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Counter‑intuitive penetration 
of droplets into hydrophobic gaps 
in theory and experiment
Daniel Hagg 1,3*, Alexander Eifert 1,3, Aaron Dörr 1, Francisco Bodziony 2 & Holger Marschall 2

Droplets that spontaneously penetrate a gap between two hydrophobic surfaces without any external 
stimulus seems counterintuitive. However, in this work we show that it can be energetically favorable 
for a droplet to penetrate a gap formed by two hydrophobic or in some cases even superhydrophobic 
surfaces. For this purpose, we derived an analytical equation to calculate the change in Helmholtz 
free energy of a droplet penetrating a hydrophobic gap. The derived equation solely depends on the 
gap width, the droplet volume and the contact angle on the gap walls, and predicts whether a droplet 
penetrates a hydrophobic gap or not. Additionally, numerical simulations were conducted to provide 
insights into the gradual change in Helmholtz free energy during the process of penetration and to 
validate the analytical approach. A series of experiments with a hydrophobic gap having an advancing 
contact angle of 115◦ , a droplet volume of about 10 µ L and different gap widths confirmed the 
theoretical predictions. Limits and possible deviations between the analytical solution, the simulation 
and the experiments are presented and discussed.

In the past, penetration of water into cylindrical capillaries and microfluidic channels has already been intensively 
studied and showed that hydrophobization of surfaces inside a capillary hinders water penetration. Considering 
the example of a cylindrical capillary placed at the surface of a water basin, a contact angle of more than 90◦ is 
sufficient to prevent spontaneous penetration. Based on this experience with cylindrical capillaries, one could 
conclude that hydrophobic gaps generally prevent the penetration of water droplets. However, we will show that 
this is not the case.

In 1988, Marmur already showed that spontaneous penetration of water even into hydrophobic cylindrical 
capillaries is possible for small  droplets1. He developed an analytical approximation for the kinetics of droplets 
penetrating capillaries and showed that spontaneous penetration is possible for contact angles above 90◦ . His 
approach is based on evaluating the Laplace pressure inside the droplet, that ultimately pushes the droplet into 
the hydrophobic capillary. By this approach, he predicted complete penetration of droplets for contact angles 
up to about 114◦ . Following that, several other researchers investigated the penetration of droplets in cylin-
drical capillaries  experimentally2–7, using molecular dynamics  simulations8–11, phase-field  simulations12,13 and 
Volume-of-Fluid  simulations14. The findings have further been used to measure surface tensions from liquid 
 marbles15,16 and to gain insights in the process of pore  penetration17–21. Marmur also extended his approach to 
radial  capillaries22, which led to further  simulative23 and  experimental24 investigations.

Piroird et al. suggested and experimentally validated an analytical model for droplet extraction from capil-
laries based on the Laplace  pressure25. Schebarchov & Hendy used a different approach for cylindrical capil-
laries by calculating the total surface energy to determine penetration and validated the model with molecular 
dynamic  simulations26,27. A further similar approach was used by Bormashenko et al. to calculate the energy 
barrier between Cassie-Baxter and Wenzel state  transition28–30. However, Bormashenko et al. considered droplets 
which are several magnitudes bigger than the roughness of the structure and the deformation of the droplet 
was neglected.

While there has been quite some research on droplets penetrating hydrophobic cylindrical capillaries and 
structured surfaces, the phenomenon of penetration into a hydrophobic gap between two parallel plates as 
visualized in Fig. 1 (a) seems to be quite unexplored. We could only find an investigation for droplet penetra-
tion into strong hydrophilic  gaps31,32. To close this “gap” we present here our results on droplet penetration into 
hydrophobic gaps between two parallel plates, using three different types of investigations:
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• Analytical approach with a Helmholtz free energy
• Direct numerical phase-field simulation
• Experimental validation series

We first introduce an analytical approach, based on the Helmholtz free energy, to predict whether droplets 
penetrate a hydrophobic gap between two parallel plates. Using that approach we derive an equation for the 
change of the Helmholtz free energy depending solely on the droplet volume V, the contact angle θ and the gap 
width d (see Fig. 1a). In contrast to the approaches for capillary penetration referenced above, the deformations 
of a droplet penetrating a gap between two parallel plates are more complex and cannot be described using 
a two-dimensional axisymmetric plane. In order to verify our approach, the individual terms of our derived 
analytical equation (Eq. 4) are compared with the results of a numerical phase-field simulation. Additionally, 
the simulation of spontaneous droplet penetration allows an investigation and discussion of the gradual change 
of each free energy term in Eq. (4) during the penetration process. Further simulations show a good agreement 
with the analytical predictions for a droplet volume of 10 µ L, contact angles of 115◦ , 130◦ and 145◦ and varying 
gap widths. The analytical approach is supported and validated by a series of experimental results with varying 
gap widths, an advancing contact angle of 115◦ and a droplet volume of about 10 µ L. Through our investigation 
with simulations and experiments we can show that the chosen approach performs very well and is rather con-
servative in predicting the prevention of droplet penetration into a gap. Contradicting the intuition, we find that 
hydrophobic gaps, and in certain conditions (contact angle, gap size and droplet volume) even superhydrophobic 
gaps, are not safe from droplet penetration. As hydrophobic and super-hydrophobic surfaces are often used for 
anti-wetting, anti-corrosion or anti-icing purposes, the penetration of water into gaps between such surfaces 
shall be prevented. With our approach it is possible to predict the penetration of droplets for a lot of different 
parameters in a short time and to adjust them in such a way that the penetration is prevented.

Analytical approach
For our analytical approach we used the thermodynamic free energy to determine if droplet penetration is ener-
getically favorable. With a constant volume and a constant number of particles under isothermal conditions the 
change in free energy is given by the Helmholtz free energy as

For each surface i, the change of its free surface energy is determined by the change of its surface area multiplied 
with the corresponding surface energy γi . The change in gravitational energy dUgrav = −FG · dx is given by the 
gravitational force FG multiplied with the change in height of the droplets center of mass dx.

In order to minimize the free energy, the drop will penetrate the gap as long as dF < 0 . Owing to the complex 
deformations that are taking place during the penetration of the droplet, a continuous analytical description of 
the surfaces and the change in the Helmholtz free energy dF is not possible. Therefore, in this paper we compare 
the energy at two separate states, namely Sout and Sin , visualized in Fig. 1a. State Sout describes the droplet 
outside of the gap and is defined by a sphere with a radius r. Here the centre of the sphere is placed in the mid-
dle of the gap in a distance of r from the gap entry. Sin describes the droplets state inside the gap. The wetted 
solid area in Sin is assumed to be circular with radius R. Depending on the contact angle θ , the curvature of the 

(1)dF =
∑

i

(γidAi)+ dUgrav .

Figure 1.  Visualization of the analytical approach and schematic trend of the Helmholtz free energy. In (a) the 
two states assumed for the analytical approach are visualized in 3D (left) and 2D (right). State Sout is defined 
as a spherical drop with radius r, at the entry of the gap. State Sin is defined as a cylinder inside the gap with a 
radius R, extended by a surrounding circular segment. The circular segment with line centroid cs and arc length s 
results from the surface contact angle θ . In both states the gap width d, contact angle θ and droplet volume V are 
the same. In (b) two possible end states after a droplet impact are visualized. In case of a higher Helmholtz free 
energy for Sin compared to Sout , no penetration is assumed and penetration otherwise. A potential schematic 
trend of the Helmholtz free energy is plotted in (c), showing an energy barrier at the beginning and a local 
minimum between both states. For the analytical approach the states Sout and Sin are considered.
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water-air surface is adjusted accordingly, as visualized in red in Fig. 1 (a). The length of the curved line is given 
by s and the line centroid is given by cs . The droplets centre of mass is located at a distance of R from the gap 
entry. The droplet volume is denoted by V, the gap width by d and the contact angle by θ.

With these two states we are able to calculate the Helmholtz free energy in the state Sout before it impacts 
the gap and in the state Sin , where it has completely penetrated the gap. If the Helmholtz free energy is higher in 
the state Sin inside the gap than in the initial state Sout , the penetration would lead to a rise in free energy. This 
rise in free energy would be thermodynamically unfavorable and, therefore, no penetration is predicted. This 
case is visualized in the upper part of Fig. 1 (b) labeled by “no penetration”. However, if the state Sin inside the 
gap has a lower Helmholtz free energy than in state Sout , it is energetically favourable. In this case penetration 
is predicted as shown in the “penetration” case in Fig. 1 (b).

Between the initial impact and the full penetration, the droplet passes through various intermediate states. 
These intermediate states are not known in the current approach, which renders a continuous calculation of the 
Helmholtz free energy impossible. In Fig. 1c, a potential schematic trend of the Helmholtz free energy is plotted 
to discuss possible deviations due to the missing continuous description. In the plotted trend, the Helmholtz free 
energy for the state Sin is lower than for the state Sout and the comparison between the two states would predict 
droplet penetration. However, temporary increases in the Helmholtz free energy could prevent the droplet from 
penetrating the gap. Figure 1 (c) shows a possible temporary increase in the Helmholtz free energy starting right 
from the initial state. Such an increase could act as an energy barrier and would prevent the droplet from even 
starting to penetrate the gap. Nevertheless, small mechanical vibrations of the water surface or an initial droplet 
speed could be enough to overcome the energy barrier. Once the initial barrier is overcome, the droplet could 
achieve a next possible local minimum between the two assumed states. This local minimum would lead to a 
metastable state of partial penetration, where the droplet could cease to move. Schebarchov & Hendy has already 
described a local energy minimum for partial penetration of droplets into hydrophobic cylindrical  capillaries26. 
Regardless of whether these local energy barriers are present or not, it is uncertain if they are relevant to real use 
cases due to mechanical vibrations or an initial droplet velocity.

To calculate the Helmholtz free energy in the two states Sout and Sin , there are three different types of 
surfaces to be considered, namely the liquid-gas (LG), the solid-gas (SG) and the solid-liquid (SL) surface with 
the respective surface energies γLG , γSG and γSL . The energy difference �F = Fin − Fout is given by integrating 
Eq. (1) from Sout to Sin

 With the gravitational acceleration g, the density difference �ρ = ρwater − ρair and constant surface energy 
densities, integration results in

 Here �h = hout − hin describes the height difference of the droplets center of mass. It is given by 
�h = (r + R) for a vertical case and by �h = 0 for a horizontal case. Considering a constant solid surface 
( ASG + ASL = AS = const ) and applying the Young  equation33 γLGcos(θ) = γSG − γSL , Eq. (3) can be simpli-
fied to

 As described above the three input parameters, droplet volume V, gap width d and contact angle θ stay con-
stant in both states Sin and Sout . For Sout , the radius r = r(V) can be calculated from the droplet volume and, 
therefore, the liquid-gas and solid-liquid areas are:

 All variables used here are visualized in Fig. 1a, but for the sake of brevity the full calculations are carried out 
in the "Methods" section. In short, the radius R can be calculated by setting up an equation for the volume 
using Guldins second  rule34 and solving it for R resulting in R = R(θ , d,V) . The surface ALGin can be calcu-
lated with Guldins first rule using the length of the surface line s and its centroid cs resulting in s = s(θ , d) and 
cs = cs(R, θ , d,V) . With these values the areas for Sin can be calculated as

 For the change in the Helmholtz free energy �F between two states the following calculation was derived:

(2)�F =
∫ ALGin

ALGout

γLGdALG +
∫ ASLin

ASLout

γSLdASL +
∫ ASGin

ASGout

γSGdASG −
∫ hin

hout

FG · dx .

(3)�F = [γLGALG + γSLASL + γSGASG]in − [γLGALG + γSGASG + γSLASL]out −�ρVg�h.

(4)�F = γLG(ALGin − ALGout )− γLGcos(θ)(ASLin − ASLout )−�ρVg�h.

(5)ALGout = 4πr2(V), ASLout = 0

(6)ALGin = 2πs(θ , d)cs(R, θ , d,V), ASLin = πR2(θ , d,V).
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Although the Eq. (7) seems to be cumbersome, the computational effort is negligible, especially compared to 
typical CFD simulations. This allows a fast computation of �F for whole sets of variables. All calculations in 
this paper were executed with the physical parameters given in Table 1 corresponding to water and air at 20 °C.

In summary, the analytical approach compares the gravitational and surface energies at two distinct points 
visualized in Fig. 1a. If the energy difference between these two states is positive, no penetration is predicted. 
Therefore, the approach allows fast approximation of water penetration into the cavity. However, a dynamic 
behavior during the penetration cannot be described by this method.

Analytical results
In Fig. 2a, the energy difference of the Helmholtz free energy �F (Eq. 7) depending on the contact angle θ is 
plotted for a gap width of d = 0.7 mm and a droplet volume of V = 10 µL.
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Table 1.  Physical parameters used for calculations.

Property Value

Density [kgm−3] ρwater 998

ρair 1.2

Kinematic viscosity [m2 s−1] µwater 1.002e-6

µair 1.508e-5

Surface tension [Nm−1] γLG 0.072

Gravitational acceleration [ms−2] g 9.81

Figure 2.  Exemplary results of an analytical calculation. In (a) the change of Helmholtz free energy �F (7) is 
plotted over the contact angles for a droplet volume of V = 10 µ L and a gap width of d = 0.7 mm. The dashed 
line shows the results for a horizontal gap without gravitational influence, reaching �F = 0 at a critical contact 
angle of about 118◦ . The solid line shows the result for a vertical gap with gravitational influence and a critical 
contact angle of about 130◦ . For a gap width of 0.7 mm the critical contact angles with �F = 0 are determined 
and plotted over various droplet volumes in (b). Again the dashed line shows the results for a horizontal gap, 
whereas the solid line shows the results for a vertical gap.
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For a horizontal gap without gravitational influence, the graph crosses the x-axis at a contact angle of about 
118◦ . This means that for any contact angle below 118◦ the Helmholtz free energy is lower for state Sin compared 
to state Sout . For contact angles higher then 118◦ no penetration of the droplet is predicted. At 118◦ there is a 
critical point with no energetic difference between Sin and Sout.

For a vertical gap, where the gravity must be taken into account, penetration is predicted for even higher 
contact angles up to 130◦ for a gap width of d = 0.7 mm and a droplet volume of V = 10 µ L. In Fig. 2b, a criti-
cal contact angle is plotted against a droplet volume, at which the change of Helmholtz free energy is exactly 
zero ( �F = 0 ). As can be seen in Fig. 2b, with decreasing droplet volume even higher contact angles have to 
be achieved to prevent droplet from penetration. However, the result for this case shows that droplets can even 
penetrate a superhydrophobic gap, which defies the naive intuition that superhydrophobicity prevents water 
penetration.

Comparison between analytical and numerical results
In the presented analytical solution, we considered only two states Sin and Sout . To understand, how the 
Helmholtz free energy is distributed between these two states, we conducted numerical simulations using a 
phase-field method. For the numerical simulation the solver phaseFieldFoam was used, which is based on 
the phase-field method and is briefly described in the "Methods" section. In the past, the code has already been 
thoroughly tested for various droplet impact and wetting  cases35–39.

For the numerical study we chose a setup with a contact angle of θ = 115◦ , a droplet volume of 10 µ L and 
a gap width of d = 0.7 mm. In this case, analytical data and experimental data (see section "Experimental vali-
dation") suggest droplet penetration and it needs lower computational effort compared to smaller gap widths, 
where finer meshes are required to resolve the gap geometry. Additionally, a curvature with radius of r = 0.6 mm 
measured from the experiment is implemented. This curvature in the experiment is created by the fabrication 
procedure and amplified by the application of an adhesive PTFE-tape over the edge. In the simulation the round 
edge also avoids potential numerical difficulties arising from an otherwise sharp edge. The droplet is initialized 
right on top of the gap as described in the analytical approach. Physical parameters used in the simulation are 
listed in Table 1.

As expected based on the analytical and experimental data, droplet penetration occurred during simula-
tion. To investigate the progression of the energy terms in more detail, the liquid-gas area ALGsim , the solid-
liquid area ASLsim and the height of the droplets centroid hsim were evaluated at every time-step. The terms 
of the Helmholtz free energy (Eq.  4) were calculated by FLG = γLGALGsim , FSL = −γLGcos(θ)ASLsim and 
Fg = �ρVg(hsim_initial − hsim) . Additionally, the surface free energy Fsurf = FLG + FSL and the total Helmholtz 
free energy F = Fsurf − Fg were calculated and plotted in Fig. 3a.

The respective values for Sout and Sin from the analytical approach are marked with an “x”. In order to 
compare the surface areas of the simulation and the analytical approach, the analytical state Sin is marked at the 
time step t = 50.4 ms, where the droplet fully penetrated the gap and does not wet rounded corners. However, 
the curved wall section ends 0.6 mm lower than the upper edge of the gap, so an additional height of 0.6 mm is 
added to calculate the gravitational term in the analytical approach. The value for Sout is marked at the point 
of initialization ( t = 0 ms).

At the initial time step, the total Helmholtz free energy is given by the liquid-gas surface energy. Since the 
droplet is initialized as assumed by the analytical approach, the calculated energies are the same. During the first 
milliseconds the droplet starts falling, resulting in an increase of the gravitational term and, therefore, a decrease 
of the total Helmholtz free energy (see Fig. 3a). After 6.4 ms the droplet starts wetting the wall and the solid-liquid 
surface energy rises. At the same time, the liquid-gas surface energy drops. Firstly, this leads to a rapid decrease of 
the surface energy. However, at t ≈ 9.6 ms the surface energy reaches a minimum, because the solid-liquid energy 
rises faster than the liquid-gas energy decreases. The surface energy rises until t ≈ 14.4 ms, where a maximum 
is observed that is nearly equal to the initial value. Furthermore, a stagnation of the gravitational term can be 
observed. The gravitational term is driven by the height of the droplets centroid, which nearly comes to a stop. 
After the first impact, the solid-liquid surface energy keeps rising, while the liquid-gas surface energy drops. 
This results in an oscillation of the surface energy around a more or less constant value. The gravitational term, 
however, starts to rise again, leading to a decrease of the total Helmholtz free energy and further penetration of 
the droplet. At around 40 ms the liquid-gas surface energy starts decreasing faster, leading to a decrease of the 
surface energy. This increases the penetration speed as can be seen from the increasing slope of the gravitational 
term. At t = 50.4 ms the droplet fully penetrated the gap. Afterwards the liquid-gas and solid-liquid surface 
energies stay nearly constant with minor oscillations. The further decrease of the total Helmholtz free energy is 
attributed to the rise of the gravitational term, due to the droplet sliding down inside of the gap.

It can be seen that the simulated free energy values are in good agreement with the analytical results and the 
shape of the penetrated droplet fits the analytically assumed state Sin . The strongest deviation is given for the 
solid-liquid surface energy which deviates just about 5.4% from the analytic value.

Further simulations with contact angles of 115◦ , 130◦ and 145◦ were conducted for various gap widths. In 
Fig. 3b the outcomes of the respective parameter sets are marked in a graph, depending on the contact angle 
and the gap width. The analytical approach predicts penetration for gap widths to the right of that line and no 
penetration to the left of it. It can be seen that the general behavior at larger contact angles is represented cor-
rectly. However, the simulations show a slight offset and penetration is already prevented for higher gap widths, 
compared to the analytical solution. As shown in Fig. 3a it can be seen that at t ≈ 14.4 ms the droplet nearly stops 
penetrating the gap due to a rise in surface energy based on the deformation of the droplet. For the smaller gap 
width of 0.5 mm and the same contact angle of 115◦ a stronger deformation at the beginning of the penetration 
could be necessary to enter the gap, resulting in an energy barrier that prevents the penetration of the droplet 
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(see Fig. 1c). Also viscous dissipation effects, that are only considered by the simulative approach, lead to energy 
losses during the deformation of the droplet and hinder the penetration process. In other words, the simulative 
approach also takes the dynamic behavior of the droplet penetration and therefore additional physical influences 
into account. While there can be several reasons for the deviation of the simulation outcomes compared to the 
analytical solution, we assume that they are mainly induced by an energy barrier or the viscous dissipation that 
are both not taken into account by the analytical approach. Numerical errors at the three-phase contact line can 
have a further influence and will be investigated in future work.

Experimental validation
Experimental evaluation of droplets falling onto a hydrophobic gap were conducted to validate the analytical 
approach. The hydrophobic gap was shaped by two blocks of aluminium covered with an adhesive virginal 
Thomaplast® PTFE-tape. Multiple experiments were conducted with different distances between the two blocks. 
The advancing and receding contact angles of water on the PTFE surface were measured using the drop shape 

Figure 3.  Numerical investigation of droplet penetration from phase-field simulations. In (a), the simulative 
results of a droplet with a volume of 10 µ L impacting onto a gap with a width of d = 0.7 mm and a contact angle 
of θ = 115

◦ are shown. The droplet is initialized directly above the gap at a time of 0 ms. The edges of the gap 
are rounded off, using a radius of 0.6 mm to fit the experimental setup. By using two symmetry conditions, only 
a quarter of the simulation area is computed. In a post-process the liquid-gas surface energy, the solid-liquid 
surface energy and the gravitational term from Eq. (4) were calculated and plotted as dashed lines. The sum of 
the surface energies is plotted in orange and the total energy, including gravitational energy is plotted in blue. In 
addition to the continuous plots from the simulation, the analytic values for Sout are plotted at the initial time 
step t = 0 ms. The values for Sin are plotted at t = 50.4 ms, where the droplet has just completely entered the 
gap and no longer wets the curved corners of the gap. However, the end of the curvature in the gap is 0.6 mm 
lower than the upper edge of the gap, so the gravitational term in the analytical description was adjusted by 
the additional height of 0.6 mm. Snapshots of the simulated quarter droplet, without the air phase are shown 
underneath the plot to visualize the penetration process. In (b), the simulation results of the same setup with 
contact angles of 115◦ , 130◦ and 145◦ and different gap widths are marked in a graph plotting the contact angle 
against the gap width. Simulations where the droplets did not penetrate the gap are marked by a red “x”, whereas 
simulations with full droplet penetration are marked by a green dot. The bold line shows the border with no 
change of the Helmholtz free energy in the analytical calculation for a vertical gap.
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analyzer Krüss DSA100. The results show an advancing contact angle of 115± 4◦ and a receding contact angle 
of 76± 4◦ (see Figure 4a).

The droplet penetration experiments were also conducted on the Krüss DSA100 using the built-in syringe to 
create droplets of defined volume and the built-in camera to record the penetration process. During the experi-
ments the droplets detached from the syringe at a volume of about 10 µ L. The height b of the syringe varied 
between 3.8 mm and 12 mm as shown in Fig. 4b. In order to have a more accurate measurement of the droplet 
volume, we measured the diameters of the droplets in a post-process using images at three different time steps 
during the fall. In Figure 4b, a curved edge is visible at the gap entry with a measured radius of 0.6 mm. The edge 
curvature is induced by manufacturing of the aluminium blocks as well as by the PTFE-tape that is applied onto 
the edges of the blocks. Owing to the common fabrication steps in the industry the edge roundness is always 
present on metallic samples to some degree. The gap width was also measured by post-processing the images 
with a measurement error of 0.1 mm. The measurements, including the deviations due to the measurement 
process, are visualized in Fig. 4e.

After the droplet impact on the gap, three different droplet states were observed in the experiments. Pictures 
of each state, supported with schematic visualizations, are shown in Fig. 4c. The first state shows the case of “no 
penetration”, where the droplet shows nearly no imbibition. The second state is described as “partial penetration”, 

Figure 4.  Comparison of experimental and analytical results. In (a) contact angle hysteresis of PTFE-tape 
used in experiment is shown. Original recording from Krüss DSA 100 experimental setup is depicted in (b), 
where a part of the syringe and the gap between two aluminum bodies, which were laminated with PTFE-
tape, are shown. In (c) the three types of “no”, “partial” and “full” penetration are displayed schematically with 
corresponding experimental results. A special case of delayed penetration is displayed in (d), where a droplet of 
9.8 µ L impacted and firstly partially penetrated the gap. After a short amount of time ( ∼ 0.8 s), the droplet was 
drawn into the gap by capillary forces. In (e) a graph of the droplet volume against the gap width for a contact 
angle of 115◦ is shown. The bold line in the graph represents the border where the change of the Helmholtz free 
energy equals zero in the analytical calculation for a vertical gap. The doted lines represent separate domains, 
which were observed experimentally. In domain I all experiments showed no droplet penetration. In domain II 
partial and full penetration were observed and in domain III all droplets fully penetrated the gap.
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where a part of the droplet is inside the gap, but there is still a significant part of the droplet on the top. A possible 
reason for this metastable state was already discussed above and could be explained by a local energy minimum 
as visualized in Fig. 1c. However, in the experimental setup a contact angle hysteresis is clearly present. For the 
case of delayed penetration an analysis of the pictures showed that the dynamic receding contact angle reached 
contact angles down to 65◦ . This is not in contradiction with the measured results in the Fig. 4a, where the“static” 
receding contact angle was measured during a slow decrease in droplet volume. Generally, we expect different 
contact angles for the wetting and the dewetting processes. Dewetting a surface with a contact angle below 90◦ 
typically consumes energy, whereas the dewetting of a surface with a hydrophobic contact angle would release 
energy. Therefore, the lower receding contact angle during the dewetting process on top of the gap hinders the 
penetration process which we indeed observed in the experiments. Consequently, the contact angle hysteresis 
introduces an additional energy barrier which is not considered in the numerical as well as in the analytical 
calculations. We believe that the contact angle hysteresis is the main reason why, compared to the simulations 
and analytics, there is a transition area showing partial penetration between no and full penetration (see area II 
in Fig. 4e). The third state is named “full penetration”, where the droplet completely enters the gap. For the full 
penetration a special case of “delayed penetration” was experimentally observed, shown in Fig. 4d. Here, the 
droplet firstly achieved metastable partial penetration stage, but after an additional 0.8 seconds the droplet was 
suddenly drawn into the gap completely. This was observed for a gap width of 0.7 mm and a droplet volume of 
9.8 µ L and is counted as full penetration. In Fig. 4e, the experimental and analytical results are plotted, depend-
ing on the gap width d and the droplet volume V. The analytical results for the critical vertical gap width are 
calculated for a contact angle of 115◦ and plotted as a bold line. The area to the left side of the critical values, 
where the analytical approach predicts no penetration of the droplets, is marked in grey. The experimental 
results are marked by a red “x” for no penetration, a black triangle for partial penetration and a green dot for 
full penetration. The experimental results were divided in three domains with different observations, depending 
on the gap width. In domain I all droplets stayed on top of the gap after the impact, resulting in the state of no 
penetration. This outcome fits the analytical prediction very well. The highest gap width resulting in no penetra-
tion was observed at a value of d = 0.4 mm. In this domain, the additional height b of the syringe did not have 
an observable impact. In domain II, covering experiments with bigger gap widths, two separate outcomes were 
observed. One part of the experiments showed a state of partial penetration after the impact, and the other part 
showed full penetration of the gap. In this domain a dependency between the syringe height and the outcome 
was observed. Droplets detaching from a higher syringe were more likely to completely penetrate the gap. In this 
case, the additional height seems to provide the necessary gravitational and, therefore, kinetic energy to overcome 
the metastable state of partial penetration. Another observed influence on the successful penetration in domain 
II was an exactly centered impact of the droplet on the middle of the gap. In domain III with gap widths larger 
than 0.8 mm all experiments resulted in droplets that fully penetrated the gap.

Conclusions
In this work we showed that droplets penetrate hydrophobic and, in some cases, even superhydrophobic gaps. 
We derived an analytical equation to predict droplet penetration into a hydrophobic gap, depending on the 
droplet volume V, the contact angle θ and the gap width d (Eq. 7). Once this equation is implemented, it is 
easy to calculate and predict whether a droplet will penetrate a hydrophobic gap or not. The low computational 
effort allows predictions for large amounts of parameter variations. In the analytical equation, the change in 
Helmholtz free energy is calculated by assuming the two droplet states Sout and Sin (see Fig. 1a). However, the 
determination of the gradual change in Helmholtz free energy between these two states was not possible in the 
analytical description. To overcome this limitation, we conducted a numerical investigation using a phase-field 
method for the case of V = 10 µ L, d = 0.7 mm and θ = 115◦ . As expected, we have found that the Helmholtz 
free energy decrease is not evenly distributed throughout the penetration process. Slight oscillations in surface 
energies can be seen during the droplet penetration (see Fig. 3a). Additional simulations were carried out to 
validate the analytical predictions for a range of contact angles. The results were in good agreement with the 
analytical approach, with a slight offset due to an energy barrier during the first phase of penetration, caused 
by geometrical deformation of the droplet at the beginning of the penetration and viscous dissipation effects. 
We plan to investigate this behavior in more detail in our future work, especially for smaller gap widths, where 
numerical solutions are computationally expensive due to higher mesh resolutions. In addition to the numerical 
and analytical investigations, experiments of droplets impacting hydrophobic gaps were conducted to validate 
the theoretical results. These experiments confirmed that droplet penetration into hydrophobic gaps also occurs 
in reality, defying intuition. The results showed a very good agreement with the analytical and numerical predic-
tions. However, in the experiments we observed not only full and no penetration, but also partial penetration of 
the droplets (see Fig. 4e). The main reason for this is probably the contact angle hysteresis, that leads to an energy 
loss during the penetration process and is currently not considered in the numerical and analytical approach. 
This additonal energy can also explain the height dependency of the experimental results for droplets to fully 
penetrate the gap in area II (see area II in Fig. 4e).

We can state that both the simulative and the experimental results show a good agreement with our analytical 
approach. Compared to the analytical approach, the numerical investigation takes the dynamic behavior and the 
geometrical deformation of the droplet into account, that showed to slightly hinder the penetration. On top of 
that, the experiments show an influence of the contact angle hysteresis, that also hinders penetration and induces 
the additional outcome of partial penetration. Conclusively, our analytical approach is in good agreement with 
the investigations, but rather conservative in predicting no penetration and, subsequently, of greater interest for 
applications in microfluidics.
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Methods
Analytical calculations
In Eqs. (5, 6), the analytical approach is described, depending on the basic variables V, d, θ and the interim vari-
ables r, s, cs and R. In the following paragraph the equations are derived in more detail for easier comprehension. 
In Fig. 5 all variables, necessary to understand the derivations, are plotted.

In Eq. (5) the radius r of the sphere can be calculated by

 In order to calculate the surface area ALGin of the droplet inside the gap, the first Guldin rule is  used34. Therefore 
the surface area can be calculated by multiplying the length of the rotationed line s with the path length, that 
the centroid cs of the line is taking during the rotation. This results in Eq. (6) ( ALGin = 2πcs · s ), with the line 
length s of the surface given by

 The centroid of the circular arc s set up by the angle α is equal to cs + htr − R and it is given by integrating the 
line position over the line divided by the integral over the line

 In order to get the distance from the rotational axis up to the centroid cs , the height of the drawn triangle htr is 
subtracted and the radius R is added. This results in

 The last sought variable is R, depending on θ , V and d. R has to be calculated in such a way that the volume in 
Sin is the same as in Sout . In order to calculate the volume in Sin , once again Guldins second rule is used to 
calculate the volume resulting from the curved area A of the droplet. In this case the area centroid cA is needed. 
The centroids position cA can be calculated by integrating over the circle segment marked in green in Fig. 5, 
similar as for the line centroid

 and therefore
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Figure 5.  Detailed figure with all variables used in the following derivation.
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 The size of the rotationed area marked in green is given by

 which results in a total volume of:

 The radius R can then be calculated by

Simulation method
For the simulation the phase-field solver phaseFieldFoam was used to calculate the penetration of the water 
droplet. This is an in-house code developed in cooperation between the Technical University of Darmstadt and 
the Karlsruhe Institute of Technology based on OpenFOAM-extend40. The solver makes use of a Cahn-Hilliard 
phase-field model coupled with the Navier-Stokes equations. The simulations are set up for immiscible Newtonian 
fluid phases under isochoric and isothermal conditions. In the following we will give a short introduction into 
the phase-field method and its governing equations. For further information the reader is referred to  Bodziony39.

The phase-field method is a diffuse interface method with a thin interfacial region in which the fluid proper-
ties vary continuously. The phases are indicated by the order parameter C ∈ [−1, 1] . The coupled Cahn–Hilliard, 
Navier–Stokes equations for two immiscible Newtonian fluid phases under isochoric and isothermal conditions 
in semi-closed formulation are given by:

The phase-field flux J = −M∇� is governed by the Mobility M and the chemical potential � as described by 
Landau and  Lifshitz41. Following Cahn and  Hilliard42, the chemical potential is given by the variational derivative 
of the total Helmholtz free energy � = �

ε2
� ′(C)− ��C with the Ginzburg-Landau  potential43 � = 1

4
(C2 − 1)2 . 

The capillary width ε determines the interface width in equilibrium state and is usually chosen using a Cahn 
number and a characteristic length scale ε = CnLchar . The mixing energy coefficient � is then given  by39 
� = 3

2
√
2
γ ε . The mobility is set by M = χε2 with χ = 1 sm/kg. The modified pressure term p̃ includes parts of 

the well known Korteweg stress tensor term, that are accounting for interfacial capillarity. Densities and viscosi-
ties are calculated by a volumetric average to ρ = 1+C

2
ρwater − 1−C

2
ρair and µ = 1+C

2
µwater − 1−C

2
µair . The 

gravitational force is given by fg = ρg and the term ∇ · (uJ) is necessary to ensure thermodynamic  consistency44.
The phase-field boundary condition for wetted walls is given by the wetting condition

 and a zero flux condition for the chemical potential

 For pressure-velocity coupling the PIMPLE-algorithm in OpenFOAM was used with two outer correctors. For 
the discretization in time a second order implicit scheme was used with an adaptive time-stepping for compu-
tational efficiency. A Courant number criterion with a value of Co = |u|max�t/h = 0.1 is applied to determine 
the time step �t in combination with an upper limit for the time step size ( �tmax = 1 µs). In space, a second 
order Gauß Gamma scheme has been used.

Data availability
All data generated or analysed during this study are included in this published article and its Supplementary 
information files.
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