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Simulation‑based assessment 
of the performance of hierarchical 
abundance estimators for camera 
trap surveys of unmarked species
Bollen Martijn 1,2,3*, Casaer Jim 2, Beenaerts Natalie 1 & Neyens Thomas 3,4

Knowledge on animal abundances is essential in ecology, but is complicated by low detectability of 
many species. This has led to a widespread use of hierarchical models (HMs) for species abundance, 
which are also commonly applied in the context of nature areas studied by camera traps (CTs). 
However, the best choice among these models is unclear, particularly based on how they perform 
in the face of complicating features of realistic populations, including: movements relative to 
sites, multiple detections of unmarked individuals within a single survey, and low detectability. We 
conducted a simulation‑based comparison of three HMs (Royle‑Nichols, binomial N‑mixture and 
Poisson N‑mixture model) by generating groups of unmarked individuals moving according to a 
bivariate Ornstein–Uhlenbeck process, monitored by CTs. Under a range of simulated scenarios, none 
of the HMs consistently yielded accurate abundances. Yet, the Poisson N‑mixture model performed 
well when animals did move across sites, despite accidental double counting of individuals. Absolute 
abundances were better captured by Royle‑Nichols and Poisson N‑mixture models, while a binomial 
N‑mixture model better estimated the actual number of individuals that used a site. The best 
performance of all HMs was observed when estimating relative trends in abundance, which were 
captured with similar accuracy across these models.

Biodiversity monitoring is increasingly important to improve our understanding of factors driving biodiversity 
changes. To keep up with the need for monitoring ecosystems globally, passive monitoring methods, includ-
ing camera traps (CTs), have gained  popularity1,2. In CT surveys, temporally replicated counts are collected at 
a set of geographical locations. From these counts, inference on animal abundance is possible, but it is typi-
cally complicated by imperfect detections and/or double  counting3, especially when species are unmarked and 
individuals are therefore difficult to identify. This requires the use of statistical methods that separate process 
error, i.e., variability in abundance, from observation error. Over the last decades, a wide variety of hierarchical 
models (HMs) have been developed for this aim (see Kéry and  Royle4,5, for a recent synthesis). In these HMs, 
the data generating mechanism is represented by a mixture of distributions. The first distribution accounts for 
variation in the unknown abundance (representing the ecological process). Given the true abundance, the second 
distribution captures variation in repeated counts obtained from multiple, independent samples of the underly-
ing abundance (representing the detection process). Two HMs that are frequently applied by ecologists are the 
Bernoulli-Poisson (BernP) mixture  model6 (also called “Royle-Nichols model”) and the Binomial-Poisson (BP) 
mixture  model7 (also called “Binomial N-mixture model”). The BernP and BP produce abundance estimates 
from, respectively, detection/non-detection data and count data collected at multiple locations (e.g. CT sites).

The problem with these models is that their parameter identifiability has been  questioned8 (although Kéry 
9 did not find identifiability issues for BP), and that they rely heavily on assumptions that are easily, and com-
monly, violated. BP and BernP assume that (i) the number of individuals present at a site does not change over 
the sampling period, commonly referred to as the closure assumption (note that we will refer to this assumption 
as “geographical closure” and to populations that satisfy/violate this assumption as “closed”/“open”), (ii) no false-
positive detections occur, (iii) detections are independent of each other, and (iv) detection probability is equal 
among all individuals. Accidental double counting of individuals (a form of false positive detections) results in 
strong positive biases in  BP10, but can, to some extent, be accommodated for by specifying a Poisson-Poisson 
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(PP) mixture model (also called “Poisson N-mixture model”)11. Positive biases in BP also occur when detections 
are non-independent12. We are unaware of a study investigating the effect of unequal detection probabilities 
among individuals on the estimation quality of BP, but anticipate some degree of bias. Moreover, unmodelled 
heterogeneity in abundance and detection probability may also induce bias in abundances, particularly when 
data are  sparse10,13,14.

But arguably one of the most common violations, which induces substantial bias in abundance, are departures 
from geographical  closure15. For open populations, this bias in abundance occurs because individuals can poten-
tially be detected at more than one sampling (i.e. CT) location. They are often dealt with by simply adjusting the 
interpretation of abundance to “frequency of site use”, the number of individuals that have used a site at least once 
(“superpopulation abundance” in Fogarty and  Fleishman15). This interpretation of abundance acknowledges that 
individuals freely move across sites, analogous to “proportion of area occupied” in occupancy  studies16. The classi-
cal conception of abundance, on the other hand, is closely tied to individuals remaining at their site (“season-long 
abundance” in Fogarty and  Fleishman15). There are two problems with this. Firstly, site-use frequencies estimated 
from HMs will still suffer from other model violations (ii-iv), but it is unclear to what extent. Moreover, changing 
the interpretation of abundance does not fix the (claimed) problem of parameter identifiability. Relative trends 
in abundance (i.e. treating them as indices), on the other hand, should be  identifiable8,17.

Hence, the objective of this study is to explore the estimator quality of three HMs for abundance of unmarked 
species (BernP, BP and PP) applied to CT data under a range of model violations, when abundance is viewed as 
site-use frequency and when abundances are regarded as indices (hereafter relative abundance). We therefore 
start by exploring the bias, root mean square error (RMSE) and 95% posterior credible interval (CI) coverage of 
traditional abundance estimates, and subsequently explore them for site-use frequency and relative abundance 
estimates. We consider various degrees of closure violations and double count frequency emerging from animal 
movement trajectories in a mid-sized nature area. It is our explicit choice to evaluate HMs not based on data 
generated by the analysis models, but based on CT detections (aggregated to counts) generated from a process 
that mimics the behaviour of wild boar, yet generic enough to apply to other mobile, group-living, unmarked 
species. This means that we simulate animal positions that are serially autocorrelated through a group-specific 
random walk movement model instead of assuming that their positions are realisations from a Poisson point 
 process11,18. Inherently, this creates a mismatch between the data generating process assumed by HMs (i.e. a 
Poisson point process), and the actual process that generated the data. However, our strategy provides a realistic 
evaluation of how animal abundance estimation is typically approached in CT studies, which we believe is most 
useful to practitioners applying these models to their own CT data.

We show that PP, through accommodating for double counts, is able to estimate abundance more accurately 
compared to BP, and that interpreting estimates from HMs as frequency of site-use does not improve the infer-
ence in general, but leads to better estimates in BP. Finally, we report that while it is difficult to obtain accurate 
insight into absolute abundance, it is often possible to accurately estimate relative trends in abundance.

Results
Goodness‑of‑fit and predictive performance
The BernP had the highest leave-one-out (LOO) expected log-predictive density (ELPD) in each of the simula-
tion scenarios (Supplementary fig. S1). The PP had a higher LOO-ELPD in all simulation scenarios, except for 
closed populations with a home range area (HRA) of 0.65  km2. All three HMs had Bayesian P-values that are 
close to zero across all simulations (Supplementary fig. S2).

Accuracy and precision of parameter estimates
We assessed estimator quality by inspecting the relative bias, RMSE and 95% CI coverage for both observation 
and state parameters for each model under various combinations of study design, population size N and HRA. 
Importantly, we found that increasing the number of grid cells that were sampled beyond 25% had a negligible 
impact on estimator quality (results not shown).

Detection parameters
All HMs consistently overestimated θdet , and the relative bias increased as the HRA increased (Fig. 1a; Table 1). 
Furthermore, none of the models reached the 95% CI coverage threshold for any of the simulation scenarios. 
The BP is the only model that reached coverages > 10 in most of the scenarios (Supplementary table S1). Nev-
ertheless, the RMSE for BernP and BP is relatively small, with median values across all scenarios around 0.05 
and 0.02 respectively. Overall, θ̂det obtained through the BP were the most accurate according to the median 
proportion of simulations with |Relative Bias|≤ 0.5 (Table 1). For BernP and PP, patterns in relative bias were 
similar for constant θdet , θdet with spatial variation analysed by naïve and covariate models (Fig. 2a). However, 
for BP the relative bias in θdet decreased when spatial variation was present. In addition, these scenarios led to 
lower variability in relative bias in θdet.

Abundance
Regardless of the simulation scenario, BP consistently overestimated abundance � (Fig. 1b). Both BernP and PP 
slightly underestimated � in most of the simulation scenarios. Overall, the relative bias in � was nearly unaffected 
by the HRA. However, the relative bias in � increased for BP, and decreased for BernP and PP when population 
sizes N become smaller. When HRA ≥ 10.38 and ρ = 0.70, 95% CI coverages were close to the threshold for BernP 
and PP (Supplementary table S2). None of the 95% CI coverages in BP reached the threshold. Furthermore, 
RMSEs were generally low for BernP and PP, but not for BP. According to the median, PP most accurately esti-
mated � , followed by the BernP and BP, with respectively 58%, 21% and 3% of simulations resulting in |Relative 
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Figure 1.  Mean relative bias (dots/ triangles), together with 2.5% and 97.5% quantiles (solid lines) in the 
estimated (a) detection parameters θdet , (b) abundances � , (c) site-use frequencies �use and (d) trends in � . 
Results are displayed for all combinations of model used (BernP, BP, PP), population size N (60, 120, 240, 480), 
closure (closure, non-closure), movement parameters σ (150, 300, 600, 1200) and ρ (0.7: dots, 0.95: triangles), 
and the emerging home range area in  km2 (0.65, 2.61, 10.38). Line of equality (dotted line). Average relative bias 
for each HM (dashed line). For visual clarity, x-scales are different for the subpanels in (b) and (c).
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Bias|≤ 0.5 (Table 1). Positive bias in � from BP was stronger when spatial variation in θdet was present, especially 
when this information was used in a covariate model (Fig. 2b). For all models, the variability in relative bias in 
� lacked a clear pattern.

Site-use frequency
For open populations, relative bias in �use differs considerably with that observed for � for all models (Fig. 1c). 
Both BernP and PP strongly underestimated �use in all simulation scenarios, while BP slightly underestimated or 
overestimated �use depending on the simulation scenario (Fig. 1c). Negative bias in �use most frequently occurs 
when ρ = 0.70, while positive bias dominated when ρ = 0.95. Negative bias in �use was observed for BernP and 
PP for all simulation scenarios. None of the HMs was able to reach the 95% CI coverage threshold in any of the 
simulation scenarios, and even for the most accurate model, i.e., BP, the median RMSE across all simulations was 
substantial (Supplementary table S3). According to the median proportion of simulations resulting in |Relative 
Bias|≤ 0.5, BP accurately estimated �use in half of the cases, while both PP and BP failed to produce accurate 
estimates of �use (Table 1). The patterns in relative bias in �use were affected by spatial variation in θdet in a similar 
way as those in � , that is, stronger positive relative bias for BP (Fig. 2c).

Relative abundance trends
When relative trends in abundance � were of prime interest, BernP and PP outperform BP in nearly all scenarios 
(Table 2). Despite some variability in accuracy, Fig. 1d revealed that the mean estimated trends in � were close 
to the true trends for all models and for all simulation scenarios. However, the |Relative Bias|≤ 0.5 revealed a 
tendency for poorer trend estimates with stronger departures from closure. According to the median, the mod-
els yielded respectively 52% and 69% (BernP), 44% and 56% (BP), and 50% and 65% (PP) of trend estimates 
(10% and 20% decline in population size N ) with a |Relative Bias|≤ 0.5 (Table 2). Average relative bias in trend 
estimates were nearly unaffected by spatial variation in θdet (Fig. 2d). However, the variability in trend estimates 
from BernP and PP, but not BP, was substantially larger when spatial variation in θdet was present. Finally, trend 
estimates from this scenario had a lower accuracy across all these models (Supplementary table S5).

Discussion
In this study, we have evaluated three hierarchical abundance estimators (BernP, BP and PP) in the context of 
complicating features of realistic animal populations simulated through random walks.

Increasing trends in per-capita detectability and detection rate with population size N , as indicated in Table 3, 
are within the line of expectations, since denser populations are expected to result in more frequent detection 

Table 1.  Summary table for estimator quality of detection parameters θdet , abundances � and site use 
frequencies �use obtained from three Bayesian hierarchical models (BernP, BP, PP). Cells display the proportion 
of simulation replicates that satisfy |Relative Bias|≤ 0.5.

HRA  (km2) N ρ

|Relative Bias|≤ 0.5

Detection parameters 
θdet Abundance � Site use frequency �use
BernP BP PP BernP BP PP BernP BP PP

0.65 (closure)

480
0.70 0.00 0.25 0.00 0.30 0.00 0.90 0.30 0.00 0.90

0.95 0.00 0.25 0.00 0.28 0.00 0.83 0.28 0.00 0.83

240
0.70 0.00 0.15 0.00 0.15 0.03 0.83 0.15 0.03 0.83

0.95 0.00 0.15 0.00 0.13 0.00 0.73 0.13 0.00 0.73

0.65

480
0.70 0.00 0.03 0.00 0.00 0.73 0.00 0.00 0.18 0.00

0.95 0.00 0.15 0.00 0.00 0.43 0.00 0.00 0.33 0.00

240
0.70 0.00 0.05 0.00 0.00 0.55 0.00 0.00 0.25 0.00

0.95 0.00 0.10 0.00 0.00 0.25 0.00 0.00 0.38 0.00

2.61

240
0.70 0.00 0.08 0.00 0.38 0.08 0.58 0.00 0.48 0.00

0.95 0.00 0.20 0.00 0.05 0.08 0.08 0.00 0.45 0.00

120
0.70 0.00 0.05 0.00 0.38 0.15 0.48 0.00 0.43 0.00

0.95 0.00 0.20 0.00 0.10 0.13 0.13 0.00 0.30 0.03

10.38

120
0.70 0.00 0.33 0.00 0.98 0.00 0.93 0.00 0.50 0.00

0.95 0.00 0.10 0.00 0.60 0.00 0.65 0.00 0.70 0.00

60
0.70 0.00 0.35 0.00 0.93 0.03 0.85 0.00 0.33 0.00

0.95 0.00 0.13 0.00 0.48 0.03 0.63 0.00 0.63 0.00

41.58

60
0.70 0.00 0.30 0.00 0.15 0.00 0.08 0.00 0.58 0.00

0.95 0.00 0.03 0.00 0.85 0.00 0.75 0.00 0.50 0.00

30
0.70 0.00 0.35 0.00 0.13 0.00 0.15 0.00 0.50 0.00

0.95 0.00 0.03 0.00 0.75 0.00 0.58 0.00 0.55 0.00

Median 0.00 0.15 0.00 0.21 0.03 0.58 0.00 0.40 0.00
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Figure 2.  Mean relative bias (dots/ triangles), together with 2.5% and 97.5% quantiles (solid lines) in the 
estimated (a) detection parameters θdet , (b) abundances � , (c) site-use frequencies �use and (d) trends in � . 
Results are displayed for all combinations of model used (BernP, BP, PP), the submodel and covariate structure 
for θdet (constant, spatial variation (naïve model), spatial variation (covariate model)), population size N (120, 
240), ρ (0.7: dots, 0.95: triangles) for σ = 300 (emerging home range area of 2.61  km2). Line of equality (dotted 
line). Average relative bias for each HM (dashed line). For visual clarity, x-scales are different for the subpanels 
in (b) and (c).
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Table 2.  Summary table for estimator quality of relative abundance (10% trend: �N/�0.9N and 20% trend: 
�N/�0.8N ) obtained from three Bayesian hierarchical models (BernP, BP, PP). Cells display the proportion of 
simulation replicates that satisfy |Relative Bias|≤ 0.5.

HRA  (km2) N ρ

|Relative Bias|≤ 0.5

10% trend 20% trend

BernP BP PP BernP BP PP

0.65 (closure)

480
0.70 0.66 0.76 0.75 0.83 0.88 0.87

0.95 0.64 0.53 0.72 0.84 0.78 0.88

240
0.70 0.74 0.81 0.62 0.90 0.95 0.83

0.95 0.61 0.67 0.56 0.84 0.84 0.83

0.65

480
0.70 0.53 0.56 0.58 0.82 0.81 0.78

0.95 0.52 0.47 0.55 0.73 0.63 0.77

240
0.70 0.47 0.48 0.49 0.69 0.69 0.65

0.95 0.42 0.36 0.42 0.66 0.48 0.63

2.61

240
0.70 0.53 0.49 0.53 0.73 0.73 0.72

0.95 0.62 0.36 0.60 0.78 0.58 0.70

120
0.70 0.58 0.56 0.52 0.71 0.53 0.66

0.95 0.37 0.36 0.42 0.68 0.42 0.64

10.38

120
0.70 0.54 0.34 0.53 0.62 0.53 0.63

0.95 0.50 0.43 0.39 0.63 0.44 0.56

60
0.70 0.46 0.45 0.39 0.68 0.58 0.59

0.95 0.31 0.34 0.26 0.52 0.39 0.39

41.58

60
0.70 0.53 0.31 0.45 0.61 0.47 0.58

0.95 0.46 0.37 0.38 0.62 0.50 0.51

30
0.70 0.42 0.37 0.29 0.58 0.42 0.46

0.95 0.32 0.37 0.19 0.52 0.45 0.34

Median 0.52 0.44 0.50 0.69 0.56 0.65

Table 3.  Design of the simulation study, based on three ecological/ behavioural parameters, home range area, 
population size and mean hourly displacement of (a group of) individual animals. The range of true detection 
probabilities p and rates µ , resulting from each scenario, are also indicated.

Home range Population size Movement Detection process

Closure HRA N Abun. ( �) Site-use freq. ( �use) σ ρ p µ

Closure

0.65

480 3.33 3.33

150

0.70 0.0297–0.0554 0.0411–0.0831

0.95 0.0158–0.0380 0.0322–0.0749

240 1.67 1.67
0.70 0.0221–0.0638 0.0288–0.0955

0.95 0.0129–0.0411 0.0249–0.0879

Non-closure

480 3.33 11.49 – 15.88
0.70 0.0036–0.0192 0.0049–0.0274

0.95 0.0019–0.0136 0.0029–0.0252

240 1.67 5.58 – 7.94
0.70 0.0018–0.0191 0.0025–0.0321

0.95 0.0011–0.0148 0.0015–0.0351

2.61

240 1.67 11.82 – 13.14

300

0.70 0.0024–0.0155 0.0030–0.0195

0.95 0.0009–0.0090 0.0014–0.0132

120 0.83 5.69 – 6.78
0.70 0.0017–0.0157 0.0019–0.0177

0.95 0.0005–0.0125 0.0011–0.0179

10.38

120 0.83 14.09 – 16.48

600

0.70 0.0036–0.0094 0.0042–0.0109

0.95 0.0011–0.0044 0.0013–0.0051

60 0.42 6.79 – 8.62
0.70 0.0027–0.0107 0.0027–0.0124

0.95 0.0002–0.0057 0.0002–0.0068

41.58

60 0.42 17.44 – 22.84

1200

0.70 0.0019–0.0059 0.0019–0.0065

0.95 0.0003–0.0041 0.0005–0.0054

30 0.21 8.11 – 11.84
0.70 0.0015–0.0067 0.0015–0.0071

0.95 0.0001–0.0044 0.0004–0.0056
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events (i.e., an individual crossing the viewshed). We follow Neilson, et al.18, in assuming that populations of 
individuals occupying large HRAs, such as apex predators, are generally less dense (Table 3). This assumed 
confounding of HRA and population size, explains the decreasing trend of θdet with HRA. Evidently, the per-
capita detection probability is consistently lower than the per-capita detection rate, as some individuals may 
be detected more than once on a survey day. Regardless of geographical closure and the HRA, the abundance � 
equals N/Nsite , resulting in the densities indicated in Table 3 (“Abun.”). Site-use frequency, �use , is a product of 
both population size N and HRA. In theory, �use increases with both increasing N and HRA. However, in our 
simulations these parameters are confounded to simulate realistic animal  populations18. Hence, �use is seem-
ingly unaffected by N and HRA, as their effects cancel out. Only, the effect of closure violations on �use is clearly 
visible (Table 3; “Site-use freq.”).

In our simulations, true θdet are extremely small (i.e., always θdet < 0.05). Hence, it is perhaps not surprising 
that in these scenarios positive bias in θdet persisted across most of the HMs considered (Figs. 1a and 2a). It 
is notoriously difficult for these HMs to accurately estimate parameters near the boundary of their parameter 
 space20,21. In cases where θdet is accurately estimated, abundance estimates appear to suffer from increased positive 
bias (Fig. 2a–c BP—covariate model) in order to provide an explanation for the observed counts (i.e. some inci-
dences of high counts occur because of accidental double counting). The use of a beta-binomial distribution for 
p in the BP case, which can alleviate bias resulting from correlated detections within samples, may alleviate some 
of this bias in abundance, while conserving accuracy in θdet 12. Overall, we would like to warn practitioners that 
very small detection probabilities/ detection rates, which are frequent in camera trapping studies, often do not 
contain sufficient information to confidently analyse within complex modelling frameworks. However, modelling 
detections of multiple species jointly may hold the potential to overcome issues related to low  detectability22.

Furthermore, our results reveal that none of the HMs considered in this study were able to estimate � accu-
rately under all scenarios (Figs. 1b and 2b). The BernP model slightly underestimates � in most scenarios as 
opposed to simulation results of Royle and  Nichols6. Nonetheless, BernP estimates � more accurately than BP, 
despite only using binary input data. A possible explanation for the binary input model to outperform a count 
model lies in the occurrence of double counting of individuals. Indeed, we assumed that animals were unmarked, 
and hence could not be individually identified by CTs, which led to badly inflated �̂BP , a well-known issue for 
 BP10,13. However, this problem does not apply to binary models, since double counts do not affect a binary 
encoding. PP, which alleviates most of the bias in � observed under BP, produces the most accurate estimates of 
� from any of the models considered here. In line with our expectations, a PP even yields accurate estimates in 
over 80% of the cases when populations are closed (Table 1). This highlights the importance of accounting for 
double counts when absolute abundances are desired. Nonetheless, �̂PP are still somewhat negatively biased in 
open populations. Specifying a distribution for the latent Ni ’s that allows for overdispersion and/or underdisper-
sion can be a solution to improve inference when extra-variation in counts is present among sites. We have used 
zero-inflated Poisson distribution for Ni’s19, which did not result in more accurate � ’s (results not shown). On the 
contrary, both �̂BZIP and �̂PZIP display some of the strongest biases that we observed in our simulations. This is 
likely a consequence of these models being very complex, i.e., they require the estimation of two latent param-
eters in addition to a detection probability/ detection rate, for the sparse data simulated in our study. Despite 
their inaccurate estimates BZIP and PZIP models were preferred by LOO-ELPDs, which is possibly because they 
provide a good description of the many zero-observations present in the  data3,19. Negative binomial models have 
also been suggested to deal with extra-variation in counts, but suffer from a similar “good-fit-bad-prediction 
dilemma”4,23. Hence, there seems no reason to assume that HMs with negative binomial state models perform 
any better than the zero-inflated Poisson HMs evaluated here.

Given that � is not well estimated for open populations, the use of HMs for inferring the site-use frequency 
�use could be an alternative that provides reliable answers to many wildlife related questions. Site-use frequency 
is effectively a product of population size and HRA, hence reflects both the true number ( N ) of animals present, 
as well as their movement  pattern11,15,24. We expected that this quantity ( �use ) would be better estimated than 
abundance ( � ) when populations are open, yet our results suggest that this is not the case (Figs. 1b–c and 2b–c). 
The BernP, which uses only binary input, is too conservative to produce estimates in the order of magnitude of 
�use . PP on the other hand can attribute additional counts resulting from groups moving across sites to a higher 
detection rate ( µ ). This seems to be supported by estimates of detection rates in the PP that steadily increase 
with increasing HRA (Fig. 1a). Site-use frequency estimated from BP outperform those of BernP and BP, but, on 
average, they still only yield accurate results in 40% of the simulations. Contrasting with our results,  Nakashima11 
found that BernP and PP, and not BP, were able to accurately estimate the site-use frequency. Fogarty and 
 Fleishman15, on the other hand, also find that a BP, which accounts for permanent movements among sites (i.e., 
immigration and emigration) yields accurate estimates of site-use frequency (“superpopulation abundance”). 
However, they point out that the ecological interpretation of site-use frequency is difficult when the movement 
characteristics of animals are unknown. The problem is that there is no way of discriminating between sites that 
are frequently used because they are on a travelling route and between sites that are frequently used because 
they offer important resources. Thus, site-use frequency does not appear to provide a reliable solution for the 
interpretation of abundances of population that are open relative to the sampling frame. Abundance (or den-
sity) of open populations may be estimated more accurately by spatially-explicit models for count data, which 
leverage observed spatial correlation in  detections25. However, for entirely unmarked populations, which we 
simulated in this study, the precision of abundance/density estimates based on this method is typically  low26,27. 
Therefore, future developments in spatially-explicit models for count data should focus on improving precision 
of their estimates.

Regardless of the capability of HMs to yield unbiased estimates of � (or �use ), it is often more interesting 
to explore relative trends in � . Moreover, while there are concerns regarding identifiability within HMs for 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16169  | https://doi.org/10.1038/s41598-023-43184-w

www.nature.com/scientificreports/

abundance, their ability to estimate relative abundances has not been  questioned8,17. Here, we explored trend esti-
mates obtained through comparing abundances �N/�0.9N and �N/�0.8N to induced declines of respectively, 10 and 
20%. Overall, simulated declines in population size N of 10 and 20%, are accurately estimated more frequently 
than standalone � (Table 2). However, when a relative bias up to 50% is tolerated, 48%, 66%, 50% and 31%, 44%, 
35% of the trends will be misleading for respectively 10% and 20% declines estimated by BernP, BP and PP. Thus, 
HMs for abundance are better suited to capture relative trends in abundance, but obtaining them post-hoc, as 
is often done by practitioners, may still be misleading in many cases. Estimates of relative trends in abundance 
may be biased particularly when they are confounded with between-year variation in detection probability that 
is unaccounted for. Because of our focus on a single sampling season within a single year, we did not evaluate 
the impact of temporal variation in the probability of detecting an individual that crosses a camera viewshed, 
i.e., P(detected|in viewshed), which is a study limitation. However, the true detection probability is a product of 
P(detected|in viewshed) and the probability that an individual crosses a camera viewshed if it is present, i.e., P(in 
viewshed). Inherent variation in the simulated movement trajectories of our study induce small-scale variation 
in P(in viewshed), and from our results, it appears that relative trends are robust against this form of variation. 
Our results suggest that when spatial variation in P(detected|in viewshed) exists, the accuracy of relative trends 
from BernP, BP and PP decrease owing to a larger variability (Fig. 2d; supplementary table S5). Future research 
should determine if relative trends in abundance suffer from similar losses in accuracy when stronger temporal 
variation in detection probability exist.

While there are potentially many other candidate models that are useful to estimate animal abundance (or 
density) in ecological surveys, we explicitly chose not to include them in our comparison. We did not include 
distance  sampling28 or random encounter (and staying time)  models29,30 as they are hampered by a need for 
additional information, either distance data or movement data that are often absent or of low quality in camera 
trapping studies. We did not consider capture-recapture  methods31 since identifying individuals through photo-
graphs is difficult when individuals are unmarked, which was one of the assumptions of our study. For the same 
reason, we disregarded methods based on removal  sampling32,33, where individuals need to be identified to be 
removed from the study after their first detection. Finally, we did not include models in Moeller, et al.34: the time-
to-event model was disregarded because it assumes perfect detectability, the space-to-event and instantaneous 
sampling models require time-lapse photos which may lead to many missed encounters.

In conclusion, we have shown that under realistic settings, and with 24-h as the time unit of temporal repli-
cates, the probabilities of detecting an unmarked species like wild boar using camera traps are extremely low. In 
addition, when individuals cannot be individually identified, and thus double counting cannot be excluded, we 
find strong biases in estimates of abundances � for BP. Through accommodating false-positives, the PP model 
was able to estimate � more accurately. Furthermore, we reveal that shifting the interpretation to frequency of 
site-use does not improve the inference in general, but leads to better estimates in BP. Finally, we report that 
relative trends in abundance are estimated with greater precision than absolute abundances, but that they can 
still suffer from bias especially when spatial variation in detection probability exist. Practitioners should thus 
avoid using absolute abundance estimates, regardless of their interpretation, from static HMs and turn to relative 
trend estimates, but also these should be used with caution. Depending on the context, model-based approaches, 
taking into account temporal trends, spatial trends or a combination thereof, might further improve the accuracy 
of inference from HMs. From this perspective, it would be valuable to assess the estimator quality of temporally 
explicit HMs in a simulation study similar to ours.

Material and methods
Our simulation study is designed with a specific unmarked target species (wild boar) in mind, in a specific park 
(Hoge Kempen National Park (NPHK) situated in Belgium). In that park, the species commonly investigated 
throughout a relatively short survey period within a single year, a strategy we adopt as well. Yet, our findings, 
based on this design, are applicable to a wider range of camera trapping studies since most of them take place 
in areas of comparable size, with similar CT spacing and with a focus on mammal species, many of which live 
in groups and display home range  tendencies1,35. In fact, ungulates comprised the second most studied group 
of species according to Burton, et al1. Moreover, we do not simulate climatic conditions or landscape features 
that are specific to the NPHK.

Simulated space
We simulated a space with a total surface area of 116.64  km2 (10.8 km * 10.8 km; Fig. 3), which roughly equals that 
of the  NPHK36. Next, we simulated a grid layer consisting of 144 grid cells ( i = 1, 2, . . . , 144 ) of 0.9 km × 0.9 km, 
for the placement of CTs. Our grid cells are nine times coarser than the grid cells in Wevers, et al.36, such that the 
area (0.81  km2) of a single grid is closer to the empirical home range sizes of wild  boar37,38. Next, we placed a CT 
in 25% (36) of the grid cells, according to a randomised regularly spaced sampling design. Within sampled grid 
cells, a CT “detector” was then simulated by placing a single CT at its centroid with a viewshed radius r = 15m 
and an angle of view θ = 42

◦ , based on camera specifications of the Reconyx Hyperfire  HC60039. All CT views-
heds, in which passing animals may be detected, were simulated facing North.

Movement trajectories
We assumed that N  individuals of a species of interest (with N  fixed a priori according to Table 3) live in the 
region of interest, say A . Moreover, we assumed that these animals moved in groups, which we monitored dur-
ing 25 consecutive days within a single season in which environmental factors potentially affecting probabilities 
of detecting an individual were assumed to be more or less constant over time. We started by simulating forty 
independent, group-specific and activity-adjusted random walks according to a bivariate Ornstein–Uhlenbeck 
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process (OU). To generate realistic animal trajectories for a species with home range tendencies, we varied three 
parameters: the population size ( N ) and parameters that control serial autocorrelation ( ρ ) and variance in move-
ments ( σ ) (Table 3). Note that the size of the HRA emerges from the choice of σ.

Figure 3.  Graphical overview of the simulation study. The dimensions of the state space represented by the 
grid layers are 10.8 km × 10.8 km. OU: Ornstein–Uhlenbeck, BernP: Bernoulli-Poisson mixture model, BP: 
Binomial-Poisson mixture model, PP: Poisson-Poisson mixture model.
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Let u represent a point location, defined by a set of coordinates {x, y} . For g = 1, . . . ,G groups and 
t = 1, . . . , 600 one-hour steps (25 days of 24 h), the probability for a given set of group-specific positions ug(t+1) 
in the next hour t + 1 according to a discrete-time OU can be expressed by:

where sg are the group-specific home range centers,ρ controls the tendency to move in the direction of the 
home range center, σ determines the diffusion of the movement and I represents the 2 × 2 identity matrix. 
However, when the species was resting (here we assumed a nocturnal species, but the results would be similar 
for a diurnal species with similar proportions of active time), we assumed that all groups stayed in place, hence 
ug(t+1) = ugt if (t + 1)%24 ∈ {0 : 5, 18 : 23} , where ‘%’ represents the modulo.

We generated group sizes Ng for each group g by sampling empirical group sizes of the target population that 
satisfy N =

∑G
g=1

Ng . In addition, we simulated 10% and 20% declines in population size for all populations 
(i.e., N0.9 = 0.9N and N0.8 = 0.8N ) to explore the ability of the models to estimate these declines by comparing 
abundances post-hoc ( �N/�0.9N and �N/�0.8N ). Group-specific home range centers sg were (i) sampled from the 
fixed set of 0.9 km × 0.9 km grid centroids (resulting in closure) or (ii) sampled randomly from the entire study 
space (resulting in closure violations). When simulating hourly displacements, information on finer scale move-
ments is lost. However, these may be important when they result in the passing or not passing through the camera 
 viewshed40. To ensure that we generated more realistic, finer scale movements, we simulated Brownian motion 
between consecutive positions x = ugt and y = ug(t+1) using a Brownian Bridge (Supplementary section 1).

Simulating count and detection‑non detection data
After simulating animal movements, we generated sightings for each hour h = 1, 2, ..., 24 within each day 
j = 1, 2, . . . , 25 at locations where a group of individuals crossed the CT viewshed, for i = 1, 2, . . . , 36 CT loca-
tions. We assumed that all individuals in a group were detected when they pass this viewshed (i.e., P(detected|in 
viewshed) = 1). Note that the probability to detect an individual also depends on the probability that an individual 
that is present enters a CT viewshed (i.e., P(in viewshed), which will be <  < 1). Additionally, we assessed the 
impact of imperfect P(detected|in viewshed) ≈ 2/3, which also display spatial variation according to a unique 
Matérn  process41 per simulation for a subset of the simulation scenarios (i.e., σ = 300 resulting in HRA = 2.61 
 km2) that best reflect empirical home range areas of the target species. In both cases, we obtained hourly counts 
as: yijh ∼ binomial(nijh, P[det|inview]i), where nijh is the number of individuals crossing a CT viewshed located 
at grid cell i on day j and hour h . Hourly counts yijh were then aggregated across days to yield daily summaries of 
counts yij =

∑
24

h=1
yijh . Since we have assumed that individuals are unmarked, the same group could potentially 

contribute to yij on each hour if they re-appeared in front of the CT. When only binary inputs were required (i.e. 
for BernP), we reduced count data to detection/non-detection data.

Assessment of criteria for the model inferences
For each simulation replicate, we calculated the true abundance ( � ) as the average number of individuals per 
grid cell, assuming that all individuals are bounded to the grid cells that contain their activity centers (i.e., the 
average number of activity centers per grid). This quantity was used as ground truth to assess the ability of 
the HMs to make accurate inferences on N . In simulation scenarios with closure violations, individuals move 
across their initial grid cells such that the number of individuals per grid cell changes over time. Hence, we also 
calculated site-use frequency ( �use ) as the average number of individuals that have used a grid cell at least once 
during the simulated study period, given that all individuals completely covered their HRA (i.e., the average 
number of HRAs overlapping a grid cell)11,15. Finally, we assessed the ability of HMs to accurately estimate relative 
abundances by comparing how accurately �N/�0.9N and �N/�0.8N captured true induced population declines of 
respectively 10 and 20% for different choices of N.

Statistical models
Within the current study, we assessed the performance of HMs, that are commonly used to make inference on 
abundance. Depending on the data at hand,  BernP6 (for replicated detection/ non-detection data) and BP/PP7,11 
(for replicated count data) models are commonly used. In this study, we adopt a Bayesian estimation framework, 
as it allows the flexible modelling of HMs. Model fitting was performed using Stan (via the R package cmdstanr), 
a probabilistic programming language that enables Bayesian estimation through a dynamic Hamiltonian Monte 
Carlo  sampler42.

All three statistical models start from the series of observations yij . Observations yij can either consist of 
binary detection (yij = 1) / non-detection (yij = 0) data or count (yij ≥ 0) data. The mathematical structure 
and distributional assumptions for yij and Ni , the number of individuals present at site i , are given in Table 4. 
Note that in practice, Ni ’s are obtained by taking the finite sum over K possible latent abundances to make the 
maximisation of the likelihood numerically  tractable7. Here we chose an upper bound K  , such that K = 100 
for detection/ non-detection data and K = max

(
yij
)
+ 100,∀{i, j} for count data. Moreover, we construct the 

likelihood by marginalising over Ni ’s with upper bound K given that Stan cannot sample discrete latent variables. 
Importantly, p – the per capita detection probability – represents the probability that an individual is detected 
(assuming that there are no false-positives), while µ – the per capita detection rate – corresponds to the rate at 
individuals are detected each day (when false-positives occur). For notational simplicity, we will refer to these 
detection parameters jointly as θdet . For simulation runs with spatial variation in P(detected|in viewshed), the 

p
(
ug(t+1)|ugt , sg

)
= Norm

(
sg + eρI

(
ugt − sg

)
, σ 2I − (eρI · σ 2I · eρI )

)



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16169  | https://doi.org/10.1038/s41598-023-43184-w

www.nature.com/scientificreports/

‘naïve’ models as in Table 4 were fitted alongside ‘covariate’ models that used the values from the Matérn process, 
which generated P(detected|in viewshed), as a covariate x : logit(θdet) = β0 + β1x. 

To assess goodness of fit for competing HMs, we calculated Bayesian P-values10,43. Additionally, we computed 
and compared the LOO-ELPD for each  model44. For more information on the prior specification, goodness-
of-fit evaluation and MCMC convergence of HMs in Stan we refer to Supplementary sections 2–3. To give a 
representative view on the results, we did not exclude simulation runs where convergence and/or identifiability 
issues occurred from further analysis.

Relative bias, RMSE and coverage probability
In this study, we assessed estimator performance from three Bayesian HMs of interest by exploring the bias, 
relative bias, RMSE and 95% CI coverage. We calculated the bias as Bias(θ) = (θ̂ − θ) ; the relative bias as 

Rel.Bias(θ) = (θ̂ − θ)/θ ; the RMSE(θ) =

√∑n
i=1

(θ̂i − θi)
2
/n ); and the 95% CI coverage as the proportion of 

simulations where the true parameter value is enclosed by the 95% CI. We used |relative bias|< 0.5 as the threshold 
for simulations that yielded accurate estimates. Moreover, we regard 0.95 of simulations that reached the 95% 
CI coverage as an indicator for good uncertainty quantification.

Data availability
All the data used here is available in Supplementary Information (Supplementary Data) and at https:// github. 
com/ Marti jnUH/ RWsim_ abund ance_ models.
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