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Seasonal variations of functional 
connectivity of human brains
Lyuan Xu 1,2, Soyoung Choi 1, Yu Zhao 1,3, Muwei Li 1,3, Baxter P. Rogers 1,3,4,5, 
Adam Anderson 1,3,4, John C. Gore 1,3,4, Yurui Gao 1,4 & Zhaohua Ding 1,2,4*

Seasonal variations have long been observed in various aspects of human life. While there is an 
abundance of research that has characterized seasonality effects in, for example, cognition, mood, 
and behavior, including studies of underlying biophysical mechanisms, direct measurements of 
seasonal variations of brain functional activities have not gained wide attention. We have quantified 
seasonal effects on functional connectivity as derived from MRI scans. A cohort of healthy human 
subjects was divided into four groups based on the seasons of their scanning dates as documented 
in the image database of the Human Connectome Project. Sinusoidal functions were used as 
regressors to determine whether there were significant seasonal variations in measures of brain 
activities. We began with the analysis of seasonal variations of the fractional amplitudes of low 
frequency fluctuations of regional functional signals, followed by the seasonal variations of functional 
connectivity in both global- and network-level. Furthermore, relevant environmental factors, 
including average temperature and daylength, were found to be significantly associated with brain 
functional activities, which may explain how the observed seasonal fluctuations arise. Finally, 
topological properties of the brain functional network also showed significant variations across 
seasons. All the observations accumulated revealed seasonality effects of human brain activities in a 
resting-state, which may have important practical implications for neuroimaging research.

It has been long recognized that the mood, cognition, and diverse behaviors of human beings exhibit seasonal 
 variations1, a natural phenomenon that can be observed in a substantial portion of the general  population2. This 
seasonality exhibits a continuous spectrum of manifestations that range from insignificant to a clinical diagnosis 
of seasonal affective disorder (SAD)1,3,4, between which various levels of seasonal effects may be detected that 
are below the criteria for clinical  diagnosis5, and which typically occur during certain months of the  year6–8.

To understand the physiological mechanisms that underlie seasonal effects, a large body of literature has 
examined seasonal variations of hormone  levels9,10, neural transmitter  activities11–14 and gene expression 
 profiles15,16. A recent finding demonstrated that multiple gene expressions across different geographical and 
ethnic groups showed significant seasonal variations, especially in the immune  system16. Furthermore, various 
reports have also characterized the relations between the seasonal variations of mood, cognition and behavioral 
or physiological  variables17–22. It has also been shown that changes in photoperiod (daylength) in mammals are 
encoded by the brain’s central circadian pacemaker, the suprachiasmatic nucleus (SCN)23,24, causes changes in 
melatonin, cortisol and serotonin activity in the brain and subsequently regulates the photoperiodic program-
ming of the excitability of the related  neurons25. McMahon, et al. suggested that patients with SAD developed 
depressive symptoms during winter due to an inability to adjust the regulation of serotonin transporters to shorter 
 photoperiods12. Further evidence of the presence of seasonality effects on the brain have been shown by measur-
ing seasonal variations of brain electrophysiological activities using  electroencephalography26,27. Still, while we 
can point to many examples of seasonal effects on the brain, direct measurements of seasonal variations of brain 
functional activities remain largely elusive.

More recently, functional magnetic resonance imaging (fMRI) studies of the human brain have been per-
formed using resting-state or specifically-designed task paradigms, to demonstrate variations of brain activities 
over time scales of months to  years28–32. Task-dependent cognitive activity, such as working memory and atten-
tion, can exhibit intrinsic seasonal  effects32. An extensive longitudinal study on a single human subject over 
18-months showed that brain connectivity as measured by fMRI was highly variable across the time period 
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studied, as well as other psychological and biological  variables30. Di et al. characterized the influence of seasonal 
correlated environmental factors on brain function using machine learning regression, and showed that several 
parameters, especially daylength and air temperature, had the highest prediction  accuracies28. Reproducibility 
of human fMRI studies is a constant concern. An understanding of the magnitude and pattern of seasonality 
effects that may confound normal variations of human brain activity detectable by fMRI will be important for 
neuroimaging and cognitive neuroscience research moving forward.

Previous research has shown that white matter (WM) encodes important spatiotemporal  information33–35 
and WM functional networks demonstrate stronger dynamic connectivity than gray matter (GM) functional 
 networks36. Patterns of connectivity between WM and GM have been observed giving support to the idea that 
BOLD signals in WM are related to neural activities in the  brain37. Synchronous neural activity between GM 
regions and WM bundles can be summarized in functional connectivity (FC) matrices and the global average 
of GM–WM connectivity can quantify the overall synchronization of functional brain  activities37.

Given the previous evidence showing physiological and cognitive variations across seasons, we hypoth-
esized that large-scale differential seasonal patterns in brain connectivity captured by fMRI would potentially 
be observable in typical adults. We began with fractional amplitudes of low-frequency fluctuations (fALFF) of 
BOLD signals in GM regions and in WM bundles which report the intensity of spontaneous baseline activity 
and have been suggested to reflect cognitive  activity38. We then compared measures of FC between GM regions 
and WM bundles at a global level and then at a network level considering possible effects of seasonality, and we 
further explored how environmental factors, including average temperature and daylength, affect seasonality 
effects on resting-fMRI brain connectivity. Lastly, seasonality effects of topological properties of functional brain 
networks were further characterized.

Results
Resting-state fMRI data from 410 subjects (female: 247 subjects; male: 163 subjects) obtained through the HCP 
3T database were examined. Ages of the participants ranged from 26 to 35 years old. The seasons were divided 
using the acquisition quarter information provided by the HCP project  wiki39 and defined as follows: Spring is 
from February 1st to April 30th; summer is from May 1st to July 31st; autumn is from August 1st to October 31st; 
and winter is from November 1st to January 31st. The acquisition seasons of the subjects spanned from winter 
in 2013 (winters included an extra month in the following year) to autumn in 2015, which covered two consecu-
tive years (see Table 1 for the number of subjects analyzed for each season). First, we analyzed global seasonal 
variations of fALFF in GM and WM, and of FC between GM regions and WM bundles. Correlations between 
the global activity metrics and environmental factors were further sought. Second, we specifically characterized 
seasonality effects for 14 large-scale brain networks, with each representing a distinct functional module in the 
brain. Detailed WM bundles, GM regions (along with their abbreviations), and the list of all functional networks 
are presented in Supplementary Tables S1 and S2. Finally, seasonal variations of topological properties of the 
brain networks were quantitatively examined. For all the functional metrics studied, we began with a statistical 
test of significance of seasonal variations using ANOVA. Then we performed detailed comparisons between 
distinct seasons for those exhibiting significant seasonal variations and evaluated the degree of periodicity in 
their seasonality effects by using sinusoidal function fitting.

Global seasonal effects
At the global level, we first examined seasonal fluctuations of mean fALFF for GM and WM respectively. Aver-
aged power spectra were computed for each GM region and WM bundle, from which a mean GM and WM 
fALFF value was obtained for each subject. ANOVA tests showed that the mean fALFF was significantly different 
across the four seasons ( p < 0.05 ) for both GM and WM (GM: p = 0.0128 , effect size Cohen’s f  (abbreviated 
as f  in the follows) = 0.1644 ; WM: p = 0.0165 , f = 0.1601 ), indicating the existence of seasonal variations of 
the low-frequency oscillations in BOLD signals in both GM and WM. Overall, the mean fALFF of GM and WM 
had largely similar patterns of seasonal variations, which gradually decreased from winter to summer followed 
by increases to a peak value in autumn. Detailed statistical comparisons revealed that there were significant dif-
ferences in GM fALFF between autumn and spring ( p = 0.0076 , effect size Cohen’s d (abbreviated as d in the 
follows) = 0.3894 ) and between autumn and summer ( p = 0.0022 , d = 0.4579 ); a significant difference in WM 
fALFF was observed between autumn and summer ( p = 0.0019 , d = 0.4651 ). The full power spectra of GM and 
WM for each season are shown in Supplementary Fig. S1 and S2 in our supplementary material. Power spectra 
were calculated from normalized signals of each GM region and WM tract, which were then averaged over all 
GM regions and WM tracts separately and across all the subjects for each season. As can be seen, the power 
within the range of 0.01–0.08 Hz tends to be higher in autumn for both GM and WM than in other seasons, 
consistent with our findings with respect to fALFF. Evaluations of the degree of periodicity of fALFF seasonality 

Table 1.  Numbers of female and male subjects in each acquisition season from winter in 2013 to autumn in 
2015.

Winter Spring Summer Autumn

No 127 99 91 93

No. of females 78 61 57 51

No. of males 49 38 34 42
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by sinusoidal fitting (with amplitude and phase as variables) are shown in Fig. 1 for GM (1A) and WM (1B) 
fALFF, in which the fitted fALFF values (red curves) are displayed with their 95% confidence intervals (orange 
areas). Further F-tests found that the seasonal variations of both GM and WM fALFF could be well modeled by 
the sinusoidal function (GM: p = 0.0158 , f = 0.1436 ; WM: p = 0.0359 , f = 0.1283 ), which showed that the 
fALFF tended to be higher in autumn and winter than in spring and summer.

The above analysis was also applied to the FC between GM regions and WM bundles. First, the coefficient 
of Pearson correlation was calculated between each pair of GM region and WM bundle, defined respectively by 
Shirer et al.40 and the JHU ICBM-DTI-81 WM  atlas41, yielding a GM-WM FC matrix for each subject. Figure 2 
illustrates the group mean GM-WM FC matrices in four seasons. It appears that the autumn tends to have 
stronger FC and the summer tends to have weaker FC than other seasons. The detailed difference in the mean 
FC matrix between these two seasons is also shown in Fig. 2. As expected, it is evident that when compared to 
the summer season, the group mean GM-WM FC matrix of the autumn season exhibited a higher FC intensity 
in the majority number of matrix elements.

To further quantify the seasonal variation of GM-WM FC, each correlation coefficient in the FC matrix was 
then converted to a Z-score by pooling over all the subjects studied and a mean Z-score was obtained for each FC 
matrix. Our ANOVA tests showed that global FC strength, defined as the grand mean of the mean Z-score over 
all the subjects in a season group, exhibited relatively less significant variation across the seasons compared to 
fALFF behaviors ( p = 0.0889 , f = 0.1273 ), but significant differences were still found between seasons. Global 
FC strength was found to be highest in autumn and lowest in summer ( p = 0.0303 , d = 0.3219 ). Significant 
differences were also observed between autumn and spring ( p = 0.0480 , d = 0.2874 ) and between autumn and 
winter ( p = 0.0483 , d = 0.2710 ), as shown in Fig. 3. Fitting of the global FC strength with a sinusoidal function 
did not reach the significance level ( p = 0.1360 , f = 0.0992 ), although the least square fitting showed a peak FC 
during autumn, just like the fALFF in Fig. 1. Finally for completeness, the mean FC of GM-GM and WM-WM 
matrix was also analyzed similarly, with results reported in Supplementary Fig. S3. Briefly, the mean WM-WM 
FC was significantly different across the four seasons ( p = 0.0102 , f = 0.1681 ) and could be well fitted by a sinu-
soidal function ( p = 0.0488 , f = 0.1221 ), whereas seasonal variations of the mean GM-GM FC did not reach the 
significant level ( p = 0.1755 , f = 0.1108 ) nor their fitting with a sinusoidal function ( p = 0.1070 , f = 0.1050).

To explore the relationship of the above functional activity and connectivity metrics and environmental fac-
tors, average environmental parameters, including average temperature and daylength in St. Louis, Missouri in 
the years of acquisitions, were used as regressors to predict the mean GM and WM fALFF and global FC strength. 
Seasonal variations of both the mean GM and WM fALFF could be well predicted by the average temperature and 
daylength (GM fALFF: p = 0.0121 , f = 0.1479 ; WM fALFF: p = 0.0282 , f = 0.1331 ), whereas the prediction 
of global FC strength failed to reach the significance level. Note that a temporal delay was observed between the 
environmental parameters and GM/WM fALFF (see Supplementary Fig. S4), with the fALFF values peaking in 
autumn while the average temperature and daylength reaching their peaks in summer.

Seasonal effects across large-scale brain networks
Seasonal variations were further explored in 14 large-scale brain functional networks defined by Shirer, et al.40. 
Specifically, the GM-WM FC matrix computed above was divided into 14 submatrices to derive a mean Z-score 
for each of the 14 networks (see Fig. 4 for detailed seasonal variations in grayordinate space). Similar to the 
global analysis, significant seasonal variations were observed in several functional networks, with ANOVA tests 
demonstrating that the Z-scored mean FCs of the posterior insula, sensorimotor, and ventral DMN networks 
were significantly different ( p < 0.05 ) across the four seasons (posterior insula: p = 0.0305 , f = 0.1491 ; sen-
sorimotor: p = 0.0224 , f = 0.1547 ; ventral DMN: p = 0.0231 , f = 0.1542 ). The FC strength of all the three 
networks was found to be highest in autumn, which showed significant differences with the other seasons. In 
this work, the highest FC strength was approximately 20% greater than the lowest, revealing sizeable seasonal 
FC variations throughout the year. The mean FC of these three networks however did not pass the significance 

Figure 1.  Group mean fALFF (blue) across seasons overlaid with proposed sinusoidal function fitting to test 
for periodicity and the related interval at 95% confidence level (red) separately for (A) GM fALFF and (B) 
WM fALFF. The error bars (blue) are plotted based on the standard errors of the mean in each season. Note: 
**p < 0.01.
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test of periodicity with the sinusoidal model. Detailed statistical comparisons between the four seasons for the 
above three networks are graphically summarized in Fig. 5. The results of the remaining networks are presented 
in Supplementary Fig. S5.

Seasonal variations of network properties
To examine seasonal variations of overall brain functional architecture, particularly seasonal variations of topo-
logical properties of the brain networks, we computed a number of graph theoretic parameters for each of the 
subjects studied and quantified their fluctuations across the four seasons. For each subject, we first calculated 
GM-GM, WM-WM and overall FC matrices (i.e., (GM ∪ WM)-(GM ∪ WM)), from which density, transitivity, 
global efficiency, and characteristic path length were derived from each of these FC matrices. Our ANOVA tests 
found that all the network properties of WM-WM functional connections were significantly different across the 
four seasons (density: p = 0.0091 , f = 0.1700 ; transitivity: p = 0.0305 , f = 0.1491 ; global efficiency: p = 0.0071 , 
f = 0.1740 ; characteristic path length: p = 0.0210 , f = 0.1559 ). Autumn showed significantly higher density, 
transitivity and global efficiency, and smaller characteristic path length than the other seasons, a pattern that 
resembled that of global fALFF and FC. In detail, there was significantly higher density and smaller character-
istic path length of WM-WM networks in autumn than in spring and summer, and significantly higher global 
efficiency in autumn than in the other three seasons. Significant differences in transitivity were also found 
between autumn and summer and between winter and summer. Further analysis revealed that the density, 

Figure 2.  Maps of the group mean GM-WM FC matrix for four seasons and the difference matrices between 
the autumn and summer season. Overall, the autumn appears to have stronger FC and the summer tends to 
have weaker FC than other seasons. Note that the lower left image in the bottom row shows the difference 
between autumn and summer when FC in autumn is greater than summer, and the lower right image shows the 
difference in the opposite direction.
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Figure 3.  Group mean FC (blue) of GM-WM across seasons overlayed with proposed sinusoidal function 
fitting to test for periodicity and the related interval at 95% confidence level (red). The error bars (blue) are 
plotted based on the standard errors of the mean at each season. Note: *p <  0.05.

Figure 4.  Maps of the WM-averaged FC in grayordinate space in four seasons. The area shown in the figure is 
covered by the 14 functional networks used, and the FC intensity value is denoted by the color bar provided at 
the bottom of each map.
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global efficiency, and characteristic path length of WM-WM networks could be well fitted by sinusoidal func-
tions (density: p = 0.0358 , f = 0.1283 ; global efficiency: p = 0.0183 , f = 0.1410 ; characteristic path length: 
p = 0.0286 , f = 0.1327 ). The sinusoidal fittings of the topological properties and their 95% confidence levels 
are shown in Fig. 6. Note that ANOVA tests on these topological properties of GM-GM and overall FC matrices 
were not significant, although similar trends could still be observed.

Discussion
We report our preliminary studies exploring seasonal variations in measures of brain activity derived from 
fMRI. Global- and network-level measures of functional connectivity, low frequency fluctuations of regional 
functional signals, and topological properties of brain functional networks, all demonstrated significant season-
ality effects. In particular, three specific networks, involving sensorimotor, posterior insula, and ventral DMN 
regions, revealed significant seasonal variations in mean FC strength between seasons. Across our different 
observations, autumn contrasted most consistently from the other three seasons. We observed higher global- and 
network-level functional connectivity strengths, as well as WM and GM fALFF values, in autumn. In addition, 
topological analysis of brain functional networks detected higher connectivity density, transitivity and global 
efficiency, and lower characteristic path length in autumn as well. We were also able to correlate environmental 
factors with seasonal brain functional activities. Together, these observations provide evidence of an influence 
of seasonality effects on physical indices of human brain activities in a resting-state.

Previous research has demonstrated that the overall brain performance reaches its peak around the autumn 
season, especially the brain activities relevant to cognitive  processing42 in which the sensorimotor network also 
plays a significant  role43–45. This is in line with our observation that GM-WM FC in the sensorimotor network 
reached the highest point in the autumn. The DMN network, which is believed to be active during a subjects’ 
internal mental  processes46, plays an important role in the interactions between other brain  systems47,48. It has 
been argued that the DMN is a key contributor to the organization and expression of preplanned, reflexive 
 behaviors48. Our work revealed a significant seasonal variation of FC in the ventral DMN, which is signifi-
cantly higher in autumn than in other seasons, supporting the notion that the DMN might be a driving factor 
responsible for seasonal variations of brain connectivity at both global- and network-levels. Much similar to 
the sensorimotor and ventral DMN system, the posterior insula network also exhibited significantly higher FC 
in autumn. Prior studies have identified seasonal fluctuations in brain responses, some of which peaks in the 
autumn, particularly that related to  insula32. This phenomenon is thought to be associated with the variations in 

Figure 5.  Group mean FC of brain networks (blue) across seasons overlayed with proposed sinusoidal 
function fitting to test for periodicity and the related interval at 95% confidence level (red) separately for (A) 
sensorimotor, (B) ventral DMN, and (C) posterior insula networks. The error bars (blue) were plotted based on 
the standard errors of the mean at each season. Note: *p <  0.05; **p <  0.01.
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brain dopamine concentration, which exhibits elevated levels during the  autumn11,49. The seasonality effects of 
GM–WM FC at resting state in the insula we observed could be similarly mediated by dopamine.

It has long been observed that human behaviors, including brain activities, are strongly influenced by the 
environment where individuals  reside1. Our analysis of the relationship between the seasonal variations of brain 
functional measures and local environmental factors showed that multiple covariates, including air temperature 
and daylength, are closely correlated with the fALFF of GM regions and WM bundles. Light exposure is one of 
the most common factors related to seasonality, and its intensity and spectral distribution vary with changing 
 seasons50. Average temperature is also a strongly entangled factor due to its strong correlation with light dura-
tion. Our results show that the fALFF of GM and WM could be influenced by the temperature and daylength as 
these measures demonstrated similar periodicity. It should be noted that these environmental factors are widely 
recognized to vary remarkably with geographic locations, which suggests that the seasonality found in this work 
could differ in other areas. Finally we emphasize that, rather than isolating the subjects from the natural envi-
ronment prior to the scanning processes as implemented by Meyer et al.32, this work made use of data acquired 
without the isolation of external factors and thus provided a means of quantifying the role of environmental 
factors on seasonality effects.

Practically, this work potentially has great importance for imaging-based brain research from both clinical 
and technical perspectives. First, our observation that brain functional activities vary seasonally at both the 
global- and network-level can be used to guide optimal treatment for clinical populations with abnormalities 
paced by the season, especially the spectrum of SAD. The sensorimotor network is found to be overactive in SAD 
 patients51, and thus can be chosen as a target of their medical treatments or physical therapies. Alternatively, the 
ventral DMN region or perhaps even more effectively the posterior insula network can be modulated to amelio-
rate the SAD symptoms. Second, our finding that the magnitude of seasonal variations of brain activities can be, 
somewhat surprisingly, as large as those induced by many neurological conditions may have important technical 
implications for clinical neuroimaging experiments. Specifically, to minimize the impact of seasonal factors on 
the main effect of interest, precautions must be exercised in designing functional neuroimaging experiments as 
well as in analyzing and interpreting the data, such that environmental parameters at the time of image acquisi-
tions are appropriately considered or controlled.

Our findings revealed significant differences between brain activities in distinct seasons, and significant sea-
sonal variations, which could be well fitted by sinusoidal functions. A recent study drew extensive attention when 
it illustrated poor test–retest reproducibility of fMRI  measurements52, raising the awareness of reliability issues 
in current fMRI procedures. This study repeated scans approximately five months apart, during which seasonal 

Figure 6.  Group mean network properties (blue) across seasons overlayed with proposed sinusoidal function 
fitting to test for periodicity and the related interval at 95% confidence level (red) respectively for (A) density, 
(B) transitivity, (C) global efficiency and (D) characteristic path length. The error bars (blue) are plotted based 
on the standard errors of the mean in each season. Note: *p <  0.05; **p <  0.01; ***p <  0.001.
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environmental parameters can introduce substantial changes. It should be pointed out that the stability of the 
scanning instruments used in the procedure of this work was not examined due to unavailability of calibration 
data. However, we can reasonably assume that potential seasonal variations of instruments do not dominate 
our experimental findings as our imaging effects are not general and the data used are essentially normalized 
relative to a baseline. Furthermore, we divided the subjects into female and male groups. It was found that the 
two groups exhibit quite different seasonal patterns (particularly in GM-WM FC), with the female group expe-
riencing significant seasonal difference between the winter and autumn seasons while no significant differences 
were observed between any two seasons for the male group. Also, it was found that there existed significant 
difference between the male and female groups for the winter season, as shown in Supplementary Fig. S6. The 
sex-dependent patterns of seasonal variations thus have basically ruled out that the observed seasonality effects 
are primarily driven by the scanning instruments.

Another potential limitation of this work is the lack of detailed acquisition dates. Female and male subjects 
were grouped based on their acquisition seasons and each season was treated as one time point for the fitting of 
seasonal variations. Of particular note, the seasonal variations observed in this work were fitted using sinusoi-
dal functions, a model that has been employed by a number of previous works (see the work by Meyer et al.32 
for example). Sinusoidal functions are mathematically concise models which can naturally capture changes of 
environmental parameters in the nature, such as average temperature and daylength. We should note, however, 
that sinusoidal functions are symmetrical, i.e., positive and negative wave variations with respect to the base-
line are identical, and thus their general applicability is not necessarily guaranteed. Other alternative modeling 
approaches, such as parabolas, could also be used for our analysis, which we believe would yield similar conclu-
sions to what were drawn in this work. Regardless of these limitations, this study demonstrated robust patterns 
of seasonal variations of brain activity measured by resting-state fMRI, thus providing further evidence of a 
neurobiological impact of season on brain functions.

Methods
Data
MRI datasets used in this study were sourced from the HCP database (1200 Subjects Data Release: https:// www. 
human conne ctome. org/ study/ hcp- young- adult), which includes 410 healthy young adults (60% female). The 
process for determining the sample size of the data was as follows: 1. Only data from the group with an age range 
of 26–35 years was selected to minimize age effects; 2. Data from acquisitions Q1-Q3 were excluded because 
they were reconstructed with an older algorithm. In addition, to ensure that the number of subjects is roughly 
the same in each acquisition quarter, we selected the last 8 consecutive quarters (two years) of data from Q6 to 
Q13; 3. Any data with QC_issues noted in the HCP quality control process were excluded. The data acquisition 
seasons for these subjects were defined as follows: Spring is from February 1st to April 30th; Summer is from May 
1st to July 31st; Autumn is from August 1st to October 31st; and Winter is from November 1st to January 31st. 
The numbers of female subjects were 61, 57, 51, 78 for Spring, Summer, Autumn and Winter respectively, and the 
numbers of male subjects were 38, 34, 42, 49 for the four seasons respectively. It is noted that sex was regressed 
out from all the measures analyzed in this work to mitigate the influence of the nuisance variable. Resting-state 
fMRI images were used for analyzing seasonal variations of functional connectivity (FC) and network properties, 
which were acquired with multiband gradient‐echo echo‐planar imaging sequence with the following parameters: 
TR = 720 ms, TE = 33.1 ms, voxel size = 2 mm isotropic, number of volumes = 1200. Detailed MRI protocols are 
well described in a previous  work53.

Preprocessing
Functional MRI images from the HCP repository have been minimally preprocessed (see more details in a pre-
vious  work54). Further processing of the fMRI images included regressing-out of nuisance variables from head 
movements, cardiac signals and respiratory signals using PhysIO  toolbox55. Finally, time courses were bandpass 
filtered to retain the frequency from 0.01 to 0.1 Hz, and then normalized to unit variance voxel-wisely.

Image analysis
Regions of interest
The basic FC analyses in this study were performed at a regional level. For GM, functional regions of interest 
(ROI) were defined using atlas from W. R. Shirer, et al.40. Meanwhile, WM was parcellated into fiber bundles using 
the JHU ICBM-DTI-81 WM  atlas41. The preprocessed fMRI signals were averaged across voxels within each GM 
region and WM bundle, yielding region-averaged signals for subsequent analyses. Detailed WM bundles, GM 
regions (along with their abbreviations), and the list of all functional networks are presented in Supplementary 
Tables S1 and S2.

Power spectra of BOLD signals
The power spectra of region-averaged fMRI signals were computed for each WM bundle using the standard 
Welch’s method. In this work, the Welch’s power spectral  density56 estimate function (pwelch) built in MATLAB 
was implemented. Note that the BOLD time course was not filtered in the power spectra computation. Based 
on the averaged periodogram, the fractional amplitude of low-frequency fluctuations (fALFF) was calculated 
as the ratio of average power across the frequency range of 0.01–0.08 Hz to the average power across all the 
frequencies higher than 0.01 Hz.

https://www.humanconnectome.org/study/hcp-young-adult
https://www.humanconnectome.org/study/hcp-young-adult


9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16898  | https://doi.org/10.1038/s41598-023-43152-4

www.nature.com/scientificreports/

Functional connectivity matrices at global‑ and network‑levels
WM-GM FC matrices were calculated based on Pearson correlation in region-averaged BOLD signals between 
each pair of WM-GM regions for each subject individually. Each matrix contained NW ∗ NG elements, with NW 
being the number of WM bundles and NG the number of GM regions. Fisher Z-Transform was applied to each 
FC matrix element-by-element, and the mean Z-score of each FC matrix was defined to be the average of absolute 
values of Z-scores over all its elements. In addition, WM-GM FC matrices were segmented into 14 submatrices 
across GM regions, representing 14 functional networks defined by Shirer et al.40, and mean Z-score of each 
submatrix was also computed by averaging across the absolute values of elements of each WM-GM submatrix. 
GM-GM and WM-WM matrices were also calculated, along with their corresponding mean Z-scores, similar 
to the WM-GM FC.

Graph network analysis
Brain graph network was established based on GM–GM, WM–WM and GM–WM correlation matrices, which 
captured FC between each and every pair of functional regions throughout the brain. These matrices were 
thresholded at 0.2 and binarized for each subject, from which multiple network properties were derived group-
wisely. The nodes of the graph are GM regions and WM bundles, and the edges between nodes are thresholded 
FC between them. The Brain Connectivity  Toolbox57 (https:// sites. google. com/ site/ bctnet/) was used to conduct 
the network analysis.

Density
Density is a relative measure of how many connections a network (graph) has. It is defined as the fraction of 
number of present connections to the number of possible connects in a graph:

in which N is the total number of nodes in the graph.

Transitivity
Transitivity, a.k.a. the global clustering coefficient, is a measure of the degree to which a graph is clustered. It is 
defined as the ratio of the number of all closed triplets to the total number of triplets including both closed and 
open  triplets58. Assume X is a connection matrix, the transitivity Tc can be derived as:

where P is the connection matrix with complete connections (i.e., an edge exists between any pair of distinct 
nodes). The above equation can be simplified as:

Global efficiency
Global efficiency is a measure of how efficiently a network exchanges information through  connections59. It is 
defined as the average of the inverse of the shortest distance between all pairs of nodes in a network:

where dij is the shortest distance (i.e., minimum path length) between two nodes i and j.

Characteristic path length
The characteristic path length measures, on average, the minimum number of edges through which one graph 
node reaches another. Assume the shortest path between any pair of graph nodes is computed, the characteristic 
path length is defined as the average of shortest paths between all possible pairs of nodes which are reachable 
from each  other60.

Seasonal variation analysis
Seasonal variations of FC and fALFF were modeled with the assumption that they fluctuate in a sinusoidal form 
with annual  periodicity32:

where y is the response variable,  ω = 2π/T ( T = 1 year), ϑ and A are the phase and amplitude of the sinusoidal 
function, respectively. The above function can be expanded as:

(1)Density =
# of present connections

# of possible connections
=

# of present connections
1
2
N(N − 1)

(2)Tc =

∑

i,j,k XijXjkXki
∑

i,j,k XijPjkXki

(3)Tc =
tr
(

X3
)

∑

i,j

(

X2
)

ij
− tr

(

X2
)

(4)E =
1

N(N − 1)

∑

i �=j

1

dij

(5)y(t) = Acos(ωt + ϑ)+ c

https://sites.google.com/site/bctnet/
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In this work, the period was mathematically set to 4 to reflect the four acquisition quarters. Specifically,  t  
= 0, 1, 2, and 3 for Winter, Spring, Summer and Autumn, respectively. Adjusted measures (after controlling for 
nuisance variable) of each subject were treated as one observation and F-test was used to determine the signifi-
cance of seasonal periodicity.

To explore whether the seasonality effects were related to environmental factors, the two sinusoidal regres-
sors were substituted by environmental factors for linear regression. The environmental factors included average 
daylength and temperature that were documented for St. Louis, Missouri during the time period studied. The p 
value for each coefficient was evaluated to determine the significance of the impact of each factor on the output 
measures.

Data availability
The dataset analyzed in this study is publicly available in the HCP database (1200 Subjects Data Release: https:// 
www. human conne ctome. org/ study/ hcp- young- adult).
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