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Sharpen data‑driven prediction 
rules of individual large 
earthquakes with aid of Fourier 
and Gauss
In Ho Cho 

Predicting individual large earthquakes (EQs)’ locations, magnitudes, and timing remains 
unreachable. The author’s prior study shows that individual large EQs have unique signatures 
obtained from multi‑layered data transformations. Via spatio‑temporal convolutions, decades‑long 
EQ catalog data are transformed into pseudo‑physics quantities (e.g., energy, power, vorticity, and 
Laplacian), which turn into surface‑like information via Gauss curvatures. Using these new features, 
a rule‑learning machine learning approach unravels promising prediction rules. This paper suggests 
further data transformation via Fourier transformation (FT). Results show that FT‑based new feature 
can help sharpen the prediction rules. Feasibility tests of large EQs ( M ≥ 6.5) over the past 40 years 
in the western U.S. show promise, shedding light on data‑driven prediction of individual large EQs. 
The handshake among ML methods, Fourier, and Gauss may help answer the long‑standing enigma of 
seismogenesis.

Large earthquakes (EQs) remain one of the most difficult physics phenomena, attracting the newest technologies. 
Recently, researchers actively leverage machine learning (ML)  methods1,2. For  instance3, adopted deep neural 
networks (DNNs) to forecast aftershock locations without relying upon fault orientation. Their DNNs take 
co-seismically generated static elastic tensor’s change as input and produce binary prediction of whether each 
refined grid cubic cell (5 km each dimension) will contain aftershocks or  not4. Reconstructed the time series 
data in EQ catalog of Southern California to a sequence of two-dimensional (2D) images, and they combined an 
autoencoder and temporal convolutional neural networks to the new data to predict the probability of extreme 
events.  Reference5 adopts the long short-term memory networks to learn EQ’s spatio-temporal relationship. At 
the same time, deep learning helps to engender denser and deeper data sets of  EQs6,7, which can enable unsu-
pervised deep learning-driven exploration and discovery of hitherto unseen behaviors and patterns of  EQ8. By 
regarding EQs as spatio-temporal point process, a combination of reinforcement learning and neural networks 
is  used9 for enabling data-driven fitting and learning of heterogeneous Gaussian diffusion kernels to improve 
predictions of the point processes. Still, these ML-based approaches are at the burgeoning phase and require 
systematic validation and comparison against existing approaches.  Reference10 conducted a comprehensive com-
parative study on neural networks-based EQ forecasting and prediction methods of the past three decades and 
found that these new methods call for broader and systematic validations since simple empirical methods may 
exhibit equivalent or even better performance.

Reference11 gives a comprehensive overview of recent physics-based EQ forecasting methods, for which a 
well-established performance evaluation framework is available by  community12,13. Diverse ML methods play 
an important role in understanding EQs’ complex behaviors and patterns, e.g., Refs.14–16.

Despite the notable advances empowered by ML-driven approaches, the long-sought capability of predict-
ing “individual” large EQs’ locations and magnitudes within a short time frame (days or weeks ahead) remains 
unreachable. This study seeks to add a new dimension to this daunting question. The author’s prior  study17 shows 
that, after multi-layered data transformations, individual large EQs appear to have unique signatures that can 
be represented by new high-dimensional features. In particular, the observed EQ catalog data are transformed 
via spatio-temporal convolution, and then further transformed into a number of pseudo physics quantities (i.e., 
energy, power, vorticity, and Laplacian). They later turn into smooth surface-like information via Gauss curva-
tures, giving rise to new high-dimensional features. The new features of pseudo physics quantities are used to 
build a customized prediction model by the Bayesian evolutionary algorithm in conjunction with flexible base 
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functions. Validations with the past 40-year EQs catalog data of the western U.S. region show that the Gauss 
curvature-based coordinates appear to hold uniqueness for individual large EQs ( Mw ≥ 7.0 ) demonstrating a 
promising reproduction of individual large EQs’ locations and magnitudes 30 days before the event.

Here,  this  study expanded the study region from (longitude,  lat itude,  depth) = 
[−130◦,−110◦] ∪ [30◦, 45◦] ∪ [−5 km, 20 km] to [−132.5◦,−110◦] ∪ [30◦, 52.5◦] ∪ [−5 km, 20 km] and the 
magnitude range from Mw ≥ 7.0 to Mw ≥ 6.5 . As a result, the total number of target large EQs within the 40 
years (1980 through 2019) increases from 8 to 17. Importantly, this study adds further sophistication to previous 
multi-layered data transformations via Fourier transformation of the Gauss curvature-based features.

The key equations and formulas of the proposed approach are summarized in Table S1 of Supplementary 
Information.

Results
Multi‑layered data transformation
The critical novelty of the proposed approach lies in the multi-layered data transformation to generate physics-
infused ML-friendly new features. The overall architecture of data transformation is summarized in Fig. 1

Figure 1.  Overall architecture and conceptual illustrations of central steps of the proposed approach: (A) Multi-
layered data transformation from raw EQs catalog data to new features in terms of pseudo physics quantities, 
Gauss curvatures, and Fourier bases (I–IV). Transparent rule-learning machine learning (ML) method, denoted 
“glass-box” ML (V), to unravel prediction rules’ expressions of individual large EQs; (B) 3D convolution for 
generating spatial information index; (C) Temporal convolution for spatio-temporal information index; (D) 
Fast Fourier transform (FT) to generate FT-based new feature that can quantify time-varying information about 
“fluctuating surfaces” of the pseudo physics and Gauss curvature-based features.
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The first data transformation (Figs. 1B,C) converts the raw EQ catalog data  (USGS18) into new scalar features, 
denoted as spatio-temporal information index ( IIST ). The reference volume is defined as a discretized volume 
of the Earth lithosphere with increment of (longitude, latitude, depth), (��,�φ,�h) = (0.1◦, 0.1◦, 5 km) . For 
the convolution process, the geodetic coordinates, (�,φ,−h)

(t)
i  are transformed into the earth-centered recti-

linear coordinate (x, y, z)(t)i 17. Each observed EQ’s moment magnitude M(t)
i ∈ R[0, 10) are assumed to reside at 

x
(t)
i = (x, y, z)

(t)
i  , following the “point source” concept. Physically, IIST (ξ j)(t) quantifies the accumulated influ-

ences of the adjacent EQs close to the jth reference volume center and of the past EQs up to the present time 
(t). The details of the data transformation from raw EQ catalog data into spatio-temporal information index 
generation are presented in “Methods”.

The second data transformation is to convert the spatio-temporal IIs into the pseudo physics quantities. 
Amongst many physics quantities, the best-so-far set of pseudo physics quantities are identified as {released 
energy, power, vorticity, Laplacian}17. To be purely data-driven, no pre-defined statistical or empirical laws are 
used. Instead, a flexible function, called “link function (LF)”, is used to learn expressions of the pseudo physics 
quantities. The best-so-far form of the pseudo released energy E(t)r (ξ j) is identified as

where θ(k,l) is the best-so-far free parameters of the associated LF L(k,l) . Here, L(k,l) takes II(t)ST (ξ j; Lk ,Tl) as input 
and produces a smooth, nonlinear output.

Lk(k = 1, . . . , nL) is the spatial influence range that means the spatial proximity-dependent importance in the 
spatial convolution process. Similarly, Tl(l = 1, . . . , nT ) is the temporal influence range meaning the temporal 
proximity-dependent importance in the temporal convolution process (see “Methods” for details).

Any mathematical form can be used as LF, and a simple yet general exponential form LF works  well17, i.e., 
for the pseudo released energy L(k,l)(II

(t)
ST (ξ j; Lk ,Tl) θ

(k,l))=exp
(

a(k,l)II
(t)
ST (ξ j; Lk ,Tl)

b(k,l)
)

− 1 where 

θ
(k,l) = {a(k,l), b(k,l); k = 1, . . . , nL, l = 1, . . . , nT } . The pseudo “vorticity” ω = (ω�,ωφ ,ωh) is generated by 

ω := ∇g ×

(

∇g
∂E

(t)
r (ξ j)

∂t

)

 where ∂E
(t)
r (ξ j)

∂t  corresponds to the pseudo “power” and the pseudo “Laplacian” is cal-

culated as ∇2
g E

(t)
r (ξ j) =

∂2E
′

r

∂�2
+

∂2E
′

r

∂φ2 +
∂2E

′

r

∂h2
, where ∇g (.) means the spatial gradient with respect to the geodetic 

coordinate system ( �,φ, h ). As shown in Ref.17, amongst many pseudo physics quantities and their combinations, 
ML selected out the four quantities—the released energy, power, the first vorticity term, and the first Laplacian 

term, ( E(t)r ,
∂E

(t)
r (ξ j)

∂t ,ω�,
∂2E

′

r

∂�2
 ), at least for the western U.S. region. Again, this selection is purely data-driven since 

ML simply seeks to find the best combination that can outperform other cases without any prejudice. The third 
data transformation is to convert the pseudo physics quantities into Gauss curvatures. At each depth, the distri-
butions of the pseudo physics quantities constitute smooth yet complex surfaces. To effectively inform ML with 
surface-like information, the next data transformation focuses on Gauss  curvatures19—consisting of two principal 
curvatures κ1 and κ2 (detailed calculation procedures are presented in Ref.17). Using the Gauss curvatures near 
EQs, it is easy to quantify the distributions’ shapes of the pseudo physics quantities. In Ref.17, these Gauss cur-
vature-based coordinates may serve as a unique signature of individual extreme EQs. The coordinate vector K 
consists of the principal Gauss curvatures (κ1, κ2) of four pseudo physics quantities at time t at a reference volume 
ξ j as

where E, P, V and L stand for the pseudo released energy, the pseudo power, the pseudo vorticity’s first term, 
and the pseudo Laplacian’s first term, respectively, all being calculated at time t and the reference volume ξ j.

The fourth data transformation is to convert the time histories of Gauss curvatures into Fourier transform 
(FT)-based features (Fig. 1D). The inclusion of the FT-based new features has two reasons. First, FT-based 
features can easily convey temporal information of other features in terms of amplitudes and frequencies. The 
second reason is to leverage the strength of the Fourier series in representing general, complex functions. As 
shall be demonstrated in this paper, the inclusion of trigonometric functions (inspired by the Fourier series) in 
the prediction rules appears to improve and sharpen the prediction accuracy substantially.

Table 1 summarizes the key procedures of FT-based new feature generation using the time history of Gauss 
curvatures of pseudo physics quantities. The set of Gauss curvature-based coordinates at ξ j up to the present 
time tn = n×�t is given by

where �t is the sampling interval, one day in this paper.
Regarding K(n; ξ j) ∈ R

(n×8) as a matrix, the mth column, denoted as k(m)(n; ξ j) ( m = 1, . . . , 8 ), corresponds 
to the time series of a principal Gauss curvature of a pseudo physics quantity. For instance, k(1)(n; ξ j) the 1st 
column of K(n; ξ j) , means the time series of κ1 of the pseudo released energy up to this time tn at a reference 
volume ξ j whereas the 8th column k(8)(n; ξ j) means the time series of κ2 of the pseudo Laplacian’s first term.

(1)E(t)r (ξ j) =

nL=2
∑

k=1

nT=2
∑

l=1

L
(k,l)(II

(t)
ST (ξ j; Lk ,Tl); θ

(k,l)),

(2)K(t; ξ j) := ((κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)V , (κ1, κ2)L)),

(3)K(n; ξ j) := {K(t; ξj) ∈ R
8| t = 1, . . . , tn} ∈ R

(n×8)
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To generate the Fourier transform-based new features, this study performed the fast Fourier transform (FFT). 
The well-established library FFTW20,21 is used to carry out FFT of the discrete time series of the Gauss curvature-
based features of the pseudo physics quantities, i.e., each column of K(n; ξ j) . The FFT generates the resultant 
set FPSD consisting of the power spectral densities pPSD ∈ R

n and the associated frequencies f ∈ R
n . In short, 

K(n; ξ j) → F(n; ξ j) := {p
(1)
PSD , f

(1), . . . , p
(8)
PSD , f

(8)}. Then, for each column, we can remove the DC component and 
sort the column vectors in descending order with respect to the magnitude of PSD. The resulting sorted set ( F  ) 
from F(n; ξ j) → F(n; ξ j) := {p

(1)
PSD , f

(1)
, . . . , p

(8)
PSD , f

(8)
| p

(m)
i−1 ≥ p

(m)
i , ∀i ∈ [1, n]} where p(m)

PSD = (p
(m)
1 , . . . , p(m)

n )T . 

Thus, p(m)
i  is the ith entity of the sorted column vector p(m)

PSD in descending order. f (m) is the sorted frequency 

vector according to the p(m)
PSD.

To generate practically meaningful features, amongst many peaks in the power spectra, this paper extracted 
the top 10 amplitudes and the associated frequencies. FT-based new feature set is denoted as F(n; ξ i) ∈ R

10×16 , 
F(n; ξ j) → F(n; ξ i) := {p

(1)
top, f

(1)
top, . . . , p

(8)
top, f

(8)
top| p

(m)
top ⊂ p

(m)
PSD , f

(m)

top ⊂ f
(m)

}.

There is no strict restriction to how many top amplitudes are selected. This paper adopts up to top 10 since it 
can encompass sufficient energy of the total energy of the input signal. For instance, Fig. 2A shows that the top 
10 peaks sufficiently large energy level and that beyond the ten peaks, the energy level decreases to 20% of that 
of the largest peak. Figure 2B shows exceptions when the 10th peak’s energy level does not decrease to below 
50% of that of the largest peak. The results of this paper support that the inclusion of the top 10 amplitudes and 
their frequencies in the FT-based features is successful to distinguish and learn hidden rules of the imminent 

Table 1.  Algorithm—Fourier transform (FT)-based new feature generation.

[Step-I] Time-history of gauss curvatures of pseudo physics 
quantities

Loop:  ∀ξj ∈ V

Loop :t = 1, ..., tn

CalculateK(t; ξj) = ((κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)L , (κ1, κ2)V )
(t)
j

EndLoop

K(n; ξj) =











((κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)L , (κ1, κ2)V )
(1)
j

.

.

.

((κ1, κ2)E , (κ1, κ2)P , (κ1, κ2)L , (κ1, κ2)V )
(tn)
j











∈ R
n×8

End Loop

[Step-II] Column-wise Fast Fourier Transform (FFT)

Loop:  (∀ξj ∈ V)

Loop :(i = 1, ..., 8)

(p
(i)
PSD , f

(i)) = FFT[k(i)(n; ξj) = ith column ofK(n; ξj)]

(p
(i)
PSD , f

(i)
) = Sorted (p

(i)
PSD , f

(i)) by PSD in descending order

(p
(i)
top , f

(i)
top) = Top 10 largest (p

(i)
PSD , f

(i)
) by PSD

EndLoop

F(n; ξj) =
[

p
(1)
top f

(1)
top . . . p

(8)
top f

(8)
top

]

∈ R
10×16

End Loop

Figure 2.  Normalized power spectra of the top 10 amplitudes and their frequencies after sorting the FFT 
results. (A) Rapidly decreasing relative energy levels of top 10 peaks from FFT of Gauss curvatures (denoted 
as K1 and K2). (B) Slowing decreasing relative energy levels. Er: The pseudo released energy, Vort: the pseudo 
vorticity, Lapl: the pseudo Laplacian, and Pwr: the pseudo power.
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extreme EQs. Including more peaks (thus more energy) will be straightforward, and investigation into their 
impacts shall be a future research topic.

Data‑driven prediction rules for individual large EQs
This paper pursues the purely data-driven prediction rules that are customized for individual large EQs, being 
independent of existing magnitude prediction  models22–25, or earthquake forecasting  methods26–33. Overall archi-
tecture of the adopted hidden rule-learning ML algorithm is illustrated in Fig. 1A(V). The generality of the hid-
den rule-learning approach shown in Fig. 1 has been demonstrated with complex physics phenomena at diverse 
scales from  nano34, to  micro35, to composite  structures36,37, and to the Earth  lithosphere17.

Prediction rules are unraveled by the Glass-Box Rule-Learning algorithm that uses the multi-layered data 
(Fig. 1A(V)). The role of “Scientist in the Loop” is to monitor the rule-based predictions and help decide whether 
to recommend appending the identified best-so-far rule into the storage (i.e., global memory for future inherit-
ance and predictions) or not. For instance, some predictions may have good fitness scores numerically, but their 
prediction plots may not satisfy the domain expert’s knowledge. Then, the “Scientist in the Loop” may queue 
for additional rule-learning by changing ML-control parameters or expanding search spaces. Since each large 
EQ has its own prediction rule in the proposed approach, such a re-learning can be done separately and multi-
ple times, specifically for the EQ. This scientist’s role augments the data-driven rule-learning process to better 
comply with domain science.

In the previous work of the  author17, the best-so-far prediction rule was identified by a multiplicative com-
bination of cubic regression spline (CRS)-based LFs of (i) the pseudo released energy (its LF is denoted LE ), 
(ii) the pseudo power ( LP ), (iii) the pseudo vorticity ( Lω ), and (iv) the pseudo Laplacian ( LL ). The CRS-based 
LF can leverage its high  flexibility38,39, and its general form is given in “Methods”. CRS-based LFs can embrace 
constant shift, linear, and nonlinear  curves38,39. Thus, the best-so-far data-driven prediction rule without the 
Fourier transform-based features (denoted M(t+1)

CRS  ) is given by

where E∗(t)r  is the best-so-far pseudo released energy at epoch t and at the reference volume ξ j . The free param-
eters associated with the best-so-far CRS LFs LE ,LP ,Lω , and LL are denoted by θE , θP , θω , and θL , respectively. 
Sg(.) stands for a typical sigmoid function. The detailed rationales for the data-driven rules are presented in Ref.17.

In this study, the Fourier bases are used to sharpen the prediction rule. The top 10 frequencies of the principal 
Gauss curvatures are used in the Fourier bases. The best-so-far data-driven prediction rules with the Fourier 
transform-based features in conjunction with CRS LFs is denoted by M(t+1)

FT&CRS.

where LE ,LP ,Lω , and LL are from Eq. (4); the Fourier-based link functions are give as

Similarly, all other Fourier-based LFs are given in Supplemental Material. Here, the sorted frequency f (1)i  is the 
ith entity of f (1)top . In particular, the Fourier frequencies of (κ1, κ2)E are used to augment LE as shown in the first 
line of Eq. (5). The FT-based LFs appear to offer considerable flexibility to the prior best-so-far prediction rule 
(Eq. 4) and thus improve accuracy of the prediction rules.

It should be noted that all the LFs are customized for individual large EQs in this paper. Rather than a single 
set of LFs describing all EQs, each large EQ will have its own best-so-far LFs (i.e., specialized prediction rules). 
This customized approach will be helpful for a future expansion to a reinforcement learning-based evolution of 
this framework in which unsupervised ML methods can continue learning and improving the best prediction 
rules (i.e., LFs) for many different large EQs, without human interventions.

Feasibility test results
This paper expanded the study region compared to the previous  study17 to wider reference events ( Mw ≥ 6.5 ) in 
the West U.S. region (i.e., longitude and latitude in (− 132.5, − 110) and (30, 52.5) [deg], respectively, and depth 
(− 5, 20) [km]) within the past 40 years from 1980 through 2019.

The ML-identified rule uses the observed 10-year data, 30 days before the event without any physics mecha-
nisms or statistical laws. The best-so-far rule appears to be successful in reproducing the next-month earth-
quake’s location and magnitude 30 days before the event as shown in Fig. 3. The ML-identified rule appears to 
reproduce the global peak event noticeably well. In addition to Fig. 3, all other ML-driven reproductions of 8 
large events of magnitudes ( Mw ≥ 7.0 ) in the West U.S. region are shown in Figs. S2 and S3. Also, Figs. S4–S6 
presents ML-driven reproductions of 9 large events of magnitudes ( Mw ∈ [6.5, 7.0) ) in the western U.S. region. 

(4)M
(t+1)
CRS (ξ j) = LE(E

∗(t)
r )LP

(

Sg

(

e2
∂E

∗(t)
r

∂t

))

Lω

(

Sg
(

e2ω�

))
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(

Sg

(

10−4 ∂
2E

∗(t)
r

∂�2
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(5)

M
(t+1)
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(E))+ LFT (κ2
(E)))
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(P))+ LFT (κ2

(P)))

× Lω × (LFT (κ1
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In some cases, the ML-identified rules reproduce reasonably the global peak’s location and magnitude with 
a few false small peaks (e.g., Figs. S2A–D). Such false peak reproductions appear more noticeable in events 
of magnitudes ( Mw ∈ [6.5, 7.0) ) than events of magnitudes ( Mw ≥ 7.0 ). For instance, Figs. S5C–F appear to 
show the wrong reproductions of false peaks. It is related to the limit of the best-so-far ML-identified rules 
which shall be improved in the future extension. Still, the overall performance is promising since the largest 
peaks’ locations and magnitudes are reasonably reproduced by the customized data-driven model. Table 2 sum-
marizes the prediction results of individual 8 large earthquakes of magnitude ( Mw ≥ 7.0 ) and 9 large earth-
quakes of ( Mw ∈ [6.5, 7.0) ) using the best-so-far data-driven prediction model. For the 8 large earthquakes of 
magnitude ( Mw ≥ 7.0 ), the mean differences in (latitude, longitude, depth, magnitude) between real peak and 

Figure 3.  Reproduction of large magnitude events Mw > 7.0 by using the customized ML-identified data-
driven prediction rules with FT-based new features: (A,B) Observed real and simulated earthquake events on 
1991/8/17 (target day ID 1004246); (C,D) 2019/7/6 (1014431); (E,F) 1992/6/28 (1004562).
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ML-reproduced peak are ( 0.12◦, 0.15◦, 4.21 km, 0.18 ). The mean differences increase to ( 0.28◦, 0.51◦, 5.4 km, 0.22 ) 
for the 9 large earthquakes of magnitude ( Mw ∈ [6.5, 7.0) ). These difference underpins the overall accuracy of 
the best-so-far ML-identified rules in reproducing three-dimensional locations and magnitudes 30 days before 
the event. But, it also implies that the rule’s accuracy appears to deteriorate for the second largest group of 
( Mw ∈ [6.5, 7.0) ). Uncertainty also increases for this second largest group. For the 8 large earthquakes of magni-
tude ( Mw ≥ 7.0 ), the standard deviation of the differences in (latitude, longitude, depth, magnitude) between real 
peak and ML-reproduced peak are ( 0.1◦, 0.17◦, 3.19 km, 0.12 ). The standard deviation of differences increase to 
( 0.22◦, 0.52◦, 4.52 km, 0.15 ) for the 9 large earthquakes of magnitude ( Mw ∈ [6.5, 7.0) ). Improvement of accuracy 
and underlying uncertainty shall be a natural future extension topic.

The preserved interpretability is noteworthy. The best-so-far prediction rules are remembered by storing all 
the free parameters of the LFs. By retrieving the parameters and plugging them into the corresponding LFs’ 
expressions (e.g., Eqs. 6 or 11), one can investigate and interpret individual physical terms and their behavior 
(e.g., Fig. S8 of the author’s prior  work17). During the rule-learning process, the poor-performing combinations 
of features and their LFs are rejected. By doing so, this approach can help improve physical interpretation of the 
ML-identified rules. In particular, the best-performing prediction rule (Eq. 5) turns out to select the pseudo 
vorticity’s first term ω� and the pseudo Laplacian’s first term ∂

2E
∗(t)
r

∂�2
 out of many other feature terms (e.g., 

Table 2.  Individual large earthquake reproductions using the best-so-far customized data-driven models with 
FT-based new features. 8 events of Mw ≥ 7.0 and 9 events of Mw ∈ [6.5, 7.0).�Mw and �ξ are the absolute 
differences in magnitude and location between the real observation and the predicted peaks, respectively. Some 
common names of EQs are included. The coordinates ( �,φ, h ) of all the observed real peaks in this table are 
the same as those in the USGS catalog database. All other comparison plots between predicted and observed 
peaks of this paper present the center coordinates of the reference volume ( �� = �φ = 0.1

◦;�h = 5 km) that 
contains the peak.

Target day ID (date) Mw �Mw �(◦) φ(◦) h (km) �ξ(km)

1004246 (1991/8/17) Observed real 7 − 125.86 41.68 1.3

Predicted 7.17 0.17 − 125.85 41.75 12.5 13.7

1004498 (1992/4/25) Observed real 7.2 − 124.23 40.33 9.86

Cape Mendocino Predicted 6.83 0.37 − 124.35 40.45 12.5 19.0

1004562 (1992/6/28) Observed real 7.3 − 116.44 34.2 − 0.097

Landers Predicted 7.3 0 − 116.35 34.15 2.5 11.7

1005357 (1994/9/1) Observed real 7 − 126.3 40.41 4.97

Predicted 6.81 0.19 − 126.85 40.25 7.5 63.7

1007228 (1999/10/16) Observed real 7.1 − 116.25 34.6 13.73

Hector Mine Predicted 6.9 0.2 − 116.25 34.95 7.5 39.3

1009297 (2005/6/15) Observed real 7.2 − 125.95 41.29 16

Predicted 6.97 0.23 − 126.15 41.15 17.5 27.2

1011051 (2010/4/4) Observed real 7.2 − 115.3 32.29 9.99

El Mayor–Cucapah Predicted 6.99 0.21 − 115.15 32.35 12.5 18.1

1014431 (2019/7/6) Observed real 7.1 − 117.6 35.77 8

Ridgecrest Predicted 7.13 0.03 − 117.65 35.75 12.5 7.5

1004211 (1991/7/13) Observed real 6.9 − 125.64 42.18 11

Predicted 6.47 0.43 − 126.85 41.75 2.5 142.9

1005130 (1994/1/17) Observed real 6.7 − 118.54 34.21 18.2

Northridge Predicted 6.63 0.07 − 118.25 34.35 7.5 37.3

1005528 (1995/2/19) Observed real 6.6 − 125.76 40.59 4.62

Predicted 6.45 0.15 − 125.65 40.35 7.5 29.5

1008756 (2003/12/22) Observed real 6.5 − 121.1 35.7 8.38

San Simeon Predicted 6.54 0.04 − 121.05 35.85 12.5 18.0

1009072 (2004/11/2) Observed real 6.7 − 128.77 49.28 10

Predicted 7.06 0.36 − 127.85 49.45 12.5 104.0

1012487 (2014/3/10) Observed real 6.8 − 125.13 40.83 16.44

Ferndale Predicted 6.73 0.07 − 125.55 40.85 2.5 48.8

1012532 (2014/4/24) Observed real 6.5 − 127.73 49.64 10

Predicted 6.77 0.27 − 126.35 50.35 7.5 172.4

1013491 (2016/12/8) Observed real 6.6 − 126.19 40.45 8.45

Predicted 6.77 0.17 − 126.35 40.95 7.5 58.3

1014174 (2018/10/22) Observed real 6.8 − 129.29 49.33 10

Predicted 7.23 0.43 − 129.25 49.45 7.5 14.3
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g E
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r  , and so on). Physically, ω� may describe the slow rotational motion 

about the longitudinal axis, and the directions of the western U.S. region’s plate motions and the known major 
faults are roughly parallel or normal to the longitudinal axis. Therefore, any accurate data-driven prediction 
rules, if properly unraveled, should be able to highlight certain salient physical terms, and such favorable capa-
bilities appear to be confirmed. Purely based on data, this paper’s best prediction rules pinpoint salient feature 
terms, underpinning the preservation of physical intepretability.

Conclusion
The inclusion of FT-based features in the prediction rules appears to be effective to improve accuracy of large 
EQ’s location and magnitude 30 days before the event. Figure 4 compares the positive impact of the FT-based 
features. Also, the FT-based features appear to help the ML-identified best-so-far rules to sharpen the predicted 
magnitude distributions and remove the incorrect peaks. For instance, these positive roles of FT-based features 
can be clearly seen from comparison between Fig. 4A,C and between Fig. 4D,F.

The improvement can be also confirmed by the sharpened distribution of the absolute errors between real and 
predicted magnitudes. For instance, Fig. S7 compares the absolute magnitude errors ( |�Mw| ) from predictions 
without and with FT-based features in the best-so-far rules.

To some extent, it is an anticipated result due to two reasons. FT-based features’ many LFs ( LFT ) and the 
associated free parameters can offer additional fitting power to prediction like a deep learning model with more 
neurons. Also, many LFT ’s can be regarded as many higher terms in the Fourier series (here, up to 10 harmonics) 
which can contribute to smooth fitting strength.

To incorporate the FT-based features, the ML-identified rules should have additional Fourier bases like Eq. 
(6). When prediction rules use only CRS-based LFs (Eq. 4), the incorrect peaks and over-smoothing issues remain 
(see Fig. 4C,F). In contrast, the combination of smooth CRS-based LFs Li , i = (E, P,ω, L) and the Fourier series-
based LFs LFT in Eq. (5) can offer enhanced accuracy of reproducing large rare peaks without incorrect peaks 
and over-smoothing issues (see Fig. 4A,D). The Gibbs phenomenon (i.e., over/undershoot issues near a jump 
discontinuity) appears not in effect at the present prediction rules using the Fourier series-based LFs. This may be 
attributed to the fact that the large EQs in this framework are regarded as “point sources” not lines, thus not nec-
essarily leading to sudden discontinuities of target distributions. In the future extensions, when EQs are regarded 
as 2D line sources, the Gibbs phenomenon may negatively affect the predictions, which shall be addressed later.

Also, in the future investigations, comprehensive validations of the ML-identified prediction rules should be 
done to confirm general applicability to a wide range of EQ sizes. For instance, Fig. S8 shows preliminary test 
predictions of “quiet” period without large EQs ( Mw < 5.5 during the period) by using the best-so-far rules. 
Fig. S8A shows the prediction 33 days before the Ridgecrest EQ (2019/7/6; Mw = 7.1 ); Fig. S8B, 32 days before. 
No false alarms with spurious large EQ predictions are detected. Since the proposed approach trained and 

Figure 4.  Positive role of FT-based new features in improving prediction accuracy of the best-so-far rules: 
(A–C) 1991/8/17 (1004246); (D–F) 2019/7/6 (Target date ID 1014431). (A) and (D) harness a combination of 
Fourier series-based LFs and CRS-based LFs by Eq. (5) whereas (C) and (F) utilize CRS-bases LFs of the four 
pseudo physics quantities by Eq. (4).
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unraveled all the prediction rules with large EQs data ( Mw ≥ 6.5 ), this preliminary test result appears promis-
ing. But, to draw a concrete conclusion about the proposed approach and also to be practically meaningful tool 
 (like28,32), future extension should conduct comprehensive tests over broad ranges of EQs.

The outcomes of this study add a new dimension to research for predicting individual large EQs. Gauss 
curvature-based unique signatures of large EQs may be remembered and distinguished by unsupervised ML 
methods while the data-driven prediction rules can be better customized for individual large EQs with new data. 
The overall processes can be managed and evolved by another global ML like reinforcement learning, thereby 
shedding light on purely data- and ML-driven predictions of large EQs. The handshake among ML methods, 
Fourier, and Gauss may help answer the long-standing enigma of seismogenesis.

Methods
Data preparation
This study collected and processed raw earthquake catalog data available in Ref.18 from January 1980 through 
October 2019. Without any prejudice, all the recorded earthquakes within the past 40 years are included, and the 
total number of earthquakes is 1,895,190. According to the calendar-based date, all earthquakes within one day 
is stored in one data file. The day-based earthquake catalog data file is named as 1,000,000 for January 1st, 1980, 
1,000,001 for January 2nd, 1980, and so on. Each file contains the number of data points in the file followed by 
longitude, latitude, depth, and magnitude of each earthquake. As illustrated in Fig. S1, one epoch is defined as 
30-day time range. All earthquakes within the 30-days window are considered to belong to the same epoch. A 
frame of epochs consists of many consecutive epochs and serves as the training base for rule-learning glass-box 
machine learning algorithm. Within one frame of epochs, the last epoch is used as a target while all the previous 
epochs are used for training of hidden rules. As illustrated in Fig. S1A, the target epoch is completely disjointed 
from the frame of epochs used for training and rule-learning. As explained in Fig. S1, this study sets one-day 
interval between consecutive frames of epochs. By marching frames of epochs with one-day increment, this 
paper can dramatically increase the number of total frames of epochs to 14,600. For interested researchers, all 
the processed data sets of the refined epochs with one-day interval are publicly available  at40.

This paper focuses on prediction rule-learning about a large target EQ ( Mw ≥ 6.5 ) positioned at the last day 
of the target of epoch (Fig. S1A). Thus, all ML-identified rules of this paper are specifically trained to predict a 
future large event 30 days before the target EQ (i.e., D-30 case in Fig. S1B). In the future extension, shorter time-
window predictions (e.g., a few days ahead) shall be possible by placing the target EQ at the earlier positions of 
the target epoch (D-2 or D-1 cases in Fig. S1B). In contrast, by defining wider target epochs, longer time-widow 
predictions (e.g., months or years ahead) shall be also possible, which will be meaningful for complementing 
the existing long-term EQ forecasting methods.

Data transformation from raw EQ catalog into spatio‑temporal information index
Temporal convolution is carried out after spatial convolution is done as

where the one-dimensional (1D) Gaussian weight ω(τ ;Tl) = (Tl(2π)
1/2)−1 exp

(

− τ 2

2T2
l

)

 ; τ = |t − tpast |, t ≥ tpast , 

meaning the time gap between the current and the past time. And, the spatial convolution is done by

where the 3D Gaussian weight ω(ξ j , x
(t)
i ; Lk) = (Lk(2π)

1/2)−N exp

(

−
|x

(t)
i −ξ j |

2

2L2k

)

 ; V means the entire lithosphere 

domain under consideration. Here, Tl (l = 1, . . . , nT ) and Lk (k = 1, . . . , nL) are influence ranges in time and 
3D space, respectively. Therefore, there can be at most nL × nT spatio-temporal IIs at one reference volume and 
a time. Following the preliminary investigations done in Ref.17, this study adopts nL = 2 with L1 = 10 (km) and 
L2 = 25 (km) while nT = 2 with T1 = 3 (month) and T2 = 6 (month). This combination appears to lead to the 
best-so-far prediction performance since it embraces dual impacts of close and far EQs both in three-dimensional 
spatial domain and in one-dimensional temporal domain.

Flexible and expressive link functions
Pursuing the interpretability, this paper adopts an expressive link function (LF) using transparent, flexible bases 
that can describe a mathematical expression between input features and the hidden rules as output. LF is denoted 
as L where θ is a set of free parameters prescribing the LF. The cubic spline regression (CRS) curves consist of a 
few cubic polynomials connected at knots so that the curves are continuous up to the second  derivatives38. For 
practical cubic spline  bases39 (denoted as bi ), LFs look like

(7)II
(t)
ST (ξ j; Lk ,Tl) =

∫

ω(τ ;Tl)II
(tpast )
S (ξ j; Lk)dtpast

(8)II
(t)
S (ξ j; Lk) =

∫

V
ω(ξ j , x

(t)
i ; Lk)M

(t)
i /10 dx

(9)L(IIST ; a, x
∗) =

p
∑

i

aibi(IIST )
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where b1(x) = 1, b2(x) = x, and

for i = 1 . . . p− 2. Here, x∗i  is ith knot location. To fully describe one LF, we need to identify p+ (p− 2) 
unknowns, i.e. a = {a1, . . . , ap} and x∗ = {x∗1 , . . . , x

∗
(p−2)}. The CRS-based LF can accommodate simple mono-

tonic rule to highly nonlinear rule. Importantly, the adopted CRS is not used for the direct “regression” but for 
the transparent expression searching.

Bayesian evolutionary algorithm
This paper adopts the Bayesian evolutionary algorithm to find the total free parameters of hidden rules and also 
to enable smooth evolution of the rules. In particular, the total free parameters include the parameters of the 
pseudo released energy rule in Eq. (1), CRS LFs of prediction rules in Eq. (4), and Fourier transform-based LFs 
of predition rules in Eq. (5). A combination of the fitness-proportionate probability (FPP) scheme of the genetic 
algorithm and the Bayesian update scheme is at the center of the method (see details in Ref.17). On the Bayesian 
evolutionary framework, in total 71,600 organisms (i.e., candidates for total free parameters of hidden rules) and 
20 generations are used, 4 alleles per gene are used, and the variable-wise mutation with rate of 0.005 is used. 
Preliminary investigations narrow down the best-performing search ranges such that (i) exponential LFs’ two 
parameters reside in [0, 3] ∪ [0, 10] ; (ii) CRS LFs’ parameters of five bases all reside in [−2, 2] and three knots’ 
loci are [0, 1/3] ∪ [1/3, 2/3] ∪ [2/3, 1] ; (iii) Fourier Transform-based LFs’ parameters of Fourier bases all reside 
in [−2, 2] . As done in Ref.17, the three-fold error measure (i.e., fitness) is based on differences in magnitude, 
three-dimensional location, and the wrong peaks’ count (false alarms) between real observations and best-so-
far rule-driven predictions. The key steps of the Bayesian evolutionary algorithm are presented in Table S2 of 
Supplementary Information.

Computation cost
All computational simulations, training, and predictions of this paper were conducted on NOVA, a high-perfor-
mance computing cluster of Iowa State University. NOVA cluster consists of compute nodes with two 18-Core 
Intel Skylake 6140, 1.5 TB of fast NVME local storage, and 192 GB of memory. All nodes and storage are con-
nected via Mellanox EDR (100 Gbps) switch. Given one target EQ, the rule-learning simulation used 144 cores 
and finished within 12 h, which includes all steps: new feature generations, FFT, and rule-learning with Bayes-
ian evolutionary algorithm. Once the best-so-far rule’s free parameters are identified and stored, one separate 
prediction using top 10 best-so-far rules costs only 4 min with 16 cores.

Data availability
The processed 40-years data sets consisting of the month-based epochs and the refined day-based epochs are 
shared on a cloud  storage40. Other supplementary data and parallel programs supporting other findings of this 
paper will be available upon request to the author.
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