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Identification of MIR600HG/
hsa‑miR‑342‑3p/ANLN network 
as a potential prognosis biomarker 
associated with lmmune infiltrates 
in pancreatic cancer
Baolin Qian 1,2,5, Qi Liu 3,5, Chaoqun Wang 1,2, Shounan Lu 1,2, Shanjia Ke 1,2, Bing Yin 1,2, 
Xinglong Li 1,2, Hongjun Yu 1,2, Yaohua Wu 4* & Yong Ma 1,2*

Pancreatic cancer is one of the tumors with the worst prognosis, causing serious harm to human 
health. The RNA network and immune response play an important role in tumor progression. While 
a systematic RNA network linked to the tumor immune response remains to be further explored in 
pancreatic cancer. Based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
databases, the MIR600HG/hsa‑miR‑342‑3p/ANLN network was determined. WB and IHC were used 
to confirm the high expression of ANLN in pancreatic cancer. The prognostic model based on the RNA 
network could effectively predict the survival prognosis of patients. The analysis of immune infiltration 
showed that the MIR600HG/hsa‑miR‑342‑3p/ANLN network altered the level of infiltration of T helper 
2 (Th2) and effector memory T (Tem) cells. Furthermore, we found that the chemokines chemokine 
ligand (CCL) 5 and CCL14 may play a key role in immune cell infiltration mediated by the RNA network. 
In conclusion, this study constructed a prognostic model based on the MIR600HG/hsa‑miR‑342‑3p/
ANLN network and found that it may function in tumor immunity.

Pancreatic cancer has the worst prognosis among common gastrointestinal malignancies, with a 5-year overall 
survival (OS) rate of approximately 10%1. Pancreatic cancer is characterized by atypical early symptoms and a 
high degree of malignancy, and surgery is still the most effective treatment for pancreatic  cancer2. However, most 
patients with pancreatic cancer are at an advanced stage when they are diagnosed, and miss the opportunity for 
surgery. Even after surgical resection, they are prone to recurrence and  metastasis3. Molecular targeted therapy 
refers to the use of drugs or other substances that designed for specific carcinogenic sites (which can be protein 
molecules or gene fragments in tumor cells) to inhibit tumor growth or cause tumor cell death without affecting 
the surrounding normal  tissue4. In recent years, molecular targeted therapy has developed rapidly, but there are 
also many shortcomings such as drug resistance and individual  differences5. In addition, it was reported that 
women had longer OS compared to men with pancreatic  cancer6, and cox multivariate analysis suggested that 
gender was an independent predictor of  OS7. To date, the exact mechanism of the occurrence and development of 
pancreatic cancer remains unclear. Thus, investigations into the molecular mechanism of pancreatic cancer and 
the development of effective therapeutic targets and new prognostic biomarkers for the treatment of pancreatic 
cancer are very important.

With the proposal of the long noncoding RNA (lncRNA)‒microRNA (miRNA)-messenger (mRNA) 
 network8, an increasing number of scholars have begun to pay attention to the effects of mRNAs and noncoding 
RNAs (mainly including miRNAs and lncRNAs) on the occurrence, development, and prognosis of tumors and 
the relationship among them. The lncRNA‒miRNA–mRNA network has been confirmed to play an important 
role in the progression and metastasis of a variety of cancers, such as colorectal  cancer9, liver  cancer10,11, and 
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breast  cancer12. To date, studies have assessed the lncRNA‒miRNA-mRNA network in pancreatic cancer, but 
most of them are network axes related to the  prognosis13,14. The key lncRNA‒miRNA–mRNA network related 
to immune cell infiltration and the prognosis of pancreatic cancer requires further study.

In recent years, with the in-depth understanding of the tumor microenvironment (TME), new insights into 
the pathogenesis and targeted therapy of pancreatic cancer have been provided. The TME is a mixture of immune 
cells, stromal cells, extracellular matrix molecules, cytokines and  chemokines15. The TME of pancreatic cancer 
is a relatively complex internal environment that is conducive to the growth of tumor cells. One of its notable 
features is the presence of a large number of dense matrix components, including fibroblasts, blood vessels, 
pancreatic stellate cells (PSCs) and other  substances16. These dense matrix components provide favorable con-
ditions for the growth of pancreatic cancer cells. In addition, a variety of immune cells with different functions 
are present in the TME of pancreatic cancer, such as CD4 + /CD8 + effector T cells, natural killer cells (NK cells) 
and dendritic cells (DCs), with antitumor  effects17. These immune cells are less abundant in the TME, while the 
immunosuppressive regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and tumor-associated 
macrophages (TAMs) are present in large numbers in the TME. Their functions are active, and they secrete large 
amounts of interleukin-10 (IL-10), TGF-β, IDO and other immunosuppressive factors to form an immunosup-
pressive TME in pancreatic cancer, which inhibits the immune response and causes immune escape to alter the 
effect of  immunotherapy18.

In this study, we identified the hub differentially expressed genes (DEGs) in pancreatic cancer by analyzing 
three Gene Expression Omnibus (GEO) datasets and one dataset from The Cancer Genome Atlas (TCGA), and 
we verified in patient samples. Immediately, the upstream miRNAs and lncRNAs were predicted, and miRNAs 
and lncRNAs related to immune cell infiltration and the prognosis of pancreatic cancer were screened in a 
subsequent analysis. Then, the lncRNA‒miRNA–mRNA regulatory network was established according to their 
corresponding relationship (Fig. S1). Finally, the miR-600HG-hsa-miR-342-3p-ANLN network was created 
after screening and refining the data. This regulatory axis may be further studied as a biomarker or drug thera-
peutic target for pancreatic cancer and provide a new theoretical basis and potential target for the treatment of 
pancreatic cancer.

Results
Screening of key genes
We analyzed the microarray data (GSE15471, GSE16515, and GSE46234) from patients with pancreatic cancer 
in the GEO database, and 230 DEGs were obtained (Fig. 1A), including 180 upregulated genes (Fig. 1B) and 50 
downregulated genes (Fig. 1C). The enrichment analysis of all DEGs is shown in Fig. 1D. The BP included extra-
cellular structure organization, extracellular matrix organization, and cell-substrate adhesion. The CC included 
collagen-containing extracellular matrix, endoplasmic reticulum lumen, and extracellular matrix components. 
The MF consisted of endopeptidase activity, extracellular matrix structural constituent, and extracellular matrix 
binding. The enrichment analysis of upregulated/downregulated DEGs is shown in Fig. S2A–B. We entered 
DEGs into the online database STRING to obtain the PPI network and then imported the data into Cytoscape 
for a visual analysis. Subsequently, 10 upregulated hub genes (Fig. 1E) and 10 downregulated hub genes (Fig. 1F) 
were selected.

Furthermore, we performed a K-M survival analysis of 20 hub genes based on TCGA database. The results 
indicated that 10 upregulated hub genes (ANLN, CKS2, DLGAP5, KIF14, KPNA2, MELK, NEK2, PTTG1, RAC-
GAP1, and TOP2A) were related to OS, while only ERP27 (downregulated hub genes) was associated with OS 
(P < 0.05) (Fig. S3). Therefore, this study focused on the 11 key genes in the follow-up analysis. We also verified 
the expression levels of key genes. Compared with normal tissues, the expression of ANLN, CKS2, DLGAP5, 
KIF14, KPNA2, MELK, NEK2, PTTG1, RACGAP1, and TOP2A was upregulated, while ERP27 expression was 
downregulated in pancreatic cancer tissues (P < 0.05) (Fig. S4).

Screening of key miRNAs
To identify the potential key miRNAs, we predicted the upstream miRNAs of key genes by using the miRwalk 
database, and 118 upstream miRNAs were found. The PPI network visualizing upstream miRNAs is shown in 
Fig. 2A. Due to of the tissue-specific expression of miRNAs, so we aimed to find the miRNAs that are differen-
tially expressed in pancreatic cancer. Then, 2560 differentially expressed miRNAs between pancreatic cancer and 
normal tissues were identified in the GSE163031 dataset from the GEO database. The volcano plot showed 295 
significantly altered miRNAs (including 153 upregulated miRNAs and 142 downregulated miRNAs) (|logFC|> 1 
& p.adj < 0.05) (Fig. 2B). Next, we acquired 18 common miRNAs between the predicted upstream miRNAs and 
differentially expressed miRNAs in GSE163031 (Fig. 2C). We analyzed the correlation between the miRNAs and 
the targeted mRNAs. The results indicated that 8 pairs of miRNAs‒mRNAs were significant (P < 0.05) (Table S1). 
Subsequently, the results of the K–M survival analysis suggested that hsa-miR-128-3p and hsa-miR-342-3p were 
associated with the OS of patients with pancreatic cancer (P < 0.05) (Fig. 2D–E). Therefore, we focused on hsa-
miR-128-3p and hsa-miR-342-3p in the subsequent analysis.

Screening of IncRNAs and construction of the RNA network
An increasing number of studies have suggested that lncRNAs function as molecules regulating miRNAs; there-
fore, we speculated whether a similar regulatory mode also exists for key miRNAs. Here, 5444 differentially 
expressed lncRNAs between pancreatic cancer and normal tissues were identified in TCGA database. The volcano 
plot showed 948 significantly differentially expressed lncRNAs (including 473 upregulated lncRNAs and 475 
downregulated lncRNAs) (|logFC|> 1 & p.adj < 0.05) (Fig. 3A). In addition, 149 upstream lncRNAs of hsa-miR-
128-3p and hsa-miR-342-3p were predicted using the lncBase online website. Then, we acquired the common 
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lncRNA (MIR600HG) between the upstream lncRNAs and significantly differentially expressed lncRNAs from 
TCGA (Fig. 3B). Subsequently, we analyzed the binding sites between the miRNA (hsa-miR-342-3p) and lncRNA 
(MIR600HG) using the lncBase online website. As a result, two binding sites for MIR600HG and hsa-miR-342-3p 
were identified (Fig. 3C). Hence, this study focused on MIR600HG in the follow-up analysis.

According to the K-M survival analysis, MIR600HG was associated with a shorter OS of patients with pancre-
atic cancer (P < 0.05) (Fig. 3D). Furthermore, the results of Pearson’s correlation analysis showed that MIR600HG 
was negatively correlated with ANLN but positively correlated with hsa-miR-342-3p (Fig. 3E–F). Finally, we 

Figure 1.  Screening of differentially expressed mRNAs. (A) Volcano plots of differentially expressed mRNA. 
Venn diagram of DEGs in the three gene datasets. (B) Upregulated DEGs and (C) downregulated DEGs. (D) 
GO and KEGG pathway enrichment analyses of DEGs, including biological process (BP), molecular function 
(MF), and cellular component (CC). The PPI network and Cytoscape were used to screen hub genes. (E) The 
significantly upregulated genes and (F) the significantly downregulated genes.
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obtained a new RNA network (MIR600HG/hsa-miR-342-3p/ANLN) related to the prognosis of patients with 
pancreatic cancer (Fig. 3G).

Construction of a MIR600HG/hsa‑miR‑342‑3p/ANLN related risk model
From TCGA database, we obtained the clinical characteristics of patients expressing the genes in the network 
(MIR600HG, hsa-miR-342-3p, and ANLN), as shown in Table S2. We explored whether the MIR600HG/hsa-
miR-342-3p/ANLN network could be used as an indicator to evaluate the prognosis of patients with pancreatic 
cancer by investigating the association of the RNA network and OS in patients with pancreatic cancer using a 
multivariate Cox regression analysis. Patients with pancreatic cancer were divided into a high-risk subgroup 
and a low-risk subgroup according to the median value of the RNA network risk score (Fig. 4A). By performing 

Figure 2.  Screening of upstream differentially expressed miRNAs. (A) Upstream miRNAs were searched 
and mRNA‒miRNA networks were constructed. Red indicates upregulated key genes, green indicates 
downregulated key genes, and blue represent miRNAs. (B) Volcano plot of differentially expressed miRNAs. 
(C) Venn diagram of miRNAs between upstream miRNAs (predicted by miRWalk) and differentially expressed 
miRNAs (screening of GSE163031). (D–E) The OS analysis based on miRNAs.
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a K–M survival analysis, we found that patients with pancreatic cancer presenting high risk scores had a poor 
clinical prognosis (Fig. 4B).

It is well known that the prognosis of patients with pancreatic cancer is affected by clinical factors such as stage 
and grade. Therefore, we wanted to combine the RNA network and clinical factors to establish a comprehensive 
prognostic risk model. We performed multiple regression analyses, and the results indicated that age, histologic 
grade, and risk score were independent risk factors for shorter survival (Fig. 4C). Subsequently, we built a new 
prognostic model for predicting OS based on age, histologic grade, and the network risk score (Fig. 4D). Elderly 
patients with pancreatic cancer with high histological grades and high-risk scores had worse prognoses. The ROC 
curve analysis revealed that the MIR600HG/hsa-miR-342-3p/ANLN-related risk model effectively predicted the 
1-year, 3-year, and 5-year survival rates of patients with pancreatic cancer based on TCGA dataset (Fig. 4E). The 
calibration plot indicates the stability and reliability of the risk model (Fig. S5).

Clinical relevance of the MIR600HG
The expression of MIR600HG in different tissues, T stage, histological grade, and M stage is shown in Fig. S6A–D. 
The expression of MIR600HG in tumor tissues was lower than that in normal tissues (Fig. S6A). The expression 
of MIR600HG in the T3&T4, G3&G4, and M1 subgroups was lower than that in the T1&T2, G1&G2, and M0 
subgroups, respectively (Fig. S6B–D). Moreover, we performed a K–M survival analysis of MIR600HG expression 
in different T stages, and patients with pancreatic cancer presenting low expression of MIR600HG experienced 

Figure 3.  Screening of upstream differentially expressed lncRNA. (A) Volcano plot of differentially expressed 
lncRNAs in pancreatic cancer from TCGA. (B) Venn diagram of lncRNAs between upstream lncRNAs 
(predicted by lncBase) and differentially expressed lncRNAs (screening of TCGA database). (C) Base pairing 
between MIR600HG and hsa-miR-342-3p and the target site predicted by lncBase. (D) The Kaplan‒Meier 
survival curve of the lncRNAs. (E) The coexpression of the mRNA (ANLN) and lncRNA (MIR600HG). (F) The 
coexpression of the miRNA (hsa-miR-342-3p) and lncRNA (MIR600HG). (G) Diagram of the RNA network.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15919  | https://doi.org/10.1038/s41598-023-43174-y

www.nature.com/scientificreports/

a shorter OS (Fig. S6E–F). Then, we performed a pan-cancer analysis of the MIR600HG expression in 31 types 
of cancers (Fig. S6G). The results confirmed that MIR600HG was expressed at low levels in 23 types of tumors, 
including pancreatic cancer (P < 0.05).

Clinical relevance of the ANLN
To explore the clinical value of ANLN, we first analyzed the expression of ANLN. As shown in Fig. 5A, the expres-
sion of ANLN in tumor tissues was higher than that in normal tissues. IHC confirmed the high expression of 
ANLN in pancreatic cancer (Fig. 5B). The expression of ANLN was further confirmed by using the TGCA and 
HPA database (Fig. S7A–B). We also found that the expression of ANLN in the G3&G4 subgroup was higher 
than that in the G1&G2 subgroup (Fig. 5C). However, ANLN expression was not significantly different among 
the pathological stage, T stage, N stage, and M stage subgroups (Fig. S7C–F). In addition, the K–M survival 
analysis revealed that patients with pancreatic cancer in different histologic grade subgroups presenting high 
ANLN expression experienced shorter OS (Fig. 5D–E).

Subsequently, patients were divided into an ANLN high expression group and an ANLN low expression group 
to explore the mechanism by which ANLN promotes cancer. We analyzed the DEGs between the two groups. The 
volcano plot showed 1667 genes with significant differences in expression (including 406 upregulated mRNAs 
and 1261 downregulated mRNAs) (|logFC|> 1 & p.adj < 0.05) (Fig. 5F). The GO/KEGG enrichment analyses of 
these 1667 genes are shown in Fig. 5G. In addition, the results of the GSEA were enriched in the reactome cell 
cycle, reactome chromatin-modifying enzymes, and reactome MHC class antigen presentation (Fig. 5H). MHC 
antigen presentation is an important part of the immune response, which suggests that ANLN may be related 
to the immune response.

Figure 4.  The prognostic model constructed based on the ANLN/hsa-miR-342-3p/MIR600HG network. 
(A) Risk plot for the patients with pancreatic cancer from TCGA. The upper panel shows the risk score and 
distribution of patients. The middle panel shows the corresponding survival status and survival time of patients. 
The lower panel shows the expression of ANLN/hsa-miR-342-3p/MIR600HG. (B) K–M curve for the risk score 
based on TCGA. (C) Multivariate Cox analysis of independent prognostic risk factors. (D) The new prognostic 
model for predicting the 1-year, 3-year, and 5-year OS of patients with pancreatic cancer based on the RNA 
network. (E) Time-dependent ROC curve of the risk prognostic model. AUC: area under the curve, FPR: false 
positive rate, and TPR: true positive rate.
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Figure 5.  Relationship between ANLN expression and the clinical features of patients with pancreatic cancer. 
(A) Comparison of ANLN expression between normal tissue and pancreatic cancer tissue by WB, the original 
images of full-length blots was provided in supplementary Information file. (B) Comparison of the expression of 
the ANLN protein between the normal pancreas and pancreatic cancer by IHC. (C) The expression of ANLN in 
different histological grades of pancreatic cancer. (D–E) Kaplan‒Meier survival curves stratified by the high/low 
expression of ANLN in different histological grades of pancreatic cancer. (F) Volcano plot showing differentially 
expressed mRNAs between patients with high expression of ANLN and low expression of ANLN from TCGA. 
(G–H) GO enrichment analysis, KEGG enrichment analysis, and GSEA of differentially expressed mRNAs.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15919  | https://doi.org/10.1038/s41598-023-43174-y

www.nature.com/scientificreports/

The relationship between the risk score of the RNA network and immune cell infiltration
We construct a risk score containing ANLN, previous  studies19,20 have found that the expression of ANLN 
is closely related to immune infiltration, so we explored whether the risk score containing ANLN can affect 
immune infiltration of pancreatic cancer. We performed ssGSEA to calculate the immune infiltration score of 
24 immune cells in each sample, and the Cox proportional hazard regression method was used to evaluate the 
relationship between the infiltration of 24 types of immune cells and survival. The results of the multivariate 
analysis suggested that the infiltration of 8 types of immune cells was an independent prognostic factor for 
pancreatic cancer (P < 0.05) (Table S3). To explore the effect of ANLN on different immune cells, we analyzed 
the correlation between ANLN expression and the infiltrating immune cells. As shown in Fig. 6A, three of the 
abovementioned 8 types of cells (Th2 cells, CD8 + T cells, and Tem cells) were significant in the Cox analysis and 
correlation analysis. The correlations between the infiltrating immune cells and ANLN expression are shown 
(Fig. 6B–D). As a result, Th2 cells were positively correlated with ANLN expression. In contrast, CD8 + T cells 
and Tem cells were negatively correlated with ANLN expression. Next, we analyzed the immune cell infiltration 
in different subgroups of the RNA network risk score. In the low-risk group, Th2 infiltration levels were higher, 
while CD8 + T cells and Tem cells infiltration levels were lower (Fig. 6E–G). Moreover, the results of the K-M 

Figure 6.  Relationship between ANLN expression and immune cell infiltration. (A) The correlation analysis 
between ANLN expression and infiltrating immune infiltration. (B–D) The scatterplot shows the correlations of 
ANLN expression with immune cells (Th2 cells, CD8 + T cells, and Tem cells). (E–G) The scatterplot shows the 
correlations of RNA network risk score with immune cells (Th2 cells, CD8 + T cells, and Tem cells).
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survival analysis revealed that patients with high immune infiltration of Tem or Th2 cells experienced shorter OS, 
while the level of CD8 + T cell infiltration was not related to the OS of patients with pancreatic cancer (Fig. S8).

ANLN may mediate immune cell infiltration by regulating chemokines
It is well known that chemokines could regulate the infiltration of immune cells. Therefore, we intersected the 
differentially expressed chemokines in different tissues and the differentially expressed chemokines in different 
ANLN subgroups. As shown in Fig. 7A, 6 common chemokines (CCL2, CCL3, CCL4, CCL5, CCL14, and XCL12) 
were shared between the two groups. Then, we examined the chemokines in different ANLN subgroups. In the 
two subgroups stratified by ANLN expression, the expression levels of 6 chemokines were significantly different 
(Fig. 7B). By performing a K–M survival analysis, CCL5 and CCL14 are associated with survival in patients with 
pancreatic cancer (Fig. S9).

Figure 7.  Relationship between ANLN and chemokines. (A) Venn diagram showing the significantly 
differentially expressed chemokines. (B) The heatmap shows the expression of chemokines in patients with 
different levels of ANLN expression. (C–D) The scatterplot shows the correlations between the expression of 
chemokines (CCL5 and CCL14) with immune cells (Th2 cells and Tem cells). (E–F) The scatterplot shows 
the correlations between the expression of chemokines (CCL5 and CCL14) with hsa-miR-342-3p expression. 
(G–H) The scatterplot shows the correlations between the expression of chemokines (CCL5 and CCL14) with 
MIR600HG expression.
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Next, we analyzed the relationship between the chemokines and immune cells. The results suggested that the 
expression of CCL5 was positively correlated with Tem cells (Fig. 7C). CCL14 was positively correlated with Tem 
cells but negatively correlated with Th2 cells (Fig. 7D). Next, we analyzed the correlation between the chemokines 
and the MIR600HG/hsa-miR-342-3p/ANLN network. The results showed that CCL5 and CCL14 were positively 
correlated with hsa-miR-342-3p and MIR600HG, respectively (Fig. 7E–H).

Discussion
Pancreatic cancer is a highly invasive digestive  tumor1. Although surgery is the only possible method to 
achieve a clinical cure for pancreatic cancer, a large number of patients have lost the chance to receive surgi-
cal treatment before they are  diagnosed21. Due to the insensitivity of pancreatic cancer to radiotherapy and 
chemotherapy, immunotherapy and targeted therapy may be a new breakthrough in the treatment of pan-
creatic  cancer5. However, accurate and effective therapeutic targets for pancreatic cancer are still lacking. The 
lncRNA‒miRNA–mRNA network has been confirmed to be involved in regulating various tumor immune 
 microenvironments22,23. Therefore, we aim to establish a lncRNA‒miRNA–mRNA network related to immune 
cell infiltration and the prognosis and provide ideas for further explorations of biomarkers and potential thera-
peutic targets of pancreatic cancer.

Here, we screened key DEGs in pancreatic cancer, searched the upstream miRNAs and lncRNAs based on 
key DEGs, and finally constructed a MIR600HG/hsa-miR-342-3p/ANLN network (Fig. 3G). In addition, we 
constructed a prognostic risk model for pancreatic cancer based on the MIR600HG/hsa-miR-342-3p/ANLN 
network score. The ROC curve analysis showed that AUC values for 1-, 3-, and 5-year survival rates were 0.823, 
0.843, and 0.862 (Fig. 4E), respectively. This finding indicates that the model effectively predicts the survival time 
of patients with pancreatic cancer. We also evaluated the relationship between the network score and immune 
cell infiltration. The results showed that ANLN expression was upregulated and that the RNA network score was 
higher in the high immune infiltration group.

ANLN, a gene that encodes an actin-binding protein, is a member of a cluster of proteins involved in mitosis/
cytokinesis and is a part of the cleavage  groove24. Studies have found that ANLN is involved in the occurrence and 
development of tumor  cells25,26. Here, we observed high expression of ANLN in pancreatic cancer at the mRNA 
and protein levels, consistent with the results reported by Olakowski et al.27. By analyzing the clinical character-
istics of patients with different ANLN expression levels, we found that ANLN is related to tumor differentiation 
in pancreatic cancer. The study by Wang et al.28 supported our conclusion, but they also observed differences in 
tumor size and TNM stage. This discrepancy may be because most patients diagnosed with pancreatic cancer 
were in the middle and late stages, and the number of patients in the early stage was insufficient. Furthermore, 
we performed an enrichment analysis of DEGs in patients with high and low ANLN expression, and the results 
showed that DEGs were enriched in the cell cycle, DNA repair, extracellular matrix, and other processes, which 
was mutually confirmed with our conclusions described above.

The upstream miRNA (hsa-miR-342-3p) and lncRNA (MIR600HG) of ANLN were identified among the 
DEGs in pancreatic cancer. Studies have shown that miR-342-3p is a tumor suppressor molecule. Overexpres-
sion of miR-342-3p in B-cell lymphoma downregulates E-cadherin, thereby inhibiting tumor  progression29. 
E-cadherin is an important cell adhesion molecule. At same time, we found that DEGs between ANLN subgroups 
were enriched in cell adhesion functions, which is consistent with the function reported for miR-342-3p. This 
result further validates that hsa-miR-342-3p may act as a tumor suppressor molecule by inhibiting ANLN expres-
sion. Furthermore, Gao et al.30 found that miR-342-3p was correlated with the tumor grade in gliomas, and we 
obtained the same results for patients with pancreatic cancer.

Next, we identified the upstream lncRNA (MIR600HG) of hsa-miR-342-3p and observed significantly altered 
expression of MIR600HG in pancreatic cancer. Consistent with a previous  study31,32, we found that MIR600HG 
was associated with survival outcomes of patients with pancreatic cancer. Yao et al. showed that MIR600HG 
inhibited tumor invasion and enhanced chemical sensitivity by targeting ALDH1A3 in colorectal  cancer33. In 
oropharyngeal squamous cell carcinoma, MIR600HG affects the occurrence and development of tumors through 
autophagy-related  pathways34.

According to previous  reports35, miRNAs regulate the expression of mRNAs. We found that hsa-miR-342-3p 
was negatively correlated with ANLN expression, potentially because hsa-miR-342-3p forms complementary base 
pairs with the 3’-UTR of ANLN to exert its inhibitory effect. As shown in the study by Liu et al.36, miR-342-3p 
directly targets the 3’-UTR of IGF-1R, inhibiting the expression of IGF-1R. The online database miRWalk veri-
fied our hypothesis that a binding site for miR-342-3p is located in the 3’-UTR of ANLN, and this result may be 
further verified by performing a luciferase reporter assay. Compared with miRNAs, the regulatory mechanisms 
of lncRNAs are more complex and  diverse37, including the premise of miRNAs, competitive combinations, and 
regulation of transcription factor activity. Competing endogenous RNAs (ceRNAs) are one of the regulatory 
mechanisms with more  reports38. LncRNAs competitively bind miRNAs to relieve the inhibitory effect of miRNAs 
on  mRNAs38. However, unlike the ceRNA regulation model, we found that MIR600HG was positively correlated 
with hsa-miR-342-3p, suggesting that MIR600HG was not associated with competitive inhibition of hsa-miR-
342-3p expression. Previous  studies39 have shown that lncRNAs regulate downstream mRNAs either by adsorbing 
microRNAs or regulating the transcription level of miRNA precursors. In addition, lncRNAs may be directly used 
as precursors to produce miRNAs, and a positive correlation was observed between the expression of lncRNAs 
and miRNAs, while the expression of the target mRNAs were negatively correlated with miRNA expression in the 
sequencing or microarray  results40. Previous  studies41 have also found that lncRNAs bind transcription factors 
and localize to the promoter region of genes to promote gene transcription and lncRNA-mediated methylation 
of histones. Here, we speculate that MIR600HG may be a precursor transcriptional regulator of hsa-miR-342-3p, 
and the specific mechanism must be verified by conducting more experiments.
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It is well known that immune cell infiltration plays an important role in the processes of tumor develop-
ment, tumor immune monitoring, and tumor immune escape. Different infiltrating immune cell subsets in 
the pancreatic cancer microenvironment are considered characteristic and independent prognostic  factors42. 
Consistently, we also found that immune cell infiltration was significantly associated with OS in patients with 
pancreatic  cancer43. We found that ANLN expression was significantly associated with a variety of immune cells 
(Th2 cells, Tem cells, etc.). Th2 cells have been reported to be associated with tumor invasion and metastasis and a 
poor  prognosis44. Th2 cells are strongly associated with prognosis of patients with pancreatic  cancer45. Pancreatic 
cancer tissues with a high proportion of Th2 cells tend to be rich in fibrous components and M2 macrophages, 
which are all reported to exert cancer-promoting  effects46. In addition, the Th2-induced tumor immune micro-
environment is an important cause of insensitivity to chemotherapy and radiotherapy in patients with pancreatic 
 cancer47,48. The imbalance of the Th1/Th2 ratio and the dominance of Th2 cells in pancreatic cancer may be the 
mechanism of tumor immune  escape49. Memory T cells are divided into different subsets according to their 
phenotype and function, including central memory T cells (Tcm) and Tem cells. Tem cells are an important part 
of the immune defense and antigen clearance system in the body, which produces rapid and efficient immune 
responses against foreign antigens. Previous  studies50 have mainly focused on infectious diseases such as tuber-
culosis and viruses. Recently, it has been  reported51 that Tem cells have great potential in tumor immunotherapy 
and prognosis. Takahashi et al.51 reported that the Tem high infiltration group was predicted to have longer 
OS among patients with head and neck squamous cell carcinoma. Consistently, we found that Tem cells were 
associated with the prognosis of patients with pancreatic cancer. In addition, Tem cells are involved in tumor 
immunotherapy. In patients with breast cancer, Tem cells participate in PD1 immunotherapy and correlate with 
the heterogeneity in the treatment response to anti-PD152. CD137 agonist-based combination immunotherapy 
enhances the activation of Tem cells and prolongs the survival of patients with pancreatic  adenocarcinoma53. At 
the same time, great progress has been achieved in Tem cell-based tumor therapy. A nanovaccine increased the 
number of Tem cells in mice, which resulted in long-term immune memory that recognized and killed cancer 
 cells54. Tumor-infiltrating lymphocyte (TIL) therapy exerts strong curative effects on the treatment of solid 
tumors. TILs are often dominated by Tem cells, which also suggests the potential role of Tem cells in tumor 
 treatment55. Here, we identified correlations between ANLN expression and the numbers of Th2 and Tem cells, 
suggesting that ANLN may participate in the immune process of pancreatic cancer through Th2 and Tem cells.

Chemokines are chemoattractant cytokines that play a key role in regulating the migration and infiltration of 
immune cell populations. In pancreatic cancer, the levels of many chemokines are significantly changed and are 
closely related to the immune cell infiltration and prognosis of  patients56. We obtained ANLN-related chemokines 
by comparing ANLN high expression subgroups with low expression subgroups. By comparing the differentially 
expressed chemokines, CCL5 and CCL14 were identified. Here, we found that changes in the expression of CL5 
and CCL14 were consistent in pancreatic cancer, while they had opposite prognostic effects. CCL5 is associated 
with a poor prognosis of  cancer57–59, while the effect of CCL14 on the prognosis was  inconsistent60–62. Further-
more, we found that this phenomenon also occurred in colorectal cancer and other tumors in TCGA database. 
This result may be because ANLN is a common upstream regulatory molecule of CCL5 and CCL14, but the 
biological functions of CCL5 and CCL14 are different. This finding requires further verification by detecting 
the expression of CCL5 and CCL14 after regulating ANLN expression. In addition, the high-affinity receptor 
for CCL5 is chemokine receptor 5 (CCR5), while the high-affinity receptor for CCL14 is chemokine receptor 1 
(CCR1)63. This difference in receptors may also explain why these chemokines have different functions. Interest-
ingly, we found that CCR5 was one of the main chemokine receptors expressed on the Tem cell surface, which 
suggests that ANLN may affect Tem cell infiltration through the CCL5-CCR5 pathway.

This study systematically analyzed multiple pancreatic cancer datasets, but some limitations to this study 
should be noted. First, the functions of MIR600HG, hsa-miR-342-3p and ANLN in pancreatic cancer require 
further experimental research. Then, the relationships between the RNA network and chemokines and immune 
cells must be further verified in vitro and in vivo. In addition, the sample size must be expanded to verify the sen-
sitivity and specificity of the risk prognostic model based on the MIR600HG/hsa-miR-342-3p/ANLN network.

Conclusion
In conclusion, we identified the MIR600HG/hsa-miR-342-3p/ANLN network in pancreatic cancer by performing 
a comprehensive analysis. The risk prognostic model constructed based on the RNA network effectively predicts 
the prognosis of patients with pancreatic cancer. Furthermore, we explored the relationship between the RNA 
network and the immune microenvironment and preliminarily explained the relationship between the RNA net-
work and immune cell infiltration in pancreatic cancer. This study not only provides a new model for evaluating 
the prognosis of patients with pancreatic cancer but also identifies a potential target for clinical immunotherapy.

Materials and methods
RNA‑seq data
Three pancreatic cancer microarrays datasets (GSE15471, GSE16515, and GSE46234) were obtained using the 
GEOquery package (2.54.1). GSE15471 included 39 tumor tissues and 38 nontumor tissues. GSE16515 included 
36 tumor tissues and 16 nontumor tissues. GSE46234 included 4 tumor tissues and 4 nontumor tissues. TCGA 
datasets including 178 tumor tissues and 4 nontumor tissues were downloaded from the TCGA database using 
TCGAbiolinks package in R (version 3.6.3).

Screening of DEGs and enrichment analysis
DEGs were obtained using the limma package (3.42.2). DEGs satisfying |logFC|> 1 and p.adj < 0.05 in the three 
microarray datasets were selected. Then, we used the ggplot2 package (3.3.3) to draw a Venn diagram and identify 
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the common DEGs. TCGA data were used for verification. The enrichment analysis was performed using the 
clusterProfiler package (3.14.3). The Database for Annotation, Visualization, and Integrated Discovery (https:// 
david. ncifc rf. gov/) was used to conduct Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of 
Genes and Genomes (KEGG)64–66 pathway enrichment analyses.

Screening of hub genes
The PPI network was constructed separately for DEGs using the STRING database (https:// string- db. org/). 
Then, the PPI network was further screened using cytoHubba in Cytoscape, and the top 10 genes (upregulated 
DEGs and downregulated DEGs) were extracted as hub genes according to the algorithm (Maximal Clique 
Centrality, MCC).

Survival analysis
The surv_cutpoint function in the survminer package is used to calculate the cut-off value. survival regression 
was fitted using the survival package (3.3.1), and the results were visualized using the survminer package and 
the ggplot2 package.

Identification of the upstream miRNA
Upstream miRNAs were predicted by the miRWalk online database (http:// mirwa lk. umm. uni- heide lberg. de/). 
The differentially expressed miRNAs in GSE163031, which included 12 tumor tissues and 3 nontumor tissues, 
were screened using R software. The common miRNAs of the upstream miRNAs and differentially expressed 
miRNAs were used in subsequent research.

Identification of the upstream lncRNAs
Upstream lncRNAs of the miRNAs were predicted by the lncBase online database (https:// diana lab.e- ce. uth. 
gr/ html/ diana/ web/ index. php). The differentially expressed lncRNAs were screened in TCGA dataset using R 
software. The common lncRNAs of the upstream lncRNAs and differentially expressed lncRNAs were used in sub-
sequent research. The binding sites of lncRNAs and miRNAs were predicted using the lncBase online database.

Construction of the lncRNA–miRNA–mRNA network prognostic model
A standard Cox proportional hazards model implemented in the R package survival (3.2–10) was used to con-
struct the risk score basing the lncRNA–miRNA–mRNA network. The timeROC package (0.4) and the ggplot2 
package (3.3.3) were utilized to draw time-dependent ROC curves. The area under curve (AUC) was calculated 
to compare the predictive ability. We developed a prognostic factor-based risk stratification nomogram for 1, 
3-year overall survival with Cox proportional hazards regression analysis using the rms (6.2-0) package.

Relationship between the RNA network and clinical characteristics and the pan‑cancer analysis
According to the TCGA database, the relationship between the expression of components of the RNA network 
(MIR600HG/hsa-miR-342-3p/ANLN) and different clinical characteristics was detected using R software, and 
the ggplot2 package was used for data visualization. Pan-cancer analysis was completed based on the TCGA 
database using R software. Images of immunohistochemical staining for ANLN in tumor tissues and pancreatic 
cancer tissues were obtained from the HPA website (https:// www. prote inatl as. org/).

Western blot
Western blot was performed according to previous  studies67. In brief, the extracted tissues were denatured by 
electrophoresis and then transferred to a polyvinylidene fluoride membrane (Merck Millipore Ltd., Germany). 
The membrane was blocked with 5% skim milk and incubated with primary antibodies at 4 °C overnight. Finally, 
the membrane was incubated with IRDye 800CW secondary antibodies (LI-COR, USA) (1:10,000) at room 
temperature for 1 h, and the proteins were visualized and analyzed with Odyssey® Imaging System (LI-COR, 
USA). Primary antibodies against the following target proteins were used: ANLN (Santa, 1:500) and GAPDH 
(Sigma, 1:8000).

Immunohistochemistry
As previously  reported68, Tissues were fixed in 4% paraformaldehyde, paraffin embedded and sectioned. The 
ANLN antibody (Santa, 1:50) was incubated overnight, the secondary antibody was incubated at 37 °C for half 
an hour. The sections were observed under light microscope after adding chromogenic agent.

Immune infiltrate levels and RNA network expression analysis
The marker genes of 28 immune cell types were obtained for the ssGSEA. The infiltration level was quantified 
using the GSVA package (1.34.0). A Cox multivariate model was used to screen significant immune cells and 
thereby construct an immune infiltration score. The correlation between immune cell infiltration and the RNA 
network was analyzed using R software.

Screening of chemokines
Differentially expressed chemokines were obtained between normal tissues and pancreatic cancer tissues, and 
then the chemokines that changed in the differentially expressed ANLN subgroup were obtained. Finally, the 
common chemokines between the two groups were obtained using R software.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/
http://mirwalk.umm.uni-heidelberg.de/
https://dianalab.e-ce.uth.gr/html/diana/web/index.php
https://dianalab.e-ce.uth.gr/html/diana/web/index.php
https://www.proteinatlas.org/
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Statistical analysis
The statistical analysis was performed using the bioinformatic tools mentioned above. A P value < 0.05 was 
considered statistically significant.

Ethics approval and consent to participate
This study was approved by the Ethical Committee of the First Affiliated Hospital of Harbin Medical University 
(IRB-AF/SC-04/02.0).

Data availability
This study conduct analysis based on TCGA public database (https:// gdc. xenah ubs. net) and GEO public database 
(https:// www. ncbi. nlm. nih. gov/ gds/). All data generated or analyzed during this study are included in this article.
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