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The influence of energy 
and temperature distributions 
on EHD destabilization 
of an Oldroyd‑B liquid jet
Galal M. Moatimid  & Mohamed F. E. Amer *

This work examines the impact of an unchanged longitudinal electric field and the ambient gas on the 
EHD instability of an Oldroyd‑B fluid in a vertical cylinder, where the system is immersed in permeable 
media. In order to explore the possible subject uses in thermo‑fluid systems, numerous experimental 
and theoretical types of research on the subject are conducted. The main factors influencing the 
dispersion and stability configurations are represented by the energy and concentration equations. 
The linear Boussinesq approximating framework is recommended for further convenience. A huge 
growth in numerous physical and technical implications is what motivated this study. Using the 
standard normal modes of examination, the characteristics of velocity fields, temperature, and 
concentration are analyzed. The conventional stability results in a non‑dimensional convoluted 
transcendental dispersion connection between the non‑dimensional growth rate and all other physical 
parameters. The Maranogoni phenomenon, in which temperature and concentration distributions 
affect surface tension, has been addressed. It is observed that the intense electric field, the Prandtl 
numeral, the Lewis numeral, and the Lewis numeral velocity ratio have a stabilizing influence. As 
opposed to the Weber numeral, the Ohnesorge numeral, and the density ratio have a destabilizing 
influence.

Abbreviations
EHD  Electrohydrodynamics
EF  Electric field
MHT  Mass and heat transfer
RTI  Rayleigh–Taylor instability
MP  Maranogoni phenomenon
MHD  Magnetohydrodynamics
MS  Mathematica Software
KHI  Kelvin–Helmholtz instability
VPT  Viscous potential theory
BA  Boussinesq approximation
BCs  Boundary conditions
MF  Magnetic field
ST  Surface tension

List of  symbols
(r, θ , z)  Cylindrical coordinates
a  Outer cylindrical radius
R  Undisturbed cylindrical radius
T  Temperature
C  Concentration
Ca  Concentration at the outer boundary
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Ta  Temperature at the outer boundary
UL  Uniform inner stream
UG  Uniform outer stream
c. c.  Preceding complex conjugate
k  Axial wave number
m  Azimuthal wave number
cp  Specific heat
kf   Thermal conductivity
g  Gravitational acceleration
Pj  Total perturbed pressure
Ṽj  Perturbed  velocity for liquid and gas
We  Weber numeral
Z  Ohnesorge numeral
Da  Darcy numeral
GrT  Thermal Grashof numeral
Na  Modified diffusivity ratio

Greek symbols
ρL  Inner liquid density
ρG  Outer gas density
γT  ST coefficient due to temperature
γC  ST coefficient due to concentration
εL  Inner liquid dielectric constant
εG  Outer gas dielectric constant
σ  ST coefficient
σ0  Initial ST
�  Wave length
ω  Frequency of surface waves
ωr  Real part of the frequency
ωi  Imaginary part of the frequency
ξ  Interfacial displacement
ξ0  Original significance of interfacial displacement
κ  Permeability of media
ρcp  Heat capacity of fluid
�1, �2  Two characteristic parameters of the viscoelastic fluids
ηL  Zero shear viscosity
GrC  Solutal Grashof numeral
Pr  Prandtl numeral
Le  Lewis numeral
El  Elasticity numeral
E20  Bond EF

Subscripts
L  Inner cylindrical flows
G  Upper cylindrical flows

The viscoelastic Oldroyd-B model significant role in geothermal, engineering and industrial enhancement moti-
vated us to carry out this in-depth investigation. The methodology of the nonlinear technique depends mainly 
on solving the linear equations of motion and applying the appropriate nonlinear BCs. Engineers have been 
interested in the instability and atomizing issues with fluid jets for a very long time. Investigations were made into 
the mechanisms causing a non-Newtonian dielectric liquid jet flowing through a dielectric gas with a ST gradient 
to experience temporal EHD axisymmetric  instability1. Using the proper BCs, the dispersion connection between 
the growth rate and wave number for the eight constant Oldroyd model was determined. The constitutive model 
that governs the rheological behavior of viscoelastic liquids was essential for its mathematical representation. 
Additionally, these liquids were separated into three categories, namely differential, proportion, and integral 
types. The Oldroyd-B liquid is a subcategory of the rate liquid that specifies something together with relaxation 
and retardation time features. Other experiments in the area of two-dimensional flow preparation with various 
non-Newtonian liquid properties were  reported2. In practice, the liquid might be of three-dimensional. Therefore, 
scientists have looked at three-dimensional flow for various liquid configurations for supplementary information. 
Some related works about different numerical algorithms of such models were  given3. The nonlinear stability 
of a vertical cylindrical interface between two Oldroyd-B prototypes was  studied4. The current investigation is 
developed in the cooperation with the viscoelastic Oldroyd-B flow because of its importance in numerous areas. 
Because of the significant of the Oldroyd-B model, therefore, in light of the great implication of the Oldroyd-B 
viscoelastic fluid in diverse practical applications, the current work is analyzed with respect to this topic.

Because of the significance of the MHT, Hsieh formulated a simplified version of the  MHT5. To address 
the issues of interfacial stability with MHT, a simpler formulation was provided. However, it was shown that 
the MHT impacted significantly the classical stability criterion for KHI. When the vapor was warmer than the 
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liquid and both phases were contained between two cylindrical surfaces that were concentric with the interface, 
as well as when there is an MHT across the contact, the KHI of the cylindrical interface between the vapor and 
liquid phases of a fluid was  examined6. It was concluded that the MHT would increase with KHI. The KHI of a 
restrained Oldroyd-B fluid film with MHT was  examined7. It was found that the MHT destabilized the stabil-
ity configuration. It is worth remembering that the previous studies in MHT considered the simplified VPT as 
well as the simplified formulation of Hsieh. Additionally, the MP effect on the stability profile was  examined8. 
Throughout the current work, regardless of utilizing the VPT, we proceed as in our previous work together with 
employing the Navier–Stokes  equations8. With MHT over the interface, an investigation of the stability of a 
vertical cylindrical perturbed surface was  reported9. Both analytically and numerically, the nonlinear analysis 
stability criterion was met and analyzed. The effects of various physical elements were shown through a series of 
diagrams. It should be noted that many industrial applications, as well as scientific and technical instruments, 
depend on MHT. Therefore, the current work is examined the presence of this phenomenon.

In homogenous isotropic porous media, a stability analysis of liquid interfaces moving at uniform veloci-
ties was  provided10. It was discovered that the liquid layer has no bearing on the crucial conditions separating 
stable disturbances from unstable ones. An annular viscous liquid jet travelling in an inviscid gas medium was 
subjected to a linear analysis for its temporal instability, involving the three limitation instances of a round liquid 
jet, a gas jet, and a plane liquid  sheet11. It was demonstrated that the annular jet instability is always made worse 
by an ambient gas medium. Numerous widespread studies, see Fu et al.12 require scrutinizing the instability of 
fluid sheets and cylinders from a different point of view, however, without MHT. In light of their numerous uses 
in the chemical and industrial fields, thermal enhancement research was expected to increase in the modern 
 era13. The hydrodynamic instability of Hartmann flow in the porous medium was taken into consideration. The 
findings were applied to photodynamic treatment, medication delivery systems, and anticancer delivery. It was 
investigated if a cylinder-shaped interface, which separates two homogeneous, incompressible, porous viscous 
flowing liquids, is linearly or nonlinearly  stable14. Due to the numerous applications of immiscible liquids, the 
MHT outcome in this study was challenging. The current study explores the interaction between an interfacial 
nonlinear stability with permeability and a constant tangential EF.

Both oil industry and hydrology depend on the instability of fluid interfaces flowing in permeable media. 
When the velocity of extraction was great, long tongues or cones of water penetrated the oil and came out with 
water in some types of oil fields.  Pascal15 examined the rheological impact of streaming fluids of the non-Newto-
nian behavior on the instability of an interface in a permeable medium dividing two compressible and immiscible 
liquids. For more than a century, researchers have theoretically and experimentally examined the existence of a 
fluid flowing in porous media in a variety of situations. The nonlinear EHD instability of capillary gravitational 
oscillations, where the separation surface divides two semi-infinite dielectric permeable liquids were  addressed16. 
Darcy’s coefficients were discovered to investigate the instability influence on the linear methodology. However, 
throughout the nonlinear approach, these coefficients together with the EF exert an influence on the instability 
configuration. The mixing of surface water and groundwater, as  demonstrated17, was the most significant of these 
studies. In geology, technology, and biomechanics, the plane surface between viscous liquids through permeable 
media could be worthwhile. However, the linear stability of fluid-porous models has been well investigated, and 
the evaluation of the nonlinear stability methodology has a significant recent advancement. Owing to of the huge 
significance of the porous relationship, the existing study will be undertaken using this approach.

In view of the aforementioned aspects, the current study is performed. Therefore, the instability examina-
tion of a restricted viscoelastic annular fluid layer through a gas is considered. Away from the VPT, the full 
Navier–Stokes equation is analyzed. Additionally, the energy and concentration equations are supplemented 
to make up for the  shortcoming18. Therefore, regardless of Hsieh’s  simplification5, many parameters concern-
ing the MHT are achieved. The current findings suggest that the MHT shows a significant role in the stability 
structure. Furthermore, an unchanging tangential EF is pervaded. A significant transcendental relationship is 
established in view of the typical regular examination. Non-dimensional physical numbers, as is well known, 
can investigate the backdrop of the movement of fluids. They also reduce the number of parameters needed to 
describe the procedure. These numbers are frequently having physical connotations that help explain various 
scientific phenomena. Therefore, non-dimensional approach yields several non-dimensional physical numerals. 
This examination is different from the previous studies; for example, Amer and  Moatimid18 studied the viscous 
fluid jet in an inviscid gas medium with MHT using  Hsieh5 simplification which reduces MHT in one param-
eter that appears only from the BCs and ignores the energy and concentration equations. Similarly, Moatimid 
et al.19 studied the fluid jet stability in the existence of heat transfer by only using the heat equation that depends 
on the MP effect and BA and using the VPF theory which considers the viscous flow only at the interface i.e., 
Euler equation of motion is used to obtain the solutions. The main goal of the current study is to guide readers 
in finding the right answers to the following questions:

• What is the benchmark of the stability methodology?
• How numerous physical non-dimensional numerals are present throughout the stability approach?
• What are the impacts of the non-dimensional physical numerals on the stability profile?

To make the article structure clearer, it will be constructed as: In Section “Theoretical outlines”, the organiza-
tion of the manuscript is described. This Section introduces the principal equations in addition to the suitable 
BCs. The technique of explanation is also introduced. In Section “Dispersion connection”, the dispersion relation 
is introduced. The results and discussions are given in Section “Discussions and outcomes”. In Section “Conclud-
ing remarks”, the key outcomes of the work is summarized.
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Theoretical outlines
The theoretical prototypical involves of two endless cylindrical movements. For the sake of simplicity and for 
more convenience, cylindrical polar coordinates are employed. The inner liquid inhabits a viscoelastic liquid, 
which guarantees the Oldroyd-B structure. The outer fluid cylinder is filled with perfect gas. One rigid cylinder is 
considered along with the outer fluid and is maintained at uniform temperature and concentration. Furthermore, 
a uniform axial EF effects the organization. Just for simplification, no surface currents are considered at the sepa-
rating surface. The fluids are assumed to be immersed in permeable media with unit porosity. The gravitational 
force that works orthogonally downwards is considered. The ST is also considered, and the MP influence takes 
place. Figure 1 shows the shape of the two-phase flow layers which is modeled and discussed.

Problem organization
The stability methodology inspiration is formed using the consistent style agreeing the pioneer work of 
 Chandrasekhar20. Accordingly, any concerned function might be distributed as:

where f  signifies any physical distribution.
The connection between the axial wave numeral k and the disturbance of the wavelength � is k = 2π/� . Addi-

tionally, the surface wave complex frequency is ω = ωr + iωi , where the real part ωr is 2π times the disruption 
existence and −ωi/k is the velocity spread in the fluid flow way. The wave numeral is considered as a positive 
real value in the examination of the temporal disturbance. Through the revision of temporal-spatial stability and 
the shift beyond convective absolute instability, both k and ω are expected to be complex as: ω = ωr + iωi and 
k = kr + iki . Subsequently, ki > 0 produces the spatial growth of instabilities supplementary with the stream 
direction, and ωr > 0 produces the time growth of  instability21,22. Hypothetically, they displayed the temporal-
spatial stability performance of an electrified viscoelastic fluid cylinder.

Hydrodynamic of liquid part
The governing equations of liquid motion may be recorded.

The continuity equation consequences  in18

where ṼL represents the liquid velocity vector.
The fundamental conservation of momentum of the fluid  as1:

herein �̃L is the total stress tensor that was already  given1,23 as:

herein δij is referred to as the Kronecker delta and τ̃ij represents the extra stress tensor.
As previously  established24,25, the viscoelastic liquid state is designated by the Oldroyd 8-constant. After 

ignoring the non-linear parts and the gravitational effects, the following linearized equation is given:

The combination of Eq. (5) and the standard modes formula as agreed in Eq. (1) yields

(1)f (r, θ , z; t) = f (r) exp (i(kz +mθ)+ ωt)+ c.c.

(2)∇ . ṼL = 0

(3)ρL

(

∂ṼL

∂t
+ (ṼL.∇)ṼL

)

= ∇ . �̃L − ρLgez −
η0

κ
ṼL

(4)�̃L = −P̃Lδij + τ̃ij

(5)τ̃ + �1

(

∂

∂t
+ UL

∂

∂z

)

τ̃ = −ηL

(

γ̇ + �2

(

∂

∂t
+ UL

∂

∂z

)

γ̇

)

Figure 1.  Sketch of the hypothetical prototypical.
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where η(ω) = ηL

(

1+�2(ω+ikUL)
1+�1(ω+ikUL)

)

.
On the other hand, the present examination throughout porous media is presumed to be homogeneous, filled 

with the surrounding liquid, and the Newtonian behavior follows the linear BA. Subsequently, the density fluc-
tuat ion in the presence of  temperature and concentrat ion is  included in the for-
mula:ρL = ρ0L

[

1− βTL

(

T̃L − T0

)

− βCL
(

C̃L − C0

)

]

 , where temperature and concentration are independent 
of both position and time. As a consequence, one can assume a simple situation in which density varies as a 
distribution of pressure, heat, and concentration. The term equation of “state” denotes to the connection between 
these amounts. The pressure effects on density may be disregarded. It is merely linearly needy on heat and 
 concentration25. The BA is applied, which requires that a minor modification remain terminates unless it is 
multiplied by gravity acceleration, as stated in the conceptual model. As a conclusion, the aforementioned equa-
tions of state, the parameters βTL and βCL are small amounts that are set to zero unless the gravitational accelera-
tion is  elevated26. In view of the inclusion of MHT as well as the BA, the governing equations of motion include 
a combination of these distributions. Therefore, we are forced to analyze the equations of energy and concentra-
tion. As previously  shown27, we obtain

here (ρcp)fL indicates the fluid heat capability, kfL is the current conductivity, the original temperature is T0 , the 
thermophoresis factor is DTL , and the Brownian diffusion parameter is DBL.

The inclusion of the normal mode methodology in Eq. (7) yields

where S2L = k2 +
(ρcp)L
kfL

(ω + ikUL).
Equation (9) indicates the well-known Bessel differential equation. In order to attain a bounded solution at 

the beginning as r → 0 , one catches the following solution:

where A1 represents an independent quantity which can be calculated based on the constraints. Its value will be 
omitted to avoid the length of the paper.

On the other side, the concentration equation as given in Eq. (8) then becomes

where n2L = k2 + ω+ikUL
DBL

.
As previously said, the finite solution of concentration throughout the liquid phase is given as follows:

where B1 is an arbitrary constant to be calculated after the suitable BCs and α1 = A1DTL
T0DBL

(

k2−S2L
S2L−n2L

)

.
In light of the distributions of energy and concentration equations that are given in Eqs. (10) and (12), and 

with the aid of the constitutive Oldroyrd-B equations, BA, and the normal mode approach, the divergence of 
Eq. (3) produces

which is a non-homogeneous Bessel differential equation.
The precise integration of Eq. (13) is obtained by the MS. The overall solution of Eq. (13) can be formulated as:

herein the random constant will be evaluated from the convenient BCs.
Recurring back to the essential Eq. (3), the governing equations in the velocity components lengthways with 

the cylindrical coordinates might be recorded as:

(6)τ̃ = −η(ω)γ̇

(7)(ρcp)fL

(

∂

∂t
+ ṼL.∇

)

T̃L = kfL∇
2T̃L

(8)and

(

∂

∂t
+ ṼL.∇

)

C̃L = DBL∇
2
C̃L +

DTL

T0

∇
2
T̃L

(9)r2
d2TL

dr2
+ r

dTL

dr
−

(

S2Lr
2
+m2

)

TL = 0

(10)TL(r) = A1Im(SLr)

(11)r2
d2CL

dr2
+ r

dCL

dr
−

(

n2Lr
2
+m2

)

CL =
DTL

T0DBL

(

k2 − S2L
)

r2TL

(12)CL(r) = B1(nLr)+ C0α1Im(SLr)

(13)r2
d2PL

dr2
+ r

dPL

dr
−

(

k2r2 +m2
)

PL = ikr2ρ0Lg[βTLA1Im(rSL)+ βCL(B1Im(rnL)+ α1C0Im(rSL))]

(14)PL(r) = D1Im(kr)+ ikρ0Lg

{(

βTLA1 + βCLC0α1

S2L − k2

)

Im(SLr)+
βCLB1

n2L − k2
Im(nLr)

}

(15)r2
d2VrL

dr2
+ r

dVrL

dr
−

(

q2Lr
2
+m2

+ 1
)

VrL =
r2

η(ω)

dPL

dr
+ 2imVθL
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where q2L = k2 + ρ0L(ω+ikUL)+ηL/κ
η(ω)

.
Using the solutions for the energy and concentration equations, in the previous equations, one gets the solu-

tions as follows:

where the constant Di , i = 1, 2, 3 will be evaluated from the convenient BCs. To avoid the length of the paper, 
the structures of the arbitrary constants have been excluded. The dash indicates the differentiation in regard to 
the arguments, the considerations α2 and α3 are defined as α2 = k4(βTLA1+βCLC0α1)

(

n2L−q2L
)(

n2L−k2
)  and α3 = k4βCLB1

(

n2L−q2L
)(

n2L−k2
).

In light of the previous analysis, remember that.

• The non-existence of the influence of the heat and concentration contributions and the distributions of the 
velocity components as well as pressure result in the same distributions as given in the previous  work28.

• The preceding profiles in the fluid phase are legal in the area r ≤ R . The existence of the coordinate r in the 
denominator of the formula VθL does not source any inconvenience. As recognized from the straightforward 
calculus, one finds Lim

x→0

Im(x)
x  is finite ∀m > 0.

• The solutions of the liquid and gas phases like velocity and pressure as given in Eqs. (14), (18)–(20) and 
(23)–(26) cover the solution early  obtained28,29 by putting the MHT parameters to zero or by disregarding 
the gravity acceleration and taking a → ∞ . In addition, the parameter qL in our paper is compatible with 
the parameter s in El-Sayed et al.28. Similarly, when �1 = �2 = 0 (i.e.El = 0 ), the jet non-Newtonian liquid 
is converted to that of Newtonian liquids (at this condition, ηL = µ where µ is the dynamic viscosity of 
Newtonian liquid).

The following subsection is devoted to introducing the findings throughout the gas phase.

Hydrodynamic of gas phase
The profiles of velocities, pressure, heat, and concentration distributions may be presented as follows, by com-
parable influences as illustrated in the fluid phase:

The solution to the energy equation is given as:

where S2G = k2 +
(ρcp)G
kfG

(ω + ikUG) , and A2 , A3 are constants that might be evaluated using the applicable BCs.
Consequently, the concentration distribution can be formulated as:

where B2 and B3 are constants that can be designed by the applicable BCs.
Additionally, one gets.

The components of the velocity distributions and the pressure are specified by

(16)r2
d2VθL

dr2
+ r

dVθL

dr
−

(

q2Lr
2
+m2

+ 1
)

VθL =
imr

η(ω)
PL − 2imVrL

(17)r2
d2VzL

dr2
+ r

dVzL

dr
−

(

q2Lr
2
+m2

)

VzL =
ikr2

η(ω)
PL −

ρ0Lgr
2

η(ω)
(βTLTL + βCLCL)

(18)

VrL =

(

kD1I
′
m(kr)

η(ω)
(

k2 − q2L
) −

ikD2

qL
Im−1(qLr)+

mD3

rqL
Im(qLr)

)

+
iρ0Lg

k3η(ω)

(

SLI
′

m(SLr)α2 + nLI
′

m(nLr)α3
)

(19)VθL = i

(

mD1Im(kr)

rη(ω)
(

k2 − q2L
) −

ik

qL
D2Im−1(qLr)+ D3I

′

m(qLr)

)

−
ρ0Lgm

k3rη(ω)
(Im(SLr)α2 + Im(nLr)α3)

(20)VzL(r) =
ikD1Im(kr)

η(ω)
(

k2 − q2L
) + D2Im(qLr)−

ρ0Lg

k4η(ω)

{

S2LIm(SLr)α2 + n2LIm(nLr)α3
}

(21)TG(r) = A2Im(SGr)+ A3Km(SGr)

(22)CG(r) = B2Im(nGr)+ B3Km(nGr)+ C0(α4Im(SGr)+ α5Km(SGr))

n
2
G = k

2
+

ω + ikUG

DBG

, α4 =
DTG

C0DBG

(

A2

T0

)(

k
2
− S

2
G

S
2
G
− n

2
G

)

and α5 =
DTG

C0DBG

(

A3

T0

)(

k
2
− S

2
G

S
2
G
− n

2
G

)

(23)

VrG(r) = −
1

ηGq
2
G

{

k
(

D4I
′

m(kr)+ D5K
′

m(kr)
)

+ igρ0G
(

α6I
′

m(SGr)+ α7K
′

m(SGr)+ α8I
′

m(nGr)+ α9K
′

m(nGr)
)}

(24)

VθG(r) = −
im

rηGq
2
G

{

D4Im(kr)+ D5Km(kr)+ igρ0G

(

α6

SG
Im(SGr)+

α7

SG
Km(SGr)+

α8

nG
Im(nGr)+

α9

nG
Km(nGr)

)}
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and

where.
q2G =

1
κ
+

ρ0G(ω+ikUG)
ηG

 ,  α6 =
kSG(βTGA2+βCGC0α2)

S2G−k2
 ,  α7 =

kSG(βTGA3+βCGC0α3)

S2G−k2
 ,   α8 =

knGβCGB2
S2G−k2

 ,   and 
α9 =

knGβCGB3
S
2
G
−k2

.

The subsequent item is depicted to presenting the contribution of the external axial uniform EF.

Impact of EF
The documented Maxwell’s formulae must be involved due to the apparent EF intensity on this  situation23. 
 Melcher23 presented an innovator book comprising a comprehensive examination of the surface waves of EHD 
and MHD. Presently, only the effect of axial EF strength is reflected. Therefore, the MF impact can be ignored. 
The Maxwell expressions are shortened to grounded on:

and

As exposed in the methodology of the considered problem, the interface currents are disregarded. As a sig-
nificance, a scalar electric potential ψ̃j(r, θ , z; t) might be working to designate the EF. The greedy perturbed 
EF could be formulated as:

The disturbed electric potential distribution ψ̃j verifies the following well-known Laplace’s equation:

As designated during the consistent mode inspection, one obtains

The electric potential must fulfill the following equation, as Eq. (31) is implanted on Eq. (30) as follows:

which provides the modified Bessel differential equation.
Consequently, the electric potential in the gas phase, for a finite solution, is given as

where F1 represents the constant quantity which can be evaluated based on the BCs..
On the other hand, in the gas phase, one finds

where F2 and F3 are coefficients to be addressed from the BCs.
Lastly, the following item is depicted to presenting the appropriate BCs.

Appropriate BCs
The BCs lengthways the instability methodology involve velocities, temperatures, concentrations, and electric 
potential distributions. These circumstances can be characterized in two classes as follows:

• At the solid boundary r = a , one gets

• At the perturbed interface at ξ = ξ0 exp (i(kz +mθ)+ ωt)+ c.c..

(25)

VzG(r) =−
ik

ηGq
2
G

{

D4Im(kr)+ D5Km(kr)+ igρ0G

(

α6

SG
Im(SGr)+

α7

SG
Km(SGr)+

α8

nG
Im(nGr)+

α9

nG
Km(nGr)

)}

+

gρ0G

ηGq
2
G

(βTGTG(r)+ βCGCG(r))

(26)

PG(r) = D4Im(kr)+ D5Km(kr)+ igρ0G

(

α6

SG
Im(SGr)+

α7

SG
Km(SGr)+

α8

nG
Im(nGr)+

α9

nG
Km(nGr)

)

(27)∇ . εjẼj = 0, j = L and G

(28)∇ × Ẽj = 0

(29)Ẽj =

(

−
∂ψ̃j

∂r
, −

1

r

∂ψ̃j

∂θ
, E0 −

∂ψ̃j

∂z

)

(30)∇
2ψ̃j(r, θ , z; t) = 0

(31)ψ̃(r, θ , z; t) = ψ(r) exp (i(kz +mθ)+ ωt)+ c.c.

(32)r2
d2ψj

dr2
+ r

dψj

dr
−

(

k2r2 +m2
)

ψj = 0

(33)ψL(r) = F1Im(kr)

(34)ψG(r) = F2Im(kr)+ F3Km(kr)

(35)VrG = 0, TG = Ta, CG = Ca and
∂ψG

∂r
= 0



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16118  | https://doi.org/10.1038/s41598-023-43157-z

www.nature.com/scientificreports/

– For the energy distribution, one produces

– For the concentration distribution, one catches

– Regarding the hydrodynamic part, one obtains.

In light of the MP effect, the surface tension can now be stated as follows:

The remaining interfacial condition deals with the shear stresses and their relationship with the gradient and 
the profile of the surface tension as follows:

The previous conditions are previously  referenced8,19,27,30.
The following BCs occur at the perturbed interface, where the mass conservation flux yields

Equation (42) gives an alternative condition to the kinematic condition which happens in the absence of the 
concentration distribution. This condition has been adopted in the literature; for instance, see  Hsieh5, Amer and 
 Moatimid18, Moatimid et al.8, and many others.

• Concerning the electric part, as shown by  Melcher23, at the interface, there is

where the jump across the surface of separation is represented by �∗�.

Additionally, one gets

Dispersion connection
As initially  established23,31, the whole stress tensor might be expressed as:

Discussing to the usual stress BCs, the change in the standard stress tensor components among the liquids 
at the surface of separation is discontinued by the amount of the ST. Consequently, the dispersion connection 
might be recognized. The normal stress tensor at the zero-order produces:

Throughout the linear state, one gets

Equations (10), (12), (14), (18), (26), (33), (34) and (47) produces

(36)TL = TG , and kfL
∂TL

∂r
= kfG

∂TG

∂r

(37)CL = CG , and DBL
∂CL

∂r
= DBG

∂CG

∂r

(38)σ = σ0

[

1− γT

(

T̃ − T0

)

− γC
(

C̃ − C0

)

]

(39)−τrz =
1

r

∂σ

∂z

(40)−τrθ =
1

r

∂σ

∂θ

(41)and τθz = 0

(42)

ρ0L
dF

dt

∣

∣

∣

∣

at L

= ρ0G
dF

dt

∣

∣

∣

∣

at G

, F = r − ξ(θ , z; t)

or

ρ0L

(

∂F

∂t
+ ṼL.∇F

)

= ρ0G

(

∂F

∂t
+ ṼG .∇F

)

(43)n× �E� = 0

(44)n · �ε E� = 0

(45)�ij = Pδij − η(ω)

(

∂vi

∂xj
+

∂vj

∂xi

)

+ εEiEj −
1

2
εE2δij

(46)ŴL − ŴG =
σ0

R
(1+ γTT0 + γCC0)+

1

2
(εLE

2
0L − εGE

2
0G)

(47)

PL − PG − 2η(ω)
∂VrL

∂r
− E0

(

εL
∂ψL

∂z
− εG

∂ψG

∂z

)

+
σ0ξ0

R2

[

(1+ γTT0 + γCC0)
(

1−m2
− k2R2

)

+
R

ξ0
H(R)

]

, r = R + ξ
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where � =
1
ρ

[(

ω + ik
√
We

)

− ρ

(

ω + ikU
√
We

)]

 , �1E = Im(kR)
(

Im(kR)K
′
m(ka)− I ′m(ka)Km(kR)

)

.
To decrease the size of the article, the arbitrary constants have been crossed out from the Appendix in such 

a way to make the manuscript concise, therefore, �ij will be excluded. Furthermore, the star (*) shows for the 
non-dimensional factor.

It is worthy to note that our study addresses the governing equations of motion in a dimensional form, 
which is well-known. For the sake of straightforwardness, a non-dimensional analysis is only performed in 
the concluding formula of the normal stress tensor at the surface of separation. For greater reliability, all the 
material factors are communicated in a non-dimensional style. Therefore, the comming procedure provides a 
non-dimensional clarification for the dispersion connection. Founded on the length, duration time and mass 
parameters, the following methodology may have a diversity of paths. Furthermore, numerous non-dimensional 
parameters are taken into account.

R∗
= R/ξ0 , q∗j = qjξ0 , S∗j = Sjξ0 , n∗j = njξ0 , k∗ = kξ0 , q = qG/qL , S = SG/SL , n = nG/nL , kf = kfG/kfL , 

DB = DBG/DBT  , DT = DTG/DTL , βT = βTG/βTL , βC = βCG/βCL , ρ0 = ρ0G/ρ0L , cp = cpG/cpL , η = ηG/ηL , 
U = UG/UL , � = �2/�1 , ε = εG/εL , γ ∗

T = γTT0 , γ ∗
C = γCT0 , a∗ = a/ξ0 , T∗

a = Ta/T0 ,  and C∗
a = Ca/C0.

To avoid repetition, these non-dimensional numbers are previously shown in the Nomenclature Section, and 
they are mathematically defined as follows: We = ρ0LU

2
Lξ0/σ0 ,  Z = ηL/

√
ρ0Lσ0ξ0  ,  Da = κ/ξ20  , 

GrT = ρ2
0LgβTLT0ξ

3
0 /η

2
L ,  GrT = ρ2

0LgβCLC0ξ
3
0 /η

2
L,Pr = ηLcpL/kfL ,  Le = kfL/ρ0LcpLDBL ,  El = �1ηL/ρ0Lξ

2
0  , 

Na = DTL/DBLC0 , E∗20 = εLE
2
0ξ0/σ0 , ω∗

= ω

√

ρ0Lξ
3
0 /σ0.

Together with S∗2L = k∗2 +
Pr

(

ω∗
+ik∗

√
We

)

Z  , S∗2G = k∗2 +
ρ0cp Pr

(

ω∗
+ik∗U

√
We

)

kf Z
 , n∗2L = k∗2 +

Le Pr
(

ω∗
+ik∗

√
We

)

Z  , 

n∗2G = k∗2 +
Le Pr

(

ω∗
+ik∗U

√
We

)

DBZ
 , q∗2L = k∗2 +

(
(

ω∗
+ik∗

√
We

)

Z +
1
Da

)(

Z+El
(

ω∗
+ik∗

√
We

)

Z+�El
(

ω∗+ik∗
√
We

)

)

 , q∗2G =
ρ0

(

ω∗
+ik∗

√
We

)

ηZ
 

+
1

Da
 , and η(ω) = ηL

(

Z+�El
(

ω∗
+ik∗

√
We

)

Z+El
(

ω∗+ik∗
√
We

)

)

 , where ω∗
= ω∗

r + i
√
Weω∗

i  , anywhere ω∗
r = ωr

√

ρ0Lξ
3
0 /σ0  is a 

dimensionless growth amount and ω∗
i = (ξ0/UL)ωi is a dimensionless disturbed frequency.

Overall, the importance of the time constant ratio � = �2/�1 is reflected to be lying between 1/9 and 1; for 
instance, see Bird et al.24. When �1 = �2 = 0 (i.e.El = 0 ), the non-Newtonian liquid jet is converted to that of 
the Newtonian liquids (at this situation ηL = µ , somewhere µ is the dynamic viscosity of Newtonian liquid). 
Equation (48) represents the principal equation and constitutes the base of the current study. Consequently, the 
next Section is dedicated to presenting a calculation design for the dispersion relation. The purpose is to display 
the impacts of the several material values on the instability configuration.

Discussions and outcomes
As exemplified in foregoing portion, the whole procedure of the non-dimensional dispersion connection is cre-
ated. In the background of the time-based stability inspection, the frequency of waves has normally a complex 
performance, anywhere the real part establishes the perturbed growth rate, and the imaginary part signify the 
perturbed frequency. A closed analytical solution of the dispersion Eq. (48) is impracticable to be accomplished. 
Consequently, the MS might be employed to adopt the calculations. The study follows the early  findings26,30,32. 
In light of the previous  technique33, one might set ωi = −k , and usage ωr = 0.03 by approaching an initial esti-
mation of the solutions. A replication of the solution of the regular couples (k,ωr) is attained for various values 
of the diverse factors included in this analysis. Beforehand pictured a suitable graph, one could determine the 
applicable records. The subsequent methodology portrays a sequence of figures, ranging from Figs. 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14 and 15. During these figures, the non-dimensional growing amounts are drawn versus the 
non-dimensional wave numeral of the surface waves. For additional suitability, the following factors are selected:

We = 1000, Z = 0.2, Da = 5, Pr = 0.1, Le = 0.1, El = 0.5, Na = 0, GrT = 0.1, GrC = 0.3, E0 = 2.5, 
ρ0 = 0.01, η = 0.5, βT = 1, βC = 1, cp = 1, kf = 1, DB = 1, DT = 1, ε = 0.5, U = 0, � = 0.2 
Ta = 1, Ca = 1, γT = 1γC = 1, a = 1,R = 0.1, andm = 1.

(48)

1

�

(

ik2R2H(R)�11 + R2Z2�12

)

Im(kR)+ iZ2R2

(

k2(GrT�1T + GrCα1�T )
(

S2L − k2
)

�T
Im(SLR)+

k2GrC
(

n2L − k2
) Im(nLR)

)

−
1

�G

[(

−iR2Z2�14 + ik2R2H(R)H4K
′

m(ka)− R2q2GηZK
′

m(ka)�
)

Im(kR)+
(

−iR2Z2�24 − ik2R2H(R)H4I
′

m(ka)

+R2q2GηZI
′

m(ka)(ka)�
)

Km(kR)+ iR2Z2ρ0

(

kα6

SG
Im(SGR)+

kα7

SG
Km(SGR) +

kα8

nG
Im(nGR)+

kα9

nG
Km(nGR)

)]

−
2

�

[

k2I ′′m(kR)

k2 − q2L

(

ik2R2H(R)�11 + R2Z2�12

)

+ iI ′m(qLR)
(

ik2R2H(R)�21 + R2Z2�22

)

+
m

kR
I ′m(qLR)

(

ik2R2H(R)�31 + R2Z2�32

)

+ iR2Z2�

(

S2L
k2

I ′′m(SLR)α2 +
n2L
k2

I ′′m(nLR)α3

)]

−
k2R2E20(ε − 1)2�1E

�E

+k(1+ γT + γC)
(

1−m2
− k2R2

)

+ kRH(R) = 0
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Figure 2 shows the non-dimensional growing rate ωr versus the non-dimensional wave numeral k of diverse 
amounts of the fluid Weber number for 3-dimensional configuration in case of m = 1 . It is obvious that as We 
increases, the growing amount disturbances stay identical at small standards of the wave number at approximately 
k = 1.9 . Afterward, the instability influence appears and the extreme growth rate in addition to the dominant 
wave numbers also rises. Physically, due to the significance of the Weber numeral, it is clear that the rise of the 
Weber number can be generated by the rise of the fluid density and cylinder velocity, or by decreasing the ST. 
Significantly, as the fluid Weber numeral rises, the destabilizing range rises. Correspondingly, a larger liquid 
Weber number indicates that the effect of the ST is relatively small, i.e., the inertial force has an unstable effect 

Figure 2.  Depicts the real part of the surface wave frequency versus the wave number in light of Eq. (48) for 
different amounts of We.

Figure 3.  Depicts the real part of the surface wave frequency against the wave number in light of Eq. (48) for 
different amounts of Z.

Figure 4.  Shows the real part of the surface wave frequency versus the wave numeral in light of Eq. (48) for 
different amounts of El.
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on the gas-to-liquid interface. Consequently, the Weber numeral has a destabilizing influence. This outcome is 
well-matched with the findings of the preceding  works28. It was showed that a growth in the fluid cylinder density 
or velocity have a destabilizing to the viscoelastic fluid cylinder. Consequently, one can decide that the viscoelas-
tic fluid cylinder is destabilized definitely at large amounts of the fluid Weber numeral of specified conditions.

Figure 3 demonstrates the zero-shear viscosity impact on the growing rate disturbances through the Ohne-
sorge number. It is obvious that the growth amount as well as the instability zone increase with the increase of the 
Ohnesorge numeral Z . This confirms that the Ohnesorge numeral Z has an instability influence on the stability 
map of the model. It is worthy to remember that the Ohnesorge number generally has a stabilizing outcome 

Figure 5.  Shows the real part of the surface wave frequency against the wave number in light of Eq. (48) for 
different amounts of �.

Figure 6.  Shows the real part of the surface wave frequency against the wave numeral in light of Eq. (48) for 
different amounts of Gr.

Figure 7.  Shows the real part of the surface wave frequency against the wave numeral in light of Eq. (48) for 
different amounts of Grc.
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(stability numeral), that the viscosity prevents the liquid jet from the breakup. This result appeared in many 
 works28, but the effect has been reflected here. Our results are compatible with some previous  works27. Moatimid 
et al.27 has been discussed the stability map in the presence of MHT using the energy and concentration equa-
tions and found that the Ohnesorge numeral has destabilizing influence on the separated interface. This may be 
due to the presence of MP effect. Additionally, it was found a double role of the Ohnesorge  number19. It is also 
noticed that the Ohnesorge number Z stands for the proportion between the viscous and ST forces, and that a 
fewer Ohnesorge numeral generates a slighter viscous force in relationship by the ST force. In this situation, the 

Figure 8.  Shows the real part of the surface wave frequency against the wave numeral in light of Eq. (48) for 
different amounts of  E0.

Figure 9.  Shows the real part of the surface wave frequency against the wave numeral in light of Eq. (48) for 
different amounts of Da.

Figure 10.  Depicts the real part of the surface wave frequency versus the wave number in light of Eq. (48) for 
different amounts of Pr.
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growing amount is lesser. Consequently, the main and the upper cutoff wave numbers increase through the rise 
of the Ohnesorge number Z.

Figure 4 displays the influence of the elasticity number El on the growth rate of wave of the asymmetric 
disturbances ( m = 1 ) of a viscoelastic fluid cylinder against the wave numeral k . It is noticed that the wave 
growing amounts drop as the fluid elasticity number increases. Therefore, the elasticity numeral El has a clear 
stabilizing effect. Not only does the elasticity numeral El have a stabilizing influence, but also it has a weak 
destabilizing impact on the given system, and this consequence appears in the wave number range 3.5 ≤ k ≤ 5 . 
The destabilizing effect of the elasticity numeral El was previously  proved28. Lastly, one can conclude that the 

Figure 11.  Shows the real part of the surface wave frequency against the wave number in light of Eq. (48) for 
different amounts of Le.

Figure 12.  Shows the real part of the surface wave frequency against the wave number in light of Eq. (48) for 
different amounts of U.

Figure 13.  Depicts the real part of the surface wave frequency versus the wave number in light of Eq. (48) for 
various values of ρ0.
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elasticity numeral El demonstrates a dual role in the stability picture since it stabilizes and destabilizes the vis-
coelastic liquid jets. Once the elasticity numeral goes to zero i.e.,El → 0 , the growing amount disturbance of a 
viscoelastic liquid cylinder is changed to that of a Newtonian one, i.e., the flow has become Newtonian at this 
situation. Therefore, it is found that the liquid elasticity tends to increase the stability profile of the perturbation 
in viscoelastic fluid jets. In addition, the instability behavior of viscoelastic jets is influenced by the interaction 
of liquid viscosity and elasticity, in which the viscosity tends to dampen the instability, whereas the elasticity 
results in an enhancement of  instability34.

The impact of the ratio of deformation retardation to stress relaxation time � on the wave growing amount 
is given in Fig. 5, where the time unchanging ratio � rises from 0.2 to 0.9. It is shown that the wave growing 
number of disturbances increases as the time constant ratio rises; nevertheless, the cutoff wave numeral does 
not change with the time unchanging ratio. Consequently, one concludes that the ratio of distortion retardation 
to stress relaxation time � has a destabilizing impact on the model. It must be noticed that El-Sayed et al.28 has 
confirmed the stabilizing effect of the time constant ratio � in his study. If one looks to Fig. 5, it is observed that 
an infinitesimal stabilizing effect occurs in the range 3 ≤ k ≤ 4 , which agrees with Ref.28. Relatively, the effect of 
the ratio of deformation retardation to stress relaxation time on the stability of viscoelastic jets is weak. Accord-
ingly, one can find a double role of the time unchanging ratio � in the stability profile.

The influence of the thermal Grashof numeral GrT on the wave growing amount of the non-Newtonian fluid 
cylinder is presented in Fig. 6. It is found that the wave growing of disturbances as well as the instability zone 
increase with the rise of the thermal Grashof numeral GrT . Hence, one concludes that the thermal Grashof num-
ber  GrT exerts a destabilizing influence on the viscoelastic fluid cylinder in the considered system. According to 
the physical stand, the thermal Grashof numeral  GrT is known as the ratio concerning Buoyancy to the viscous 
forces. Note that, free convection is caused by a change in density of a fluid due to a temperature change or gradi-
ent. Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is 
caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number 
is a way to quantify the opposing  forces32. This indicates that the Buoyancy force enhances the instability of the 
viscoelastic fluid jet, which, in turn, speeds up the breakup process. Furthermore, the main and the upper cutoff 
wave numerals rise by the increase of the thermal Grashof number. Moatimid et al.19 found that the Rayleigh 
number has a destabilizing effect. It is known that the thermal Grashof number is related to both the Prandtl 

Figure 14.  Depicts the real part of the surface wave frequency versus the wave number in light of Eq. (48) for 
different amounts of γT.

Figure 15.  Depicts the real part of the surface wave frequency versus the wave number in light of Eq. (48) for 
different amounts of γC.
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numeral and the Rayleigh numeral by the relation Ra = GrT Pr . This means that at a fixed value of the Prandtl 
numeral, together the Rayleigh and the Grashof numerals have the same influence.

There is an analogous form of the Grashof number used in cases of natural convection mass transfer problems. 
In the case of mass transfer, natural convection is caused by concentration gradients rather than temperature 
gradients. Figure 7 shows the impact of concentration on the wave growth rate of the non-Newtonian liquid 
cylinder throughout the solutal Grashof numeral GrC . It is evident from this figure that as the solute Grashof 
numeral GrC increases, the area of instability wave number and the maximum growing amount in addition to the 
main wave numeral rise. In other words, it is obvious that the rise of the solute Grashof numeral GrC occurs by an 
increase in the solutal expansion coefficient βCL or by a decrease in the liquid viscosity ηL , but in this situation, 
the additional factors are held fixed i.e. the influence of viscosity remains constant. Therefore, one deduces that 
the solute expansion coefficient βCL(concentration phenomena) improves the instability of the liquid cylinder 
in the given system. This result has a significant role in the jet breakup procedure.

It is needed to calculate the effect of the non-dimensional EF  E0. Figure 8 depicts that when the dimensionless 
EF  E0 rises, the growing amount disturbances are still identical at small values of the wave number, approximately 
at k = 1 . Afterward, the stability influence definitely appears and the maximum growing amount in addition 
to the instability region decrease. This means that the EF E0 produces a stabilizing influence on the interface. 
Furthermore, the decrease of the EF  E0 reduces both the dominant and upper cutoff wave numbers, but the lower 
cutoff wave numeral remains fixed. Overall, one says that the EF resists the atomization process. Similar results 
have been recently  found19,27.

Figure 9 represents the influence of Darcy numeral Da on the growing amount of the wave rate disturbances in 
the stability picture. By the increase of Da , both the maximum growing rate and the equivalent upper cutoff wave 
number increase. Moreover, the lesser cutoff wave numeral decreases, but the dominant wave number remnants 
an unchanged. According to the physical stand point, the Darcy numeral is well-defined as the medium perme-
ability in the non-dimensional form Da = κ/ξ 2 , where κ is permeability. Therefore, the medium permeability 
in addition to the Darcy numeral Da produces a destabilizing impact. This phenomenon can be described in 
such a way that the rise of the amounts of Da sources a rise in permeability of the permeable media which, in 
turn, facilitates the flowing velocity of the fluid. Additionally, when the flowing velocity rises, the instability of 
the system rises. In a few words, when the permeability of the medium rises, the holes of the permeable medium 
are actual huge, and the resistance of the medium may be ignored so that the flowing velocity can increase and 
cause instability to the system. This outcome is in respectable agrees with the results early  obtained35.

Figure 10 shows the departure of the non-dimensional growth rate against the dimensionless wave numeral 
for various amounts of the Prandtl numeral Pr . As presented, as the amounts of the Prandtl number rise, the 
wave growing amount disturbances and the collection of instability wave number decrease intensely. Moreover, 
by growing the Prandtl number, the upper cutoff in addition to the dominant wave numbers decreases, while the 
lower cutoff wave number rises. From a physical interpretation, the Prandtl numeral is recognized as the ratio 
of kinematic viscosity (momentum diffusivity) to thermal diffusivity. Therefore, the rise of the Prandtl numeral 
may happen with an increase in the momentum diffusivity or a decrease in the thermal diffusivity. Consequently, 
one concludes that the momentum diffusivity has a stabilizing bearing on the considered scheme. This conse-
quence is well-matched19. Note that whereas the Reynolds number and Grashof number are subscripted with 
a scale variable, the Prandtl number contains no such length scale and is dependent only on the fluid and the 
fluid state. The Prandtl number is often found in property tables alongside other properties such as viscosity 
and thermal conductivity.

Figure 11 shows the impact of thermal diffusivity on the wave growth rate of the non-Newtonian liquid 
cylinder through the Lewis number Le . It is seen that the effect of the Lewis number Le on the rising number of 
waves on the viscoelastic jet is also significant in the same way as the effects of Prandtl numeral. Additionally, it 
is noticed that when the Lewis numeral Le is slight, the wave growing amount of asymmetric disturbance on the 
viscoelastic jet becomes higher. This means a quick atomization and breakup. Therefore, one concludes that the 
Lewis number Le stabilizes the considered system. Additionally, when the values of the Lewis numeral increase, 
the instability range and the highest growth rate disturbances reduce. By the same token, the upper cutoff and 
the main wave numbers reduce, while the lower cutoff wave number increases. Physically, Lewis numeral is rec-
ognized as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is 
simultaneous HMT. The Lewis number puts the thickness of the thermal boundary layer in relation to the concen-
tration boundary layer. Therefore, the improvement of the Lewis number may be generated by an increase in the 
thermal diffusivity or a decrease in the mass diffusivity. The rise in the Lewis numeral indicates a decrease in the 
Brownian movement of the liquid. Therefore, one concludes that the decrease in the Brownian motion develops 
the stability of the interface concerning the gas and the fluid. Moatimid et al.19 obtained similar conclusions.

It is necessary to explain the impact of the velocity ratio U on the wave growing amount for asymmetric 
disturbances ( m = 1 ) as shown in Fig. 12. It is comprehensible that when the velocity ratio U rises, the growing 
amount disturbance stays applicable at minor values of the wave numeral, which is approximately at k = 1.2 . 
After that, the stable influence appears definitely, and the maximum growing amount as well as the unstable 
range decrease. This means that the velocity ratio U has a stabilizing influence on the interface. Furthermore, the 
growing gas to liquid velocity ratio U reduces both the dominant and upper cutoff wave numerals, nonetheless 
the lower cutoff wave number remnants an unchanged. Overall, one can say that the velocity ratio U  resists the 
atomization process. Since the liquid Weber number is fixed here, then this influence is due to the ambient gas 
velocity i.e. the ambient gas velocity has stabilizing effect. Similar results have been recently  found14.

The influence of the density ratio ρ0 on the wave growing rate ωr is inspected in Fig. 13. It is detected that when 
the density ratio rises, the growing amount disturbance stays applicable at smaller amounts of the wave numeral, 
which is approximately at k = 1.1 . After this certain value, both the growth rate and the instability variety rise 
radically. Furthermore, the dominant wave numeral and the upper cut-off wave numbers also rise. Additionally, 
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the lower cut-off wave numerals are constant due to the rise of the density ratio. Similarly, it can be found that 
Weber number We has a fixed value in this graph, which involves that there is a rise in the gas density ρ0G . Con-
sequently, it might be decided that the rise of the gas density shows a vital role in the breakup procedure. In other 
words, the great ambient gas density develops the instability of the viscoelastic fluid cylinder. Consequently, the 
density ratio has a destabilizing bearing on the considered system, which corresponds to the early  outcomes36.

In order to determine the impact of MHT through the MP influence on the development of the growing 
amount disturbances, one may plot the non-dimensional growth rate ωr versus the non-dimensional wave num-
ber k for some amounts of the heat and concentration parameters γT and γC . These computations are presented 
in Figs. 14 and 15, correspondingly. It is understood that the temperature or concentration coefficient describes 
the relative change of a physical property that is associated with a given change in temperature or concentra-
tion. It is clear that as the heat and concentration factors γT and γC rise, the amounts of the growing number 
of perturbations and the upper cutoff in addition to the main wave numbers decay greatly. On the contrary, the 
amounts of the lower cutoff wave numbers rise with the rise in heat and concentration factors. In addition, these 
findings accord with those found  previously8,18. They have established that the heat and concentration coefficients 
reduce the growing of the surface waves; consequently, they have a stabilizing impact. Generally, we may say 

Table 1.  The non-dimensional growing amount ωr against the non-dimensional wave number k for different 
amounts of the modified diffusivity ratio Na.

k ωr at Na = 0 ωr at Na = 5 ωr at Na = 10

0.1 − 0.049 − 0.018 − 0.367

1.1 0.176 0.261 0.307

2.1 0.327 0.507 0.590

3.1 0.224 0.510 0.644

4.1 0.135 0.345 0.464

5.1 0.078 0.212 0.292

0.1 0.041 0.123 0.173

7.1 0.018 0.066 0.096

Table 2.  The non-dimensional growing amount ωr against the non-dimensional wave number k for different 
amounts of the temperature at the outer boundary Ta.

k ωr at Ta = 1 ωr at Ta = 5 ωr at Ta = 10

0.1 − 0.049 − 0.046 − 0.046

1.1 0.176 0.158 0.052

2.1 0.327 0.171 0.125

3.1 0.224 0.240 0.190

4.1 0.135 0.157 0.174

5.1 0.078 0.087 0.099

6.1 0.041 0.045 0.099

7.1 0.018 0.020 0.023

Table 3.  The non-dimensional growth rate ωr versus the non-dimensional wave number k for various 
amounts of the gas-to-fluid Brownian diffusion parameter ratio DB.

k ωr at DB = 1 ωr at DB = 3 ωr at DB = 10

0.1 − 0.049 − 0.050 − 0.050

1.1 0.176 0.183 0.186

2.1 0.327 0.370 0.385

3.1 0.224 0.276 0.301

4.1 0.135 0.167 0.182

5.1 0.078 0.096 0.105

6.1 0.041 0.052 0.057

7.1 0.018 0.024 0.026
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that in the existence/nonexistence of energy/concentration equations, in view of the viscoelastic effect in the 
permeable medium, MHT has a stabilizing effect.

It should be noticed that the numerical calculations showed that the effect of the factors,Na,Ta DB and η on the 
stability diagrams is very weak and that their existence is approximately has no significant effect on the stability 
behavior. We are able to obtain a visualization of these effects, numerically through the Tables 1, 2, 3 and 4 at the 
same values of the other parameters as mentioned before. It is observed that by increasing the wave number k , 
the amounts of the growing amount of disturbances ωr are rise at some amounts of the wave numeral k . After 
that, the performance is reflected in the decrease of the growing amount of disturbances ωr(vertical change 
in the tables). Furthermore, at a fixed amount of the wave numeral k and by increasing the parameter values 
( Na , DB , η ), one finds that the growth rate of disturbances ωr is also increases. Hence, the modified diffusiv-
ity ratio Na , the gas-to-liquid Brownian diffusion parameter ratio DB and the ratio of gas dynamic viscosity to 
zero shear viscosity of the liquid η have a destabilizing impact on the stability outline. The previous results are 
compatible only with Tables 1, 3, and 4. In Table 2, and for some fixed values of the wave number k , it is obvious 
that the growing amount of disturbances ωr reduces for small wave number amounts and then rises. Therefore, 
the temperature at the outer boundary Ta has a double role in the stability configuration.

Concluding remarks
In our earlier  study18, the EHD instability of a flowing dielectric viscous fluid cylinder with MHT was exam-
ined. Regardless of the short, ended construction of Hsieh’s  formulation5, the current analysis has scrutinized 
the temperature in addition to the concentration fundamental equations. The motivation behind this study lies 
in the numerous applications of the non-Newtonian Oldroyd-B in geothermal and industrial developments as 
well as practical engineering. Consequently, the existing paper examines the linear EHD instability of a cylin-
drical interface that separates a moving viscoelastic fluid obeying Oldroyd-B and perfect liquid gas. For more 
clarification, abbreviations as well as nomenclature Section are provided at the beginning of the manuscript. 
Therefore, many symbols are ignored throughout all the processes. The methodology is considered in permeable 
media along with the effect of an unchanged axial EF. Undoubtedly, this meets real engineering applications. 
The interfacial tension is presumed to be as a profile of energy in addition to concentration. Therefore, the MP 
occurrence has been signified. The normal mode approach yields a complicated transcendental dispersion rela-
tion. Due to this complexity, the MS is utilized to attain a reasonable solution of the structure at hand. As widely 
understood, non-dimensional physical quantities can be used to explore the background of fluid flow. In addition, 
they minimize the amount of variables required to define the procedure. These numbers are typically having 
physical connotations that aid in the explanation of many scientific events. Therefore, the impact of the obtained 
non-dimensional physical numbers is evaluated and validated by the other existing works in the literature. When 
the results are compared with the present references, realistic deductions are reached. Generally, the following 
arguments characterize the main findings of the study:

Regardless of the previous  works7,28, the current work indicates a dual influence on the stability profile in 
the reflected model.

• A fluid cylinder in a non-permeable medium has an additional unstable role rather than in a porous one.
• A liquid jet in the existence of MHT through MP effect makes the viscoelastic liquid jet more stable than in 

its absence.
• The EF E0 , Prandtl number Pr , Lewis number Le , and gas-to-liquid velocity ratio U have a stabilized influence.
• By using the BA on the streaming liquid jet, one obtains two non-dimensional numbers, thermal and solutal 

Grashof numbers GrT and GrC . These two numbers have a destabilizing effect.

Data availability
All data generated or analyzed during this study are included in this manuscript.

Table 4.  The dimensionless growing amount ωr against the dimensionless wave numeral k for various 
amounts of the ratio of gas dynamic viscosity to zero shear viscosity of the liquid η.

k ωr at η = 0.5 ωr at η = 0.7 ωr at η = 0.9

0.1 − 0.0498 − 0.0494 − 0.0492

1.1 0.1761 0.1758 0.1754

2.1 0.3274 0.3282 0.3291

3.1 0.2246 0.2247 0.2248

4.1 0.1357 0.1359 0.1361

5.1 0.0781 0.0782 0.0783

6.1 0.0412 0.0413 0.0413

7.1 0.0182 0.0182 0.0182
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