) were obtained. The ROC curves are presented in 
Fig. 2. The accuracy, sensitivity, specificity, and AUROC of all candidate prediction models are listed in Table 2. 
Although RF appeared to be superior to other candidate models, with an accuracy of 0.953 and an AUROC 
of 0.988, we selected DT and LGBM. DT models decisions as tree-like structures that present each possible 
consequence and probability, and LGBM is based on a DT algorithm and used for ranking and classification.

DT and clinical scenarios
A DT model was developed using the training dataset. The Gini index was used to select variables, and the final 
tree was pruned. Eight input variables remained in this model: the distance from the lesion to the anal verge, ASA 
score, age, BMI, presence of heart disease, presence of hypertension, preoperative Hb levels, and preoperative 
CEA levels. Figure 3 presents the final DT with a size of 10 nodes, 12 leaves, and 4 layers. In the DT model, the 
root node represented the distance from the lesion to the anal verge. This node split the sample population into 
2 groups: those with a distance of < 7 cm from the lesion to the anal verge on the left and those with a distance 
of ≥ 7 cm from the lesion to the anal verge on the right. Other variables in the model served as decision conditions 
at the nodes to guide the model in making predictions. The DT model had an accuracy of 0.791, a sensitivity of 
0.757, a specificity 0.824, and an AUROC of 0.793.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16039  | https://doi.org/10.1038/s41598-023-43211-w

www.nature.com/scientificreports/

In Table 3, we present some examples of DT predictions for typical scenarios. For example, both patient 1 
and patient 2 had low rectal cancer and an ASA score of 2. However, the higher BMI and older age of patient 
1 markedly increased the probability of PS formation to 38.8%. Additionally, for patient 3, the distance from 
the lesion to the anal verge was longer than those of patients 1 and 2, which indicated a lower probability of PS 
formation in patient 3. In addition, patient 3 was younger and had a lower BMI and no comorbidities, which 
indicated a higher likelihood of this patient being stoma-free.

LGBM for ranking
According to our normalization of the LGBM model presented in Fig. 4, the distance from the lesion to the 
anal verge had the highest impact index, followed by clinical N stage, age, sex, ASA score, preoperative albumin 
levels, and preoperative CEA levels. Smoking status and presence of comorbidities did not exert a considerable 
effect on PS formation. The LGBM model had an accuracy of 0.926, a sensitivity of 0.905, a specificity of 0.946, 
and an AUROC of 0.980.

Discussion
Treatment for rectal cancer is complex and difficult despite advancements having been made in medical therapy, 
surgical techniques, and instrumentation. For patients with rectal cancer who are suitable for sphincter-saving 
operations, the restoration of bowel continuity after treatment remains a challenge because 3–25% of such 
patients develop a PS5,6. The formation of a PS is usually beyond the expectations of physicians and patients 
and considerably reduces the quality of life of patients. The presence of a stoma was identified as a key factor 
deteriorating the quality of life of patients with colorectal cancer7. Patients living with a stoma may encounter 
stoma-related complications and technical problems, such as bulges or hernias, uncontrollable gas and fecal pas-
sage, odor, peristomal skin irritation, and leakage around the stoma or appliance7,8. Moreover, some problems, 
including changes in body image, psychological distress or anxiety, stigma, embarrassment, and social isola-
tion, may affect daily normal activities7–9. Therefore, the possibility of PS formation should be discussed when 
surgical informed consent is obtained before rectal cancer surgery, even if it was not initially planned10. The 

Figure 1.   Patient selection flowchart. APR abdominoperineal resection, TMUH Taipei Medical University 
Hospital.
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Table 1.   Characteristics of patients.

Variable Overall (N = 428) Stoma-free (n = 370) Permanent stoma (n = 58) p

Age, years 60.8 (± 12.9) 61.0 (± 12.8) 59.4 (± 13.6) 0.426

Sex 0.620

 Male 246 (57.5%) 220 (59.6%) 26 (44.8%)

 Female 182 (42.5%) 150 (40.5%) 32 (55.2%)

BMI, kg/m2 24.0 (± 4.0) 24.1 (± 4.1) 23.8 (± 3.7) 0.749

DM 0.297

 Yes 87 (20.3%) 78 (21.1%) 9 (15.5%)

 No 341 (79.7%) 292 (78.9%) 49 (84.5%)

Hypertension 0.611

 Yes 140 (32.7%) 120 (32.4%) 20 (34.5%)

 No 288 (67.3%) 250 (67.6%) 38 (65.5%)

Heart disease 0.623

 Yes 36 (8.4%) 32 (8.6%) 4 (6.9%)

 No 392 (91.6%) 338 (91.4%) 54 (93.1%)

COPD 0.087

 Yes 5 (1.2%) 3 (0.8%) 2 (3.4%)

 No 423 (98.8%) 367 (99.2%) 56 (96.6%)

CKD 0.973

 Yes 43 (10.0%) 37 (10.0%) 6 (10.3%)

 No 385 (90.0%) 333 (90.0%) 52 (89.7%)

Liver disease 0.914

 Yes 49 (11.4%) 42 (11.4%) 7 (12.1%)

 No 379 (88.6%) 328 (88.6%) 51 (87.9%)

Smoker 0.708

 Yes 65 (15.2%) 57 (15.4%) 8 (13.8%)

 No 363 (84.8%) 313 (84.6%) 50 (86.2%)

Distance to anus verge 6.7 (± 3.2) 7.0 (± 3.1) 4.5 (± 3.0) < 0.001

Clinical T stage 0.239

 T0–1 21 (4.9%) 20 (5.4%) 1 (1.7%)

 T2 61 (14.3%) 53 (14.3%) 8 (13.8%)

 T3 281 (65.7%) 245 (66.2%) 36 (62.1%)

 T4 32 (7.5%) 24 (6.5%) 8 (13.8%)

 Data loss 33 (7.7%) 28 (7.6%) 5 (8.6%)

Clinical N stage 0.622

 N0 125 (29.2%) 111 (30.0%) 14 (24.1%)

 N1 136 (31.8%) 116 (31.4%) 20 (34.5%)

 N2 134 (31.3%) 115 (31.1%) 19 (32.8%)

 Data loss 33 (7.1%) 28 (7.5%) 5 (8.6)

AJCC c TNM stage 0.787

 Stage 0–I 66 (15.4%) 59 (15.9%) 7 (12.1%)

 Stage II 60 (14.0%) 53 (14.3%) 7 (12.1%)

 Stage III 269 (62.9%) 230 (62.2%) 39 (67.2%)

 Data loss 33 (7.7%) 28 (7.6%) 5 (8.6%)

Preoperative CCRT​ 0.098

 Yes 318 (74.3%) 270 (73.0%) 48 (82.8%)

 No 110 (25.7%) 100 (27.0%) 10 (17.2%)

Hb 12.8 (± 1.6) 12.8 (± 1.6) 12.7 (± 1.6) 0.591

Albumin 4.2 (± 0.4) 4.2 (± 0.4) 4.1 (± 0.4) 0.477

CEA 4.8 (± 8.2) 4.7 (± 8.2) 5.9 (± 7.6) 0.339

ASA score 0.086

 I 29 (6.8%) 27 (7.3%) 2 (3.4%)

 II 351 (82.0%) 306 (82.7%) 45 (77.6%)

 III 48 (11.2%) 37 (10.0%) 11 (19.0%)
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goal of obtaining surgical informed consent is to enhance patients’ understanding of the intended procedure, 
increase patient satisfaction, maintain trust between patients and health providers, and minimize litigation 
issues involving surgical procedures3. However, the pathophysiological mechanism underlying the process of 
anastomotic regeneration remains poorly understood, which increases the difficulty of predicting the occur-
rence of anastomotic complications11, despite some risk factors being well-known. Researchers investigated the 
risk factors for and the causes of PS formation12. However, few studies have precisely predicted the probability 
of PS formation before surgery. In the current study, we used AI to define a procedure-specific core informa-
tion set for predicting and calculating PS probability. This information can be used in the process of obtaining 
preoperative informed consent.

AI has been increasingly applied because of improvements in computer power and technology. AI models can 
process large amounts of data and can extract information from complex medical images that may be difficult 
to detect through human analysis alone13. Deep learning, an algorithm that uses artificial neural networks to 
perform representation learning on data, has been applied in numerous areas of health care, including diagnos-
tic imaging analysis, pathological interpretation, disease prognosis prediction, genetic analysis, simulation of 
physiological conditions, and drug design2,14. In some cases, AI models have exhibited performance comparable 

Figure 2.   Area under the receiver operating characteristic for all candidate models used to predict the 
possibility of permanent stoma formation after sphincter-saving operation.

Table 2.   Accuracy, sensitivity, specificity, and area under the receiver operating characteristic for all candidate 
models used to predict the possibility of permanent stoma formation after sphincter-saving operation based on 
both the training dataset and testing dataset.

Dataset Model Accuracy Sensitivity Specificity AUROC

Train dataset (n = 366)

Logistic regression 0.728 0.720 0.736 0.812

Random forest 0.985 0.986 0.983 0.999

Decision tree 0.976 0.976 0.976 0.976

Gaussian Naïve Bayes 0.693 0.557 0.828 0.782

Extreme gradient boosting 0.990 1.000 0.980 0.999

Gradient boosting 0.973 0.983 0.963 0.996

Light gradient Boosting machine 1.000 1.000 1.000 1.000

Testing dataset (n = 62)

Logistic regression 0.696 0.716 0.676 0.792

Random forest 0.953 0.959 0.946 0.988

Decision tree 0.791 0.757 0.824 0.793

Gaussian Naïve Bayes 0.757 0.568 0.946 0.844

Extreme gradient boosting 0.892 0.932 0.851 0.947

Gradient boosting 0.932 0.959 0.905 0.952

Light gradient boosting machine 0.926 0.905 0.946 0.980
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Figure 3.   Decision tree for permanent stoma risk prediction.

Table 3.   Prediction examples for typical scenarios based on the decision tree model.

Decision tree layer Chance node Patient 1 Patient 2 Patient 3

Layer 1 Distance from the lesion to the anal verge, cm 5 5 10

Layer 2
ASA score 2 2 2

Hb, g/dL 11.8 13.8 16.1

Layer 3
BMI, kg/m2 29.2 22.5 20.3

Heart disease No No No

Layer 4

Age, years 71 43 44

Hypertension No No No

CEA, ng/mL 1.4 1.6 0.5

Stoma risk in percent 38.8% 6.7% 0.3%

Figure 4.   Normalized importance of risk factors for permanent stoma determined using light gradient boosting 
machine model.
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to that of human experts. In the field of colorectal cancer, Bychkov et al.15 reported that deep learning achieved 
an expert-level accuracy for pathological interpretation. In addition, deep learning models based on magnetic 
resonance imaging and radiomics data have exhibited satisfactory performance in predicting the pathological 
complete response of patients with locally advanced rectal cancer after neoadjuvant CCRT and have thus provided 
a diagnostic reference for clinicians16,17. AI models have also been used to predict the possibility of postopera-
tive leakage18, lymph node metastasis19, distant metastasis20, and disease survival21. These predictive results may 
affect clinicians’ decisions, lead to changes in disease therapy, and aid in developing new treatment methods. 
For example, Ichimasa et al.22 reported that AI significantly reduced the occurrence of unnecessary additional 
surgery after the endoscopic resection of T1 colorectal cancer without missing lymph node metastasis positiv-
ity. Most analytical and predictive methods used to analyze patients with rectal cancer after sphincter-saving 
operations have been based on Cox proportional hazard regression, Kaplan–Meier analysis, and log-rank tests. 
Back et al.10 developed an AI-based model to predict the probability of PS. They determined that GB and Naïve 
Bayes were the most satisfactory models, with an estimated AUROC of 0.68 (0.63–0.72). However, their study 
used registry data. Some potentially crucial predictors, including patient comorbidities, CEA levels, nutritional 
status, and smoking status, were not included in the AI analysis.

In the current study, we included several routinely available preoperative data in our analysis. These data 
included smoking history, comorbidities, and preoperative laboratory data. We used 7 prediction models and 
selected the DT and LightGBM models. Random forests generally outperform decision trees for several reasons: 
They effectively address the issue of overfitting by aggregating the outputs of multiple decision trees to formulate a 
final prediction. The DT is a tree-like model of decisions that presents each possible consequence and probability, 
and the LightGBM model is based on DT algorithms and used for ranking and classification. The accuracies of 
the RF, DT and LightGBM models were 95%, 79% and 93%, respectively. The AUROC values of the RF, DT and 
LightGBM models were 0.99, 0.79 and 0.98, respectively. All models exhibited excellent prediction ability. The 
DT algorithm is widely used in medicine because it enables the comprehensive representation of a model. A 
decision tree integrates certain choices, while a random forest merges multiple decision trees. Consequently, this 
constitutes a lengthier albeit slower procedure. Conversely, a decision tree is swift and functions smoothly with 
extensive datasets, particularly those of linear nature. Rigorous training is essential for the random forest model. 
Decision tree is also known for its interpretability as one of the explainable AI algorithm (XAI). The allocation 
rule of a DT can be easily visualized by plotting the tree structure. Most importantly, Standard computational 
resources are sufficient for the incorporation of tree-based models into electronic decision support systems and 
thus, improve shared decision making process in clinical practice. Our DT model revealed that a shorter distance 
from the lesion to the anal verge, older age, and higher BMI were risk factors for PS formation. Therefore, patients 
with these risk factors should be informed of the risk of PS formation when informed consent is obtained from 
them prior to an operation. The LightGBM model is a GB framework that uses tree-based learning algorithms23. 
The LightGBM algorithm can effectively handle the relationships, distributions, and ranking of data. According 
to our LightGBM model, the key risk factors for PS, in descending order, were the distance of the lesion from 
the anal verge, clinical N stage, age, sex, ASA score, and preoperative albumin and CEA levels.

In patients with rectal cancer, the distance of the lesion from the anal verge is among the most crucial factors 
affecting the feasibility of a sphincter-saving operation. The most challenging aspect of rectal cancer surgery is 
ensuring oncologically safe resection within the narrow pelvis while preserving the anus and sphincter complex24. 
The anastomosis being in a lower position increases the risk of complications, such as anastomotic leak, stric-
ture, and anorectal incontinence25. Anastomotic leak is the main reason for PS formation. Lindgren et al.26 and 
Jutesten et al.27 have reported that over 56–65% of patients with symptomatic anastomotic leak develop a PS. 
Clinical N stage positivity indicates a more advanced cancer stage, with stage III being the minimum. Patients 
with cancer at such a stage have a higher chance of developing local recurrence, which is another reason for PS 
formation because it causes mechanical bowel obstruction28. Neoadjuvant CCRT is required for such patients to 
reduce the recurrence rate. However, some studies have identified neoadjuvant CCRT as a common risk factor 
for PS formation10,27. Tabchouri et al.29 reported that patients with rectal cancer receiving neoadjuvant CCRT had 
higher incidence rates of postoperative anastomotic leakage and sepsis. In addition, neoadjuvant radiation has 
been increasingly associated with postoperative bowel dysfunction, including low anterior resection syndrome30. 
Some postoperative patients with poor sphincter function may have a higher risk of PS formation. Third, CEA 
is a complex glycoprotein produced by 90% of colorectal cancers31. Since the 1970s, postoperative measurement 
of the CEA level has been included in the follow-up surveillance procedure for patients with colorectal cancer. 
Early increased postoperative CEA levels are often a sign of remaining cancer tissues, whereas a later increase 
indicates cancer recurrence32. Preoperative CEA has been identified as a predictor of recurrence, resectability, 
and survival after the resection of colorectal cancer32,33. A higher preoperative CEA level is associated with a 
higher local recurrence rate and an increased probability of PS formation.

Limitations
This study has some limitations that should be addressed. First, all patients were included from a single center. 
Although we included more than 400 patients in this analysis, the amount of patient data remained inadequate. 
Inclusion of a large amount of data from more patients would increase the accuracy of the AI model. Therefore, 
data should be collected from multiple centers to develop benchmark databases. Second, this study had a ret-
rospective design, and several forms of data were missing from the collected medical records. Missing data can 
reduce the predictive power of an AI model. Third, information on other, more specific clinical items should be 
incorporated to improve the predictive ability of the AI model. Such information may include socioeconomic 
class, medication use, sphincter function, and tumor histological characteristics determined in preoperative 
colonoscopy biopsy. Fourth, patient data are often imbalanced. Using imbalanced data in model training can 
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reduce the model performance. Under-sampling the majority group can be used to solve this problem. However, 
this solution is suboptimal. Another solution to this problem is the generation of synthetic data. Fifth, external 
validation was not performed. Data from other centers are required to verify the discriminatory ability of this 
model. Finally, the internal mechanisms of AI analysis remain difficult to understand. Collaboration between 
researchers with expertise in biomedical research and machine learning is necessary to improve the performance 
of AI models.

Conclusions
The present study’s integration of AI with clinically available preoperative data demonstrated potential for use 
in predicting PS formation after a sphincter-saving operation. Our model exhibited excellent predictive ability 
and can improve the process of obtaining informed consent from patients. In the future, we will optimize the 
system by collecting more clinical data and adding data from other centers.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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