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Identification and validation 
of ferroptosis‑related biomarkers 
and the related pathogenesis 
in precancerous lesions of gastric 
cancer
Yuhui Kuang 1, Kuo Yang 2, Lingkai Meng 1, Yijia Mao 2, Fangbiao Xu 3 & Huayi Liu 2*

Using advanced bioinformatics techniques, we conducted an analysis of ferroptosis‑related genes 
(FRGs) in precancerous lesions of gastric cancer (PLGC). We also investigated their connection to 
immune cell infiltration and diagnostic value, ultimately identifying new molecular targets that could 
be used for PLGC patient treatment. The Gene Expression Omnibus (GEO) and FerrDb V2 databases 
were used to identify FRGs. These genes were analysed via ClueGO pathways and Gene Ontology (GO) 
enrichment analysis, as well as single‑cell dataset GSE134520 analysis. A machine learning model 
was applied to identify hub genes associated with ferroptosis in PLGC patients. Receiver Operating 
Characteristics (ROC) curve analysis was conducted to verify the diagnostic efficacy of these genes, 
and a PLGC diagnosis model nomogram was established based on hub genes. R software was utilized 
to conduct functional, pathway, gene set enrichment analysis (GSEA) and gene set variation analysis 
(GSVA) on the identified diagnostic genes. Hub gene expression levels and survival times in gastric 
cancer were analysed using online databases to determine the prognostic value of these genes. 
MCPcounter and single‑sample gene set enrichment analysis (ssGSEA) algorithms were used to 
investigate the correlation between hub genes and immune cells. Finally, noncoding RNA regulatory 
mechanisms and transcription factor regulatory networks for hub genes were mapped using multiple 
databases. Eventually, we identified 23 ferroptosis‑related genes in PLGC. Enrichment analyses 
showed that ferroptosis‑related genes were closely associated with iron uptake and transport and 
ferroptosis in the development of PLGC. After differential analysis using machine learning algorithms, 
we identified four hub genes in PLGC patients, including MYB, CYB5R1, LIFR and DPP4. Consequently, 
we established a ferroptosis diagnosis model nomogram. GSVA and GSEA mutual verification 
analysis helped uncover potential regulatory mechanisms of hub genes. MCPcounter and ssGSEA 
analysed immune infiltration in the disease and indicated that B cells and parainflammation played 
an important role in disease progression. Finally, we constructed noncoding RNA regulatory networks 
and transcription factor regulatory networks. Our study identified ferroptosis‑related diagnostic genes 
and therapeutic targets for PLGC, providing novel insights and a theoretical foundation for research 
into the molecular mechanisms, clinical diagnosis, and treatment of this disease.

Precancerous lesions of gastric cancer (PLGC) refer to the early stages of gastric cancer. The widely recognized 
worldwide progression model for gastric cancer is “normal gastric mucosa—chronic superficial gastritis—chronic 
atrophic gastritis—intestinal metaplasia—dysplasia—gastric cancer”. This series of stages, known commonly 
as the Correa cascade reaction, manifests in the gastric mucosa before the initiation of gastric  cancer1. Early 
identification of these precancerous lesions can reduce the incidence of gastric cancer. Gastric cancer (GC) 
is one of the most common cancers in the world, ranking fourth in incidence and third in mortality among 
malignant  tumours2. Despite various treatment methods, including surgery, radiotherapy and chemotherapy, 
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targeted therapy, immunotherapy, and traditional Chinese medicine, the treatment effect for gastric cancer 
remains limited.

Screening for GC precancerous lesions primarily relies on gastroscopy, an invasive and costly procedure 
that decreases its widespread use. There are also no current serum biomarkers for diagnosing PLGC. Recently, 
efforts to discover novel biological indicators for PLGC diagnosis and investigate PLGC’s immune cell infiltra-
tion components have increased, potentially revolutionizing the screening, diagnosis, and treatment of PLGC 
and mitigating the advancement and initiation of gastric cancer.

Ferroptosis is a regulated cell death mechanism first introduced in 2012 that is primarily induced by iron-
mediated oxidative damage, lipid peroxidation, and cellular membrane  injury3. In addition to its strong implica-
tions in the proliferation of numerous diseases, it has recently become an important area of interest in cancer 
 research4. Emerging studies indicate that ferroptosis significantly participates in the progression and onset of 
gastrointestinal diseases such as inflammatory bowel  disease5, gastric  cancer6, and colorectal  cancer7. Interest-
ingly, specific genes linked to ferroptosis exhibit potential as biomarkers for predicting gastric  cancer8.

Currently, there is no research investigating the molecular mechanisms linking ferroptosis and PLGC. There-
fore, this study aims to analyse existing datasets related to PLGC to identify diagnostic genes and therapeutic 
targets associated with ferroptosis and PLGC. Our analysis will focus on key genes and their potential pathways, 
enabling us to conduct preliminary research into their effects and provide new insights for clinical and basic 
research into PLGC. A roadmap of our research approach is illustrated (Fig. 1).

Materials and methods
Data source and normalization
This study utilized the keywords “precancerous lesion of gastric cancer” for retrieval and screening purposes, 
ultimately acquiring two bulk RNA-seq datasets (GSE78523 and GSE130823) related to PLGC. Specifically, the 
GSE130823 dataset contained 31 PLGC tumour samples and 47 gastritis controls, while the GSE78523 dataset 
included 14 PLGC samples and 15 healthy control samples after excluding intestinal epithelial samples that did 
not progress to cancer during follow-up. All the relevant datasets used in this study were retrieved from the 
Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/). The FerrDb V2 database was 
 searched9 (http:// www. zhoun an. org/ ferrdb) to obtain the ferroptosis-related gene set. The raw count matrix was 
log2-corrected using the normalizeBetweenArrays function of the  limma10 package.

Identification of differentially expressed genes and ferroptosis‑related genes
This study employed the R package  Limma10 to conduct differential analysis on each of the two datasets. Probe 
sets that lacked corresponding gene symbols were removed, and genes with multiple probe sets were averaged. 
Genes exhibiting a P value < 0.05 and |fold change|≥ 1 were identified as differentially expressed genes. The 
Venn diagram between the two datasets and the ferroptosis-related gene set was analysed and drawn using the 
R package  VennDiagram11, with intersecting genes defined as key genes related to ferroptosis. Using data from 
the GSE130823 dataset,  Spearman12 correlation analysis was performed on the ferroptosis-related genes. Heat-
maps were subsequently plotted to illustrate the expression levels of the ferroptosis-related gene set for samples 
from both datasets.

Expression of ferroptosis‑related gene sets in different cells of PLGC
To further validate the relevance of ferroptosis in PLGC progression, this study utilized the  UCell13 package to 
analyse the expression of the ferroptosis-related gene set in various cells from patient tissues with intestinal epi-
thelial dysplasia taken from the GSE134520 single-cell dataset. The GSE134520 dataset comprised four patients 
with severe intestinal epithelial dysplasia. Batch effects were removed using harmony, and tSNE dimensionality 

Figure 1.  Flow chart illustrating the study design and methodology.

https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb
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reduction and singleR cell annotation were used before analysing the expression of the ferroptosis-related gene 
set in different cells and plotting an expression  profile14.

Enrichment analyses of ferroptosis‑related genes
In this study, we used the R package clusterProfiler to conduct Gene Ontology (GO) analysis on ferroptosis-
related genes, as well as ClueGO for pathway enrichment analysis from the KEGG  database15. The GO database 
provides comprehensive gene annotation information, while the ClueGO-derived pathway analysis helps us 
understand the biological processes, signalling pathways, and other functions that these genes may activate. 
This approach is an effective means of analysing the potential molecular mechanisms underlying these genes.

Identification of ferroptosis‑related hub genes by machine learning
This study utilized four different machine learning models, including random  forests16 (RF), support vector 
 machines17 (SVM), eXtreme Gradient  Boosting18 (XGBoost), and generalized linear  models19 (GLM), to help 
screen for core genes within the ferroptosis-related gene set. By identifying the top 10 shared features from each 
of the four models, we identified hub genes related to ferroptosis in PLGC through intersection analysis of these 
identified genes.

Diagnostic value and validation of hub genes
To further explore the diagnostic value of hub genes, this study analysed and validated their diagnostic efficacy in 
two datasets using the R package  pROC20. For clinical convenience, a logistic regression model was constructed 
to build a PLGC diagnostic model based on ferroptosis-related hub genes, and a nomogram was drawn. The 
reliability of the model was verified by decision curve analysis (DCA) and the C-index.

Gene set enrichment analysis (GSEA) and gene set variationt analysis (GSVA) of hub genes
To more accurately explore the differences in signalling pathway activation caused by differential expression 
of hub genes in diseases, this study divided the samples into two groups based on the median expression level 
of hub genes: high expression and low expression. Using the signalling pathway dataset from the MSigDB 
 database21 (https:// www. gsea- msigdb. org/ gsea/ msigdb) as background, GSEA and GSVA enrichment analyses 
were conducted. Both GSEA and GSVA algorithms are based on gene expression levels and calculate the differ-
ences in pathway activation between the two groups. To ensure accuracy, this study used both GSEA and GSVA 
algorithms to mutually verify the results.

Survival analysis
We conducted an analysis of the correlation between the expression levels of hub genes in gastric cancer and 
survival time using the Kaplan‒Meier Plotter online survival analysis website (http:// kmplot. com/ analy sis/). 
This helped us understand the prognostic value of analysing hub genes.

Immune infiltration analysis
To further analyse the immune microenvironment of PLGC patients’ lesion tissue, this study used the GSE130823 
dataset to analyse the infiltration of immune cells through the  MCPcounter22 algorithm, analysed the infiltration 
and immune function of immune cells through single-sample gene set enrichment analysis (ssGSEA), analysed 
the differences in immune cells between the PLGC and control groups through the  limma10 package, and analysed 
the correlation between hub genes and immune cells through the  Spearman12 method.

LncRNA‑miRNA and transcription factor (TF) prediction of hub genes
To further investigate the regulatory patterns of hub genes, this study screened for miRNAs that could regulate 
hub genes by using three online databases,  miRTarBase23 (https:// mirta rbase. cuhk. edu. cn),  Starbase24 (https:// 
starb ase. sysu. edu. cn/ starb ase2), and  TargetScan25 (https:// www. targe tscan. org). Then, by using the  spongeScan26 
database (https:// spong escan. rc. ufl. edu/), lncRNAs that could regulate these miRNAs were identified. The TF 
prediction was based on the Enrichr  database27 (https:// maaya nlab. cloud/ Enric hr/) and involved selecting human 
transcription factors with a P value less than 0.05. Finally, the information was imported into Cytoscape software 
to generate a network regulatory diagram.

Results
Identification of differentially expressed genes and ferroptosis‑related genes
In this study, we conducted differential analysis on two chip datasets, GSE78523 and GSE130823, by sorting and 
analysing the data. The resulting differential volcano plots can be seen (Fig. 2A GSE130823, Fig. 2B GSE78523). 
A total of 1222 differentially expressed genes were identified in the GSE78523 dataset, while 5980 differentially 
expressed genes were identified in the GSE130823 dataset. Relevant gene information related to ferroptosis 
drivers, markers, and other parameters was collected from the FerrDb V2 database, and a total of 484 genes 
related to ferroptosis were identified. The intersection of the three datasets yielded 23 ferroptosis-related genes 
(Fig. 2C), which were used as a set in PLGC. We plotted heatmaps to better understand the expression of the 
ferroptosis-related gene set in each dataset (Fig. 2E GSE130823, Fig. 2F GSE78523). Next, we analysed the cor-
relation between ferroptosis-related genes and created a correlation matrix heatmap (Fig. 2D). As demonstrated 
by the data, most genes showed a high degree of correlation with one another, indicating that the genes were 
closely related and that the gene set had some consistency in function, which is worth further investigation.

https://www.gsea-msigdb.org/gsea/msigdb
http://kmplot.com/analysis/
https://mirtarbase.cuhk.edu.cn
https://starbase.sysu.edu.cn/starbase2
https://starbase.sysu.edu.cn/starbase2
https://www.targetscan.org
https://spongescan.rc.ufl.edu/
https://maayanlab.cloud/Enrichr/
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Analysis of ferroptosis‑related genes in single‑cell RNA‑seq
To gain further insights into the expression patterns of the ferroptosis-related gene sets in PLGC intestinal 
epithelial transformation, a series of single-cell analysis techniques were employed to process the dataset and 
generate expression profiles for the ferroptosis-related gene sets across various cells (Fig. 3). Following singleR 
cell annotation, it was observed that the samples of intestinal epithelial transformation consisted of a relatively 
higher proportion of epithelial cells, which is consistent with the pathological progression of intestinal epithe-
lial transformation in PLGC (Fig. 3A). Remarkably, the expression of the ferroptosis gene set was exclusively 
prominent in epithelial cells, indicating that ferroptosis plays a crucial role in the process of intestinal epithelial 
transformation (Fig. 3B). To provide further insights into the expression patterns of individual genes across dif-
ferent cells, we produced single-gene single-cell expression profiles (Fig. 3C). These profiles revealed significant 
expression levels of MUC1 and DPP4 in epithelial cells, which warrants further investigation.

Enrichment analyses of ferroptosis‑related genes
This study revealed enrichment of the PLGC ferroptosis-related gene set in signalling pathways and biological 
processes such as iron uptake and transport, mineral absorption, ferroptosis, and SUMOylation of intracellular 
receptors (Fig. 4A,B).

Identification of ferroptosis‑related hub genes
We employed four different machine-learning algorithms to assist in selecting core genes within the ferroptosis 
gene set. ROC curves were used to evaluate the performance of these four models. As shown in Fig. 4C, each 
model achieved high diagnostic efficiency; RF had an AUC value of 0.869, SVM had 0.905, XGB had 0.897, and 
GLM had 0.861. We also assessed the stability of the models by plotting the residual distribution graph and 
residual boxplot, as shown in Fig. 4D and F, respectively. These graphs demonstrate that all four models are stable 
and have practical value. We then extracted the top ten contributing genes from each model and took their inter-
section (Fig. 4E,G), ultimately identifying four core genes: MYB, CYB5R1, LIFR, and DPP4. Finally, we evaluated 
the diagnostic efficacy of the core genes across multiple datasets (Fig. 5A GSE130823, Fig. 5B GSE78523). The 

Figure 2.  Differential analysis and identification of ferroptosis-related differentially expressed genes. (A) 
Volcano plot displaying differential gene expression in GSE130823. (B) Volcano plot illustrating differential 
gene expression in GSE78523. (C) Venn diagram showcasing the overlap between differentially expressed 
genes and ferroptosis-related genes in both datasets. (D) Correlation heatmap revealing the interplay among 
the differentially expressed ferroptosis-related genes. (E) Heatmap delineating the expression pattern of the 
differentially expressed ferroptosis-related genes in GSE130823. (F) Heatmap illustrating the expression pattern 
of the differentially expressed ferroptosis-related genes in GSE78523.
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AUC values of the four hub genes were consistently above 0.83 in both datasets, indicating their high diagnostic 
efficiency and confirming that using machine learning to select core genes is a reliable approach.

Diagnostic value and validation of hub genes
To further investigate the diagnostic value of the hub genes and facilitate their clinical application, we created 
a column chart (Fig. 5C). We also used the Hosmer‒Lemeshow test to evaluate the accuracy of our model 
(Fig. 5D), achieving a P value of 0.928, which indicates that our model is highly accurate. Additionally, we plot-
ted the decision curve analysis (DCA) curve (Fig. 5E), which revealed a high net benefit gain and demonstrated 
the potential for good clinical application. Furthermore, we plotted the ROC curve (Fig. 5F), which revealed an 
AUC value of 0.891. This indicates that our model has a high accuracy rate of 0.891 when diagnosing PLGC and 
provides reliable diagnostic results.

Figure 3.  The investigation of ferroptosis-related genes within the single-cell dataset GSE134520 has been 
executed. (A) The cartography of individual cells is annotated. (B) The density of gene expression distribution 
pertaining to the ferroptosis-related gene set exhibited in the cellular population. (C) An examination of the 
distribution densities of each specific ferroptosis-related gene within constituent cells is undertaken.
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Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of hub genes
To further investigate the regulatory role of hub genes in diseases, we utilized two algorithms, GSEA and GSVA, 
to analyse and cross-validate the pathways activated by hub genes (Fig. 6). Based on the results, we found that 
CYB5R1 is downregulated, while both the oxidative phosphorylation and citrate cycle TCA cycle signalling 
pathways are activated. Interestingly, we also discovered that these signalling pathways are activated in the high 
DPP4 expression group, along with other disease signalling pathways, such as Parkinson’s disease. Regarding 
LIFR GSEA (Fig. 6A), we found that the oxidative phosphorylation pathway was activated in the downregulated 
group; however, no significant differences were observed in the GSVA analysis (Fig. 6E). We also found that the 
O-glycan biosynthesis pathway and some sugar and fat metabolism signalling pathways, such as fatty acid and 
starch and sucrose metabolism, showed significant differences in GSVA analysis and were activated in the LIFR 
high-expression group.

Figure 4.  Enrichment analysis of ferroptosis-related differentially expressed genes in GO and KEGG pathways, 
as well as identification of hub genes. (A) GO enrichment analysis of ferroptosis-related differentially expressed 
genes. (B) KEGG enrichment analysis of ferroptosis-related differentially expressed genes. (C) ROC curves of 
all four machine learning models. (D) Residual distribution plots of machine learning models. (E) Histogram 
of feature contribution degrees of machine learning models. (F) Boxplots of residual values of machine learning 
models. (G) Venn diagram illustrating the overlap of features among all four machine learning models.
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Many pathways were activated by high or low MYB expression (Fig. 6D GSEA, 6F GSVA). Notably, we 
observed that the proteasome and ribosome signalling pathways were activated in the MYB high-expression 
group, while some sugar and fat metabolism signalling pathways, such as starch and sucrose metabolism and 

Figure 5.  Hub genes and construction of the diagnostic model. (A) ROC curves of hub genes in GSE134520. 
(B) ROC curves of hub genes in GSE78523. (C) Nomogram of the diagnostic model. (D) C-index plot of the 
model. (E) DCA curve of the model. (F) ROC curves of the model.
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O-glycan biosynthesis, were activated in the MYB downregulated group. Furthermore, it is interesting to note 
that the O-glycan biosynthesis signalling pathway was reflected in the GSVA of all four hub genes.

Survival analysis
We performed survival analysis on the correlation between hub gene expression levels and patient survival using 
the Kaplan‒Meier Plotter, a user-friendly and efficient online tool based on cancer-related datasets from the 
GEO database. Our analysis revealed that low expression levels of the CYB5R1 and LIFR genes were significantly 
associated with longer patient survival times, while high expression levels of the DPP4 and MYB genes were 
significantly associated with longer patient survival times (Fig. 6I–L).

Immune infiltration analysis
To provide an accurate description of immune infiltration in PLGC, we used two algorithms—MCPcounter and 
ssGSEA—to calculate immune infiltration and function (Fig. 7A,C,D). The MCPcounter algorithm revealed 
significant decreases in B lineage and endothelial cells in the PLGC group. Meanwhile, the ssGSEA results indi-
cated significant increases in activated dendritic cells (aDCs), B cells, NK cells, T helper cells, T follicular helper 
cells (Tfhs), and tumour-infiltrating lymphocytes (TILs) in the PLGC group. Furthermore, the immune function 
scoring results demonstrated significant increases in APC costimulation and parainflammation, while the type 
II IFN response was significantly decreased in the PLGC group. During the correlation analysis (Fig. 7B,E), we 

Figure 6.  GSVA analysis, GSEA analysis, and survival analysis of hub genes. (A-D) GSEA analysis of hub genes. 
(E–H) GSVA analysis of hub genes. (I-L) Survival analysis of hub genes.
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found a significant and positive correlation between APC costimulation and parainflammation with two genes, 
MYB and DPP4, both of which are associated with good prognosis when highly expressed. A significant and 
negative correlation was observed between APC costimulation and parainflammation with LIFR and CYB5R1, 
both of which are associated with poor prognosis when highly expressed. Additionally, MYB and DPP4 showed 
a significant negative correlation with the type II IFN response.

ceRNA prediction and transcription factor of hub genes
To further explore the noncoding RNA regulatory mechanisms and transcription factor regulatory networks of 
hub genes, we searched multiple online databases and constructed a network graph to display their regulatory 
properties (Fig. 8). In total, we identified three transcription factors, 40 miRNAs, and 11 lncRNAs. Among them, 
hsa-miR-150-5p was found to be associated with four hub genes and was regulated by LINC01002.

Discussion
Gastric cancer, a prevalent malignant tumour type, primarily originates from preneoplastic lesions such as 
chronic atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma in situ. Notably, the appearance of 
atrophic gastritis and intestinal epithelial metaplasia mark critical stages in the progression towards gastric 

Figure 7.  Immunological analysis. (A) MCPcounter immunological analysis. (B) Correlation analysis between 
hub genes and immune cells using MCPcounter. (C) ssGSEA analysis of immune cells. (D) ssGSEA analysis of 
immune functions. (E) Correlation analysis between hub genes and ssGSEA immune-related parameters.
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cancer. Therefore, to inhibit gastric cancer development, early detection and intervention of these precursor 
lesions are of pivotal importance.

Although iron is an indispensable nutrient for the human body, its overaccumulation can induce oxidative 
stress and tissue damage, which in turn are associated with various diseases, including cancer. Existing research 
points towards an increased risk of gastric cancer in relation to excessive iron, possibly driving the inflammation 
of gastric mucosa and leading to the accumulation and destruction of reactive oxygen species (ROS) in cellu-
lar  components28. The relationship between iron-induced programmed cell death (ferroptosis) and precursor 
lesions of gastric cancer has been probed. The regulation of ferroptosis might thus be a promising preventive and 
therapeutic strategy for such precursor lesions, and this study potentially elucidates the mechanism that links 
ferroptosis with gastric precancerous lesions.

This paper utilized a comprehensive database search and in-depth analysis approach to identify 23 possible 
ferroptosis-related genes linked to PLGC. The identified genes were further validated within a single-cell dataset. 
A diagnostic model was then constructed using four machine learning methods, leading to the identification 
of MYB, CYB5R1, LIFR, and DPP4 as the prominent genes, each with an AUC value exceeding 0.83. The study 
consistently found that DPP4 ranked high in feature contribution analyses, further confirming its importance 
in the diagnostic model. Based on the nomogram, the expression levels of DPP4 and LIFR directly affected 
disease diagnosis, where patients with high DPP4 expression were more likely to have the disease, while LIFR 
had the opposite effect. Evaluation of the nomogram model using the C-index, DCA curve, and ROC curve 
demonstrated its effectiveness in diagnosing diseases. Moreover, variations in immune cell infiltration were 
evaluated using immunological methods such as ssGSEA and MCPcounter, revealing a significant decrease in 
the B-cell population within the PLGC group. This is concurrent with research suggesting the recruitment of 
B cells in providing an early response to Helicobacter pylori (H. pylori) infection by combating infection within 
the gastric  mucosa29. However, disproportionate immune reactions may exacerbate chronic inflammation, fos-
tering a cascade of reactions, inducing DNA impairment, and ultimately escalating cancer progression. As the 
inflammation becomes chronic, B-cell infiltration decreases and eventually becomes subdued; simultaneously, 
T cells and NK cells also show a significant reduction in their dissemination, indicating an urgent need to alle-
viate chronic inflammation, failing which the number of immune cells will eventually decrease, engendering a 
weakened immune response and establishing a conducive environment for carcinogenesis. Parainflammation 
within the tumour microenvironment contrasted with our studies, as we noted a heightened level of parainflam-
mation within the PLGC group. This variation corresponded positively with MYB and DPP4; however, it showed 

Figure 8.  Regulatory network of lncRNA–miRNA–mRNA.
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an inverse relationship with LIFR and CYB5R1. This implies that parainflammation could play a pivotal role in 
the progression of PLGC, possibly affecting the onset and development of the disease in conjunction with other 
pathophysiological occurrences. Its function as an adaptive response of the immune system to minor tissue 
stress, transitioning between the basal state and an inflamed state, is well documented. Parainflammation aims 
to restore tissue function and homeostasis under normal  conditions30. However, it could also act as a risk factor, 
inducing p53 mutations and driving cancer  progression31. Meanwhile, several studies have demonstrated that 
parainflammation may accelerate ageing, promote atherosclerosis formation, and have other harmful  effects32. 
Based on the results of this study, it is speculated that in PLGC, parainflammation may have exceeded the 
required amount for its physiological function and engendered a state of coexistence between physiological and 
pathological changes. Currently, no fundamental research validates the association between parainflammation 
and PLGC. To summarize, there needs to be a balance in parainflammation levels; any excessive levels could 
actively induce pathological transformations, while inadequate levels could contribute to a loss of physiological 
functions. Therefore, this issue demands more extensive research in the field.

Research indicates that CYB5R1 (NADH-cytochrome b5 reductase 1) synergizes with POR (cytochrome P450 
oxidoreductase) to enhance the synthesis of harmful PLOOH (phospholipid hydroperoxide), thereby inducing 
cell  ferroptosis33. Our research employed GSVA and GSEA analyses, which suggest that decreased levels of 
CYB5R1 trigger the oxidative phosphorylation and citrate cycle TCA signalling pathways. Increasing research 
attention is currently focused on cancer energy metabolism. Studies suggest that the tumour microenvironment 
is capable of modifying the energy metabolism of tumour cells, shifting from glucose oxidative phosphorylation 
and mitochondrial respiration to the use of aerobic glycolysis as the primary energy mechanism. Despite this, 
tumour cells thrive, continuously amassing energy for proliferation, a process known as the Warburg  effect34. 
Parallel to our findings, lower CYB5R1 expression in gastric cancer is associated with extended survival rates 
by fostering normal cellular energy metabolism and decelerating the transformation process from intestinal 
metaplasia to cancer. Our findings suggest that CYB5R1 could be a potential therapeutic target to impede fer-
roptosis and delay the progression of PLGC. Furthermore, research on brain glioma has shown regulation of 
CYB5R1 through demethylation drugs such as 5’-aza-2’-deoxycytidine (aza-dC)35 introduces new perspectives 
for the treatment of PLGC.

Research suggests that DPP4 (dipeptidyl peptidase 4) may incite lipid peroxidation, thereby accelerating 
 ferroptosis36. DPP4 has also been observed to suppress GLP1 (glucagon-like peptide 1) activity, resulting in 
increased blood glucose  levels37. Furthermore, another study identified GLP1 as a significant trigger for cancer 
precursor  lesions38. Our research indicates that DPP4 exhibits high expression in the PLGC group, and thus, it 
merits further exploration to ascertain whether this influence is exerted through GLP1 inhibition, a potential 
risk factor for cancer precursor lesions, or by fostering ferroptosis in cancerous cells to delay cancer progres-
sion. This investigation found that oxidative phosphorylation was also heightened in the DPP4 high-expression 
group, contradicting the energy metabolism mechanism of CYB5R1. Although there exists no direct research 
probing the correlation between the oxidative phosphorylation signalling pathway and DPP4, studies confirm 
that elevated DPP4 expression can suppress GLP1, thereby augmenting blood glucose levels. This phenomenon 
might stimulate the activation of the oxidative phosphorylation signalling pathway, enhancing the energy supply 
in the tumour microenvironment and potentially delaying cancer progression. This hypothesis requires additional 
research and verification, not only in the context of cancer precursor lesions but also in gastric cancer, given that 
high DPP4 expression has been associated with a significant improvement in patient survival time.

The proto-oncogene Myb (MYB), known for its role in promoting the progression of various types of cancer, 
is currently under investigation as a potential therapeutic  target39. Despite the lack of studies that explore the 
relationship between MYB and gastric cancer or PLGC, our research has demonstrated its application in therapy. 
We found that high MYB expression in gastric cancer patients had an inverse relationship with their survival 
rate, adding a new twist to its established role as a proto-oncogene. The proteasome and ribosome signalling 
pathways, activated by high MYB expression, may influence this outcome.

Moreover, research indicates a decrease in the expression of the leukaemia inhibitory factor receptor (LIFR) in 
liver cancer, which leads to the promotion of ferroptosis and inhibition of tumour  progression40. Concomitantly, 
an increase in LIFR expression has been linked to longer patient  survival41. However, in our study, high LIFR 
expression corresponded with a shorter patient survival time, indicating the risky assumption of generalizing 
liver cancer results. LIFR, acting as a receptor subunit for leukaemia inhibitor factor (LIF), is said to boost gastric 
cancer cell proliferation, migration, and invasion through the LIFR-Hippo-YAP  pathway42. It should be noted 
that LIF is functionless when LIFR expression is silenced. Although some studies have proposed that both LIF 
and LIFR can hinder tumour  progression43, Guan et al.44 showed that lidocaine impairs gastric cancer develop-
ment by upregulating LIFR. Our findings associate high LIFR expression with poor prognosis in gastric cancer 
patients. An O-glycan biosynthesis signalling pathway surfaced as the most significantly activated pathway in 
the high-expression group based on GSVA analysis, possibly promoting cancer precursor lesion progression as 
a downstream pathway of LIFR activation. To summarize, our results shed light on the complex role of LIFR in 
various types of cancer, indicating that its function is likely type dependent. Hence, there is an imminent need 
for more in-depth studies to acquire comprehensive knowledge of LIFR-mediated tumour progression, opening 
doors to new therapeutic targets.

Research has demonstrated that LIFR (leukaemia inhibitory factor receptor) expression is reduced in liver 
cancer, promoting ferroptosis and suppressing tumour  progression40. Furthermore, elevated LIFR expression 
in liver cancer has been associated with prolonged patient  survival41. However, in our study, high LIFR expres-
sion corresponded with a shorter patient survival time, indicating the risky assumption of generalizing liver 
cancer results. LIFR, acting as a receptor subunit for LIF (leukaemia inhibitory factor), is said to boost gastric 
cancer cell proliferation, migration, and invasion through the LIFR-Hippo-YAP  pathway42. It should be noted 
that LIF is functionless when LIFR expression is silenced. Although some studies have proposed that both LIF 
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and LIFR can hinder tumour  progression43, Guan et al.44 showed that lidocaine impairs gastric cancer develop-
ment by upregulating LIFR. Our findings associate high LIFR expression with poor prognosis in gastric cancer 
patients. An O-glycan biosynthesis signalling pathway surfaced as the most significantly activated pathway in 
the high-expression group based on GSVA analysis, possibly promoting cancer precursor lesion progression as 
a downstream pathway of LIFR activation. To summarize, our results shed light on the complex role of LIFR in 
various types of cancer, indicating that its function is likely type dependent. Hence, there is an imminent need 
for more in-depth studies to acquire comprehensive knowledge of LIFR-mediated tumour progression, opening 
doors to new therapeutic targets.

O-glycan biosynthesis demonstrated significant divergences among low-expression groups for DPP4 and 
MYB genes in the GSVA analysis. Karasawa et al.45 revealed that α1,4-linked N-acetylglucosamine residues 
(αGlcNAc) present in O-glycans can hinder the growth of gastric cancer by counteracting Helicobacter pylori 
infection and curtailing subsequent inflammation, which in turn exacerbates tumour development. This obser-
vation substantiates the crucial role of the O-glycan biosynthesis pathway in initiating carcinogenesis-related 
inflammation and correlates with the expression of LIFR, DPP4, and MYB.

Conclusively, this study used a spectrum of bioinformatics strategies to discover four central biomarkers 
linked to ferroptosis. Their potential mechanisms in disease genesis and progression were explored through a 
literature review. Moreover, probable regulators of noncoding RNAs and transcription factors were identified, 
which led to the development of a diagnostic model suitable for clinical application. These insights provide a 
fresh understanding of the drastic changes occurring with ferroptosis that contribute to the progression of PLGC.

Data availability
The datasets presented in this study can be found in online repositories. The names of the repository/repositories 
and accession number(s) can be found in the article. GSE130823 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc= GSE13 0823), GSE78523 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE78 523) and 
GSE134520 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE13 4520).
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