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Commonly collected thermal 
performance data can 
inform species distributions 
in a data‑limited invader
Natalie M. Claunch 1,2,3,4*, Colin M. Goodman 2,5, Bryan M. Kluever 1, Narayani Barve 4, 
Robert P. Guralnick 4 & Christina M. Romagosa 2

Predicting potential distributions of species in new areas is challenging. Physiological data can 
improve interpretation of predicted distributions and can be used in directed distribution models. 
Nonnative species provide useful case studies. Panther chameleons (Furcifer pardalis) are native to 
Madagascar and have established populations in Florida, USA, but standard correlative distribution 
modeling predicts no suitable habitat for F. pardalis there. We evaluated commonly collected thermal 
traits– thermal performance, tolerance, and preference—of F. pardalis and the acclimatization 
potential of these traits during exposure to naturally‑occurring environmental conditions in North 
Central Florida. Though we observed temperature‑dependent thermal performance, chameleons 
maintained similar thermal limits, performance, and preferences across seasons, despite long‑term 
exposure to cool temperatures. Using the physiological data collected, we developed distribution 
models that varied in restriction: time‑dependent exposure near and below critical thermal minima, 
predicted activity windows, and predicted performance thresholds. Our application of commonly 
collected physiological data improved interpretations on potential distributions of F. pardalis, 
compared with correlative distribution modeling approaches that predicted no suitable area in Florida. 
These straightforward approaches can be applied to other species with existing physiological data or 
after brief experiments on a limited number of individuals, as demonstrated here.

A key aim throughout many subfields of ecology is predicting where organisms occur. A common approach is 
to extract landscape and climate data from known occurrences for use in correlative distribution  modeling1,2 
but these require appropriate sampling of environmental preferences and have other  limitations3–5. For example, 
correlative distribution modeling relies on extensive sampling of species presences and an assumption that these 
presences reflect the existing fundamental niche for the  species6,7. Physiological data provide a basis for more 
mechanistic models and better inform prediction and forecasting of future distribution changes, especially for 
cryptic, rare, or introduced  species8–11. While collecting physiological data is resource-intensive, doing so can 
provide information about flexibility of traits, revealing more about the overall fundamental niche (rather than 
the existing fundamental niche, a best-case outcome for correlative models;6,7) and potential distribution. It is 
not uncommon for species with restricted distributions to have far broader physiological tolerances, allowing 
them to establish beyond their known current  distribution5,12,13.

A popular approach to integrating physiological data in predictive frameworks are mechanistic niche mod-
els, which utilize biophysics to derive physiological constraints and thresholds that can then be projected to 
the landscape-scale14,15. The demands of many mechanistic modeling frameworks require strong knowledge of 
species  ecophysiology16 and thus are most useful for testing hypotheses in well-studied, model  systems7 or in 
well-funded species where reduced time to accrue the data may not be a priority. While predictions would admit-
tedly be more accurate with comprehensive knowledge of a species, in practice, answers are often required under 
short timelines with limited prior data and funding. To try and address these demands, we aimed to investigate 
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the utility of models based on easy-to-collect, well known physiological thresholds derived from commonly 
collected data on physiological tolerances.

We used a species that is cryptic, rare, and introduced to explore the potential seasonal plasticity of physi-
ological tolerance and performance and the utility of different physiologically derived metrics in predicting 
potential distributions. Of the many potential physiological constraints, we focused on thermal tolerance as it 
is especially important for determining distributions of ectotherms, which comprise the majority of species on 
 earth17. We assessed thermal traits in the panther chameleon, Furcifer pardalis, which occurs in several intro-
duced populations in Florida, USA with the earliest report from  200818. Introduced populations of chameleons 
tend to go unreported and some have been “seeded” in areas for later collection due to their high value in the 
pet  trade19. Lack of reporting obscures the knowledge of the current extent of introduced populations, present-
ing challenges for directing management and regulatory actions. Predicting the distribution of this species in 
particular is difficult for two main reasons. First, there is relatively little known on thermal limits of this taxon, 
owing to limited studies of their thermal biology and limited information from related species in the native range 
in  Madagascar20,21. Second, the occurrence of populations in Florida at higher latitudes than the native range 
suggests a greater thermal tolerance than predicted based on its native range in Madagascar or invasive range of 
Réunion22. Panther chameleons have a fast life-history strategy, typically maturing within 14  months23, allowing 
for the possibility of rapid adaptation of introduced populations to local thermal regimes. Thus, we opted to test 
the thermal traits of chameleons from a population from the highest known  latitude24, to account for potential 
extremes in thermal tolerance.

We assessed thermal tolerance, thermal performance, and thermal preference of F. pardalis exposed to sea-
sonal fluctuations in climate. We hypothesized that chameleons would show a shift in thermal traits associated 
with seasonal exposure; in particular, we predicted that thermal preference may decrease and cold tolerance 
and performance at low temperatures would improve following exposure to winter conditions. We then used 
these trait data and fine-grain, daily temperature data to predict suitable winter habitats across Florida. We also 
constructed correlative niche models using native range occurrence data, which is often the only option for 
predicting suitable habitats in data-limited non-native species when physiological data are not available. We 
then evaluated which models and which thermal traits may be most useful for such predictions. We predicted 
that the correlative niche model would under-perform compared to models derived from physiological trait 
data, because of the apparent niche-shift in F. pardalis in Florida. Of the models integrating physiological trait 
data, we predicted that models integrating critical thermal minima would be most restrictive, followed by those 
integrating preference and performance.

Results
Thermal limits
Body size of chameleons was 13.6 + /− 2.5 cm snout to vent length (SVL) and 70.7 + /− 33.5 g. CTmin averaged 
9.9 °C + /− 2.0 (SD), with an average rate of chameleon temperature change of -0.6 °C + /− 0.3 (SD) per minute. 
There was an effect of season on critical thermal minimum (CTmin;  F2, 9 = 4.31, p = 0.05), though Tukey post-hoc 
tests did not reveal significant differences among seasons (all p > 0.1; Fig. 1). CTmin did not appear to be affected 
by which trial was experienced first  (F1, 9 = 3.85, p = 0.08). We did not find an interaction between chameleon 
temperature rate change and mass  (F1, 9 = 0.80 p = 0.39), and neither mass nor temperature rate change alone 
influenced CTmin  (F1, 9 = 3.06, p = 0.11;  F1, 9 = 0.52, p = 0.49, respectively).

CTgape averaged 39.2 °C + /− 1.4 (SD), with an average rate of chameleon temperature change of 0.6 °C + /− 0.2 
(SD) per minute. We did not find an effect of season on the high temperature at which gaping occurred (CTgape; 
 F2, 9 = 2.18, p = 0.17; Fig. 1). CTgape was not affected by which trial was experienced first  (F1, 9 = 0.08, p = 0.79). We 
did not observe an interaction between chameleon temperature rate change and mass  (F1, 9 = 0.56, p = 0.48), nor 
did we observe an effect of mass  (F1, 9 = 0.35, p = 0.57). Rate of chameleon temperature change was negatively 
correlated to CTgape, such that an increase of heating rate by 1 °C per minute led to lower CTgape by 6.6 °C  (F1, 9  
= 6.18, p = 0.04).

Average Tbreadth was 29.3 °C + /− 2.7 (SD). There was an effect of season on thermal breadth (Tbreadth;  F2, 
11 = 5.69, p = 0.02), although Tukey post-hoc tests did not distinguish significant differences in Tbreadth among the 
seasons (all p > 0.1; Fig. 1). Tbreadth was not affected by which trial was experienced first  (F1, 11 = 2.84, p = 0.12), 
nor was it influenced by mass  (F1, 11 = 1.81, p = 0.21).

Thermal preference
The maximum body temperature reached during a preference trial was 40.6 °C and the minimum was 21.9 °C. 
Average preferred body temperature was 32.8 °C + /− 2.9 and did not differ by season  (F2, 12 = 1.23, p = 0.33; Fig. 1), 
and was not affected by mass  (F1, 12 = 0.011, p = 0.919). The body temperature exhibited most often by each cha-
meleon (mode) was 34.2 °C + /− 4.7, and also did not differ by season  (F2, 12 = 2.78, p = 0.10) and was not affected 
by mass  (F1, 12 = 0.32, p = 0.59). The standard deviation of each chameleon’s body temperature during a trial was 
2.9 °C and also did not differ by season  (F2, 12 = 2.78, p = 0.10) and was not affected by mass  (F1, 12 = 0.32, p = 0.59).

Thermal performance
Thermal sensitivity of sprint performance (Q10) differed significantly among temperature intervals  (F3, 80 = 4.71, 
p = 0.005). Tukey post hoc tests revealed that Q10 values for the 15–20 °C interval (x̅ = 5.08) differed significantly 
from the 25–30 °C interval (x ̅ = 1.86, p = 0.01) and from the 30–35 °C interval (x ̅ = 4.50, p = 0.008), but not the 
20–25 °C interval (x ̅ = 2.78, p = 0.43). Q10 values were not affected by SVL  (F1, 80 = 0.008, p = 0.93). Additionally, 
season had no impact on thermal sensitivity of sprint performance  (F2, 80 = 0.052, p = 0.95; Fig. 2).
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Correlative distribution model
The top model (Supplementary Fig. S4) predicted no suitable habitat for F. pardalis in Florida, despite estab-
lished populations existing there. The top model had a regularization multiplier of 2 and used feature classes of 
linear, quadratic, hinge, product, and threshold, with AICc = 3288.793 and AUC of 0.916 (see data repository 
for details). The final set of layers and their percent contribution consisted of: temperature annual range (bio7, 

Figure 1.  Thermal metrics and associated standard errors from chameleons collected from the northernmost 
established population of Furcifer pardalis in Florida, USA after exposure to seasonal fluctuations in temperature 
at USDA Wildlife Services National Wildlife Research Center in Gainesville, Florida, from October 2020 to 
August 2021. CTmin refers to the critical thermal minimum, the temperature at loss of righting response; CTgape 
refers to the gaping threshold, the temperature at which chameleons gape to thermoregulate; Tbreadth refers to 
the difference between the CTgape and CTmin; Tpref refers the preferred body temperature, as the average body 
temperature selected in a thermal gradient.

Figure 2.  Q10 values calculated from maximal sprint speed for four temperature intervals tested in individuals 
from the northernmost established population of Furcifer pardalis in Florida, USA after exposure to seasonal 
fluctuations in temperature at USDA Wildlife Services National Wildlife Research Center in Gainesville, Florida, 
from October 2020 to August 2021. These values represent the magnitude of increase in a rate with a 10 °C 
increase in temperature, such that a value of two represents a doubling the rate per 10 °C increase, values of one 
represent thermal independence, and values of 0.5 represent a halving of the rate per 10 °C increase.
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82.32%), precipitation of wettest month (bio13, 12.53%), maximum temperature of the warmest month (bio5, 
2.04%), precipitation of the warmest quarter (bio18, 2.01%), and isothermality (bio3, 1.10%).

Integrative distribution models
Summary data extracted from model projections at F. pardalis presences (N = 9 distinct presences within the 
1 km resolution of PRISM data) are presented in Table 1. F. pardalis populations have established in areas where 
the winter temperatures fell below the lowest critical thermal minimum for 6 consecutive hours an average of 
fewer than 10 days per season (Fig. 3, Table 1). At the other two thresholds, populations have established in areas 
experiencing the temperature threshold for under one month each winter (9 °C, near average CTmin) and 5 days 
per season (3 °C, below CTmin and exposed temperatures; Table 1; see Supplementary Fig. S5 online). The average 
activity window estimated for areas F. pardalis have established falls between 2.97 and 6.28 h of 11 h of available 
daylight per day (Table 1), and this window decreases with increasing latitude (Fig. 4). At the highest latitude 
populations, there is an average of 3–4 h per day through the winter period where ambient air temperatures are 
within the preferred temperatures of F. pardalis (Fig. 4). The entire state of Florida falls within 80% of the average 
predicted performance for F. pardalis during the winter period (Fig. 5), and the predicted performance at areas 
F. pardalis have established exists in a relatively narrow range of 44.5–63.2% (Table 1). The normalized activity 
window and predicted performance were relatively similar in their predictions; however, the activity window 
was slightly more conservative in its output, placing established populations in a threshold 10% more restrictive 
than the performance model (see Supplementary Fig. S6 online).

Table 1.  Summary of values associated with presence localities (N = 9) of Furcifer pardalis derived from 
experimental data on F. pardalis and climate data from winter 2001 to 2021. Days below a temperature 
threshold represent the average number of days per winter season that fell below the associated temperature 
threshold for a consecutive 6 h or more. Active Hours represents the average number of estimated active 
daylight hours per day across all winters. Percent of Daylight Active represents the percentage of hours during 
daylight that fall within the activity window for F. pardalis. Performance represents the average predicted 
performance represented as a % of maximum across all winters.

Metric Days per winter below 3 °C Days per winter below 6 °C Days per winter below 9 °C Active hours Percent of daylight active Performance

Min 0.15 1.7 5.45 2.97 26.97% 44.54%

Max 4.8 12.9 28 6.28 57.13% 63.18%

Average 3.06 9.03 20.77 4.55 41.36% 53.61%

Figure 3.  Average number of days during each winter (Dec 15–Feb 15) in Florida, USA, where temperature fell 
below the lowest critical thermal minimum of Furcifer pardalis for 6 or more hours, from 2001 to 2021. Yellow 
points indicate locations where F. pardalis populations have established. White point indicates the location of the 
experimental exclosure at USDA Wildlife Services National Wildlife Research Center in Gainesville, Florida.
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Figure 4.  The average number of potential daylight hours Furcifer pardalis may be active in Florida, USA 
during the winter (Dec 15–Feb 15) from 2001 to 2021, based on thermal preference data for the northernmost 
population of this species in Florida. There are 11 possible total hours of daylight during this winter period. 
Yellow points indicate locations where F. pardalis populations have established. White point indicates the 
location of the experimental exclosure at USDA Wildlife Services National Wildlife Research Center in 
Gainesville, Florida.

Figure 5.  The predicted performance of Furcifer pardalis in Florida, USA, expressed as a percentage of the 
maximum predicted performance value from a generalized additive model of thermal performance data from 
the northernmost population of this species in Florida (inset). Yellow points indicate locations where F. pardalis 
populations have established. White point indicates the location of the experimental exclosure at USDA Wildlife 
Services National Wildlife Research Center in Gainesville, Florida.
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Discussion
We conducted the first tests of seasonal acclimation of thermal traits in Furcifer pardalis, and found that CTmin, 
CTmax, Tpref, and performance were not influenced by season. We anticipated seasonal acclimatization in thermal 
traits after exposure to low temperatures. For example, increased cold tolerance is reported after acclimation 
to cool temperatures in other arboreal  lizards12,25; increases in thermal preference follow increases in ambient 
temperatures in  newts26; and introduced geckos prefer lower temperatures in  winter27. Our general lack of 
observed seasonal acclimation may be partly influenced by experimental choice; namely exposure of chameleons 
to natural temperature fluctuations rather than constant temperature treatments in each season, combined with 
natural variation in acclimation ability among  individuals28, but  see29. In other tropical species, extended constant 
exposure to low temperatures may be necessary to observe acclimation of thermal traits e.g.30. The influence of 
seasonal acclimatization on thermal traits varies  widely31. Some species display acclimation of certain thermal 
traits, but not others. For example, introduced curly-tailed lizards show seasonal acclimation in CTmax but not 
CTmin

32, and in the frog Pleurodema thaul thermal performance and preference were not influenced by acclima-
tion temperature, but thermal tolerance  was33. Other species may show inter-population variation in acclimation. 
In A. cristatellus, one population demonstrates ability to acclimate to cold temperatures, but another population 
of the same species does  not12, while in the armadillo girdled lizard (Ouroborus cataphractus), two populations 
maintain similar thermal preference despite seasonal  change34. Discrepancies and patterns in acclimation of ther-
mal traits are well documented elsewhere e.g.31, and the underlying mechanisms for these deserve further study.

In the case of F. pardalis, a potential explanation for lack of observed acclimatization is that the study popu-
lation may have adapted to local thermal conditions to express conserved thermal traits year-round. The fact 
that the individuals we tested are from the highest latitude documented for the  species18, that F. pardalis have 
relatively fast generation  times23, and that this species does not typically burrow or seek shelter to buffer from 
cold temperatures (Claunch pers obsv) lends credence to the possibility of local adaptation. Adaptation with-
out acclimation is not unprecedented. Another tree-dwelling lizard, A. cristatellus, demonstrates differences 
in CTmin among introduced and native populations, without associated acclimation ability in one of the intro-
duced  populations25. Local adaptation of CTmax

35; CTmin
36,37 and thermal  preference27 are documented among 

various lizard populations. It is important to note that our study is not equipped to test whether adaptation or 
acclimatization had occurred in the F. pardalis population prior to our testing. Unfortunately, our attempts to 
include chameleons from lower-latitude populations in a common-garden style comparison were thwarted due to 
collection-depletion and lack of public access at documented sites. The native-range origin of our study animals 
is also not known with certainty—coloration suggests they may be hybrids from multiple geographic  origins18. 
Our preferred body temperature result is slightly higher than a previous study on F. pardalis—where Ferguson 
et al.20 report preferred temperatures from three individuals as 31 °C, we report slightly higher preferred tem-
peratures approaching 33 °C. While gaping thresholds are not reported, Ferguson et al.20 report panting observed 
above 36 °C; this may represent the lowest observed panting threshold, as gaping typically precedes panting and 
we report gaping at temperatures averaging around 40 °C. Expanded sampling of multiple populations will be 
necessary to determine whether this population is representative of inherent thermal plasticity in F. pardalis or 
represents improved cold tolerance at the extremes of thermal plasticity in the species.

As anticipated, the correlative niche modeling approach, which did not integrate physiological data, under-
predicted suitable habitat in the non-native range in Florida. This can largely be attributed to using native occur-
rences to model the invaded range. We chose this approach because it is the best practice approach in species 
distribution modeling of invasive species. Modeling invaded ranges using occurrences from within that range 
is problematic because of the lack of presumed equilibrium with the environment and often sparse occurrence 
 data4. These issues especially limit the ability to effectively forecast distributions of nonnative species under 
climate  changes7,38. While it is possible to combine native and nonnative populations into a joint model of F. 
pardalis distribution, the data density remains weighted strongly towards the native range and the end result is 
a model tuning exercise to determine how to balance omission and commission errors, without a clear external 
means to assess optimal model quality. Here, our native-range model is not useful for informing about potential 
distributions of F. pardalis in Florida, but may instead provide important baseline niche information, which can 
be used to compare the magnitude of potential niche shift.

Models directly integrating physiological information may be the most effective way to improve predictions 
of potential distribution of  invaders8,39,40. Of the physiological traits we tested, cold tolerance is likely the most 
limiting factor for F. pardalis range expansion in Florida, given what we know about its native abiotic niche. Our 
lack of observed seasonal differences among thermal traits justify the use of average trait values, which simpli-
fies modeling approaches and interpretation. Namely, our model predictions would remain largely unchanged 
if we had only used thermal trait data derived from a single sampling effort. Additionally, because we tested 
individuals from a population that is of higher latitude than its native range, data from this population may give 
a decent approximation of the limits of thermal flexibility of the species. At the very least, we demonstrate that 
physiological tolerance information even on a limited number of individuals can provide a better estimate of 
occurrence than comparatively abundant occurrence data from the native range. By integrating physiological 
data from populations at the edge of their niche into niche modeling frameworks, we can gain a more accurate 
picture of the niche limits of this species than is possible with occurrence data alone.

Our use of consecutive hours at each minimum temperature threshold is a conservative method to apply 
physiological data to understanding chameleon occurrence. Ectotherms can often survive brief exposure to 
temperatures below their CTmin, while longer exposure can lead to death, e.g.41. By considering length of expo-
sure to cold thresholds, we may gain a more ecologically relevant insight into distribution limits and elucidate 
where population-limiting temperature thresholds occur. As expected, as temperature thresholds decrease, the 
average number of Florida-wide occurrences of each threshold also decreases. In areas where chameleons have 
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established, there are fewer instances of potential exposure to cool temperatures. Chameleons are potentially 
exposed to 4 total weeks where temperatures are 1 °C below their average CTmin for at least 6 consecutive hours; 
whereas they potentially experience 2 weeks of temperatures at the lowest measured CTmin, and less than one 
week at the 3 °C threshold (Fig. 3; see Supplementary Fig S5 online). Existing populations showed less variation 
in 6-h exposures to the lowest two temperature thresholds than near the average CTmin. That the near-average 
CTmin threshold was not as useful as the lowest and below-CTmin thresholds suggests that the more extreme cold 
tolerance values more closely represent population-limiting temperature exposures, especially when considering 
the temperature values used in thresholds were derived from brief exposures to determine CTmin.

The use of average critical thermal limit thresholds in distribution models has been criticized when applied as 
a filter of single-value temperature occurrences in a landscape (i.e., when not accounting for exposure time;42), 
but also because CTmin is often several degrees above the lethal minimum  temperature16. In some cases species 
may be immobilized by cold but are able to survive long bouts of cold  exposure43. Lower lethal temperatures 
are unknown in F. pardalis. Ethical concerns aside, lethal temperature values may be too restrictive an approach 
to predicting suitable habitat. For example, a chameleon experiencing a chill coma (a temperature at or below 
CTmin) may not die directly from low temperatures but the restricted foraging efforts, increased vulnerability to 
predators, and dampened immune function at low temperatures may manifest as population-level effects that 
prevent sustained survival of populations at higher-than-lethal temperature thresholds. The range in intra-species 
thermal tolerance can serve as a starting point for developing informative temperature thresholds on activity 
restriction in a species. A more holistic approach integrates chill coma temperatures or CTmin as well as higher 
temperatures where activity and performance are reduced but may still limit population survival.

Activity window and thermal performance thresholds provide perspective on potential behavioral limitations 
using ambient temperature data. Calculation of activity windows from thermal trait data is not new; there are 
many frameworks used to estimate activity windows and activity budgets, ranging from models requiring many 
data inputs, (e.g.44–46), to simpler threshold-based inputs (e.g.47). Our approach differs slightly from others in the 
calculation of hourly trait values, and in our choice of thermal preference or selected body temperature data as the 
basis for an activity window. The range of body temperatures we recorded (22–40 °C) in the thermal preference 
trial encompasses the range of field body temperatures reported from F. pardalis in Madagascar exhibiting normal 
activity (24–36 °C20). This demonstrates that our thermal preference data accurately reflect an activity window 
for the species. Our normalized data comparisons confirm that our activity window data derived from thermal 
preference are more restrictive than performance data. This is expected, as our activity window is constrained 
to temperature values chameleons chose, while the performance data clearly demonstrate that chameleons are 
capable of activity at higher and lower temperatures when induced to move.

The activity window and thermal performance thresholds represent different constraints and should be inter-
preted in different ways. The activity window, derived from thermal preference data, more likely demonstrates 
propensity to forage or explore, whereas temperatures outside this window are more likely directed towards 
seeking thermal refugia such as spending time basking to raise temperatures to levels where foraging can occur. 
The performance threshold more likely represents the ability to respond when extremely motivated to move, such 
as during pursuit by a predator. However, performance data may not be as useful a threshold in F. pardalis as it is 
for some other ectotherms. First, no area in Florida fell below 20% of the maximum predicted performance for 
this species, and predicted performance was around 50% at established populations, so variation in this trait was 
not particularly informative when applied to Florida winters. Second, sprint data may not correlate to success of 
escape from predators, as chameleons are fairly slow reptiles even at their best performance. Thermal preference 
data thus may be more biologically relevant, because if chameleons choose not to forage outside of their preferred 
temperatures they may not meet energy requirements to survive the winter. It is important to note these models 
do not account for potential radiative heating of basking chameleons to combat low ambient  temperatures48, and 
conversely do not account for convective or conductive cooling during wind or rainfall. Indeed, the combina-
tion of fine-scale behavior data with radiation, windspeed, and precipitation data may improve the resolution of 
predictions and has been proposed in more complex frameworks that also estimate activity budgets (e.g.44,45). 
We chose to use only ambient temperature data as this is most commonly  available49 and may be the only climate 
data consistently available in regions of the world where ectotherm biodiversity is  highest50–53. We argue the 
value of our simple framework is that it can be applied in data-limited contexts, especially as global, fine-scale 
daily temperature data are now available  worldwide49.

Conclusions
We have shown that easy-to-collect physiological thermal trait and ambient temperature data can be used to accu-
rately predict distributions of ectothermic organisms, in absence of native-range occurrence data. The threshold-
ing approaches applied herein are relatively simple to execute, and limitations lie with computing power (which 
is typically not prohibitive), depending on the resolution and extent of predicted areas. While our case study 
focused on a non-native animal in an introduced range, the techniques herein are applicable beyond predicting 
distributions of invasive species. While mechanistic modeling approaches can have great utility for conservation 
with adequate  inputs54, the majority of terrestrial ectothermic diversity and in turn the majority of data-deficient 
and at-risk ectotherms with limited occurrence data are unlikely to be candidates for more sophisticated mecha-
nistic modeling  approaches7. However, daily global temperature data are becoming  available49, which creates 
opportunities for modeling approaches such as ours, which apply commonly available thermal trait data. These 
methods can thus be applied to improve understanding of distributions in data-deficient, rare, or threatened 
species using physiological data derived from a limited number of individuals. The methods could also be applied 
to simulate future distributions using predicted daily climate data. Finally, we provide predictions of potential 
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occurrences of F. pardalis in Florida that may help focus management surveillance efforts. The limitations and 
accuracy of our approaches for this particular species will become clearer as additional populations are located.

Methods
Animal collection and housing
Ten chameleons were captured from an established non-native population in Central Florida from October 
2019-February 2020 (N = 7 males, 2 females) and October 2020 (N = 1 male). Adult panther chameleons were 
housed individually in an experimental mesh exclosure at the US Department of Agriculture (USDA), Wildlife 
Services, National Wildlife Research Center, Florida Field Station, located approximately 115 km north of the 
collection site in Gainesville, Florida from September 30, 2020, to July 28, 2021. Conflicts with residents at the 
site of the established population prevented collection of more  individuals24. Nine of the chameleons were housed 
by the authors prior to accessioning at USDA; the tenth was accessioned directly from the wild population to the 
exclosure in October 2020 (detailed  in55). Animals were housed individually in screen enclosures with natural 
vegetation and exposure to natural sunlight and weather patterns in the greater exclosure (see Supplementary 
Fig. S1 online). An automated misting system provided dripping water for drinking four times daily. Chameleons 
were fed every other day with crickets dusted with calcium without D3 (Rep-Cal, Rep-Cal Research Labs, Los 
Gatos, California, USA) at every feeding, except when replaced with a multivitamin (Reptivite, Zoo Med, San 
Luis Obispo, California, USA) dusting once every other week. Chameleons received visual wellness checks once 
daily. Chameleons were exposed to natural thermal regimes, including low nighttime temperatures (12 °C) in 
winter (Fig. 1). On nights forecast below 12 °C, 250 W heat emitters were turned on over the cages and tarps 
placed to cover the sides and roof (see Supplementary Fig. S1 online). On nights forecast below 7 °C, chameleons 
were brought indoors (65–70 °C) and held in individual cloth bags. Thermal data loggers (iButton DS1922L, 
resolution 0.06 °C, accuracy 0.5 °C, Maxim Integrated, San Jose, California, USA) were placed within screen 
enclosures to collect data on variation in ambient temperatures (see Supplementary Fig. S2 online). All protocols 
were approved by USDA QA-3214 (Study Director, Bryan Kluever) and University of Florida IACUC 201,910,938.

Assessing thermal traits
Thermal limit thresholds, preferences, and performance of chameleons were evaluated in three seasons: Novem-
ber 2020 (Fall), February 2021 (Winter), and July 2021 (Summer; see Supplementary Fig. S2 online). At each 
season, we collected mass using spring scales (Pesola Präzisionswaagen AG Schindellegi, Switzerland 0100 and 
40,300 1 g and 2 g resolution, respectively) and SVL using a measuring tape (1 mm resolution). Animals were 
not evaluated in Spring due to outbreak of fungal infection  (see55). All animals were de-accessioned from the 
study as of 1 August 2021. Chameleons were assessed for critical thermal limit thresholds before preference or 
performance trails were conducted. We conducted linear mixed models using the lme function in package  nlme56 
in  R57. The alpha level for all statistical tests was set at 0.05.

Critical thermal limit thresholds
Due to the proximity of critical thermal maximum to lethal maximum in some  animals58,59 and the limited 
number of animals available for testing, we opted to measure the body temperature at which gaping occurred as 
a heat stress response (CTgape) as our upper thermal threshold. We used the body temperature at loss of righting 
response (CTmin) as our lower temperature threshold.

At each season, individuals were randomly assigned to be tested first for either CTgape or CTmin. After full 
recovery from each threshold, chameleons were returned to their cages and were tested the following day for 
the remaining threshold. Animals were acclimated to room temperature (26 °C) for at least one hour prior to 
conducting thermal limit threshold measurements. A thermal probe was inserted into the cloaca and secured 
with medical tape to allow continuous recording of animal body temperature every 10 s throughout the trial. 
For CTmin, animals were placed into a cooling incubator with windows (Benchmark Scientific, Sayreville, New 
Jersey, USA) set to 6 °C. When body temperatures were below 15 °C, we placed chameleons on their side with a 
gloved hand to test for righting response every 1.5 min and every 1 °C decrease in body temperature, whichever 
occurred first. When an animal was unable to right itself for 10 s after being flipped onto its side, we considered 
this CTmin, recorded the time, and removed the animal from the incubator to recover. For CTgape, animals were 
placed into a heated incubator with windows (Labnet International Inc, Woodbridge, New Jersey, USA) set at 
45 °C. We considered the gaping threshold reached when an animal held its mouth open for at least 5 s. We then 
recorded the time and removed the animal from the incubator to recover. All animals recovered from thermal 
limit threshold testing without incident. We extracted body temperatures for each threshold at the time each 
threshold was reached from the thermal logger data. We calculated the thermal breadth (Tbreadth) for each season 
for each individual by subtracting the CTmin from the CTgape value.

We conducted linear mixed models with gaussian error distribution with fixed response variables CTmin, 
CTgape and Tbreadth. Because rates of temperature change can influence thermal limit  thresholds12,42 we calculated 
the average rate of body temperature change per minute during the trial and included this as a covariate in CTmin 
and CTgape analyses. In the thermal threshold models we included the following variables: season, which trial 
was experienced first (i.e. CTmin or CTgape trial), and the interaction between rate of body temperature change 
and mass. In the Tbreadth model we included season, which trial was experienced first, and mass as covariates. 
To account for repeated measures, animal ID was included as a random intercept effect in all models. Animals 
that were moribund or in poor body condition were excluded from analyses (N = 1 female in winter, N = 1 male 
in summer; see Supplementary Fig. S2 online). Where a factor variable (e.g., season) indicated significance at 
a threshold of alpha = 0.05, we conducted a Tukey post-hoc test using package  emmeans60 in an attempt to dis-
criminate differences among factor levels.
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Thermal preference
To assess thermal preference, a thermal gradient was created in a 1.25 m by 2 m arena divided in half to create two 
lanes. To facilitate use by chameleons, two wooden dowels were inserted into the center of each lane. At one end, 
two 250 W and two 150 W ceramic heat emitters were arranged to provide a hot environment to 51 °C ambient 
temperature. The other end was surrounded by ice packs and a bucket of salted ice with two small electronic fans 
(Shenzhen Glovion Technology Co., Shenzhen, China) to maintain cool air flow to 18 °C ambient temperature 
(see Supplementary Fig. S3 online). A curtain was drawn to prevent chameleons from reacting to researcher 
presence. Chameleons were monitored occasionally from behind the curtain to ensure they remained on the 
dowels. Chameleons had a thermocouple (0.076 mm diameter, Item 5SRTC-TT-K-40–72, Omega Engineering) 
inserted into the cloaca and secured with medical tape, attached by a 1.8 m lead to a datalogger (Item# OM-
HL-EH-TC, Omega Engineering, resolution 0.1 °C, accuracy 0.8 °C) set to collect temperatures every 10 s for 
65 min. The length of thermocouple leads and their small size and weight allowed for unrestrained movement 
throughout the area. Chameleons were initially placed in the middle of gradient. The first 5 min of data after 
animals were introduced to the arena were discarded to account for an acclimation period to the arena and after 
thermocouple insertion.

We extracted the average, mode, and standard deviation in body temperature from each chameleon’s thermal 
preference trial thermal logger data for analysis. Two chameleons’ thermocouples fell out within 15 min of the end 
of the trial (Fall season), and two chameleons exited the gradient mid-trial at which point they were replaced into 
the gradient and the portion of data where the chameleon was outside the gradient plus one minute after being 
replaced was discarded (Fall season). We used the remaining within-gradient trial data for analysis for these cases.

After confirming normality of data, we conducted a linear mixed model on the response variables of average, 
mode, and standard deviation of body temperature during the thermal preference trials. To account for repeated 
measures, we included chameleon ID as a random effect. We included mass and season as covariates. All chamele-
ons walked to the hot end of the gradient after initial placement, thus starting choice was not included in analysis.

Thermal performance
To assess thermal performance we tested chameleon sprint speed at five different body temperatures. Chameleons 
were randomly assigned to be tested at either “warm” (30 and 35 °C) or “cool” (15, 20, and 25 °C) temperatures 
per day. To achieve the assigned body temperature, chameleons were placed into either a cooling or heating 
incubator (described above in Critical Thermal Limit Thresholds) and continually monitored until the target 
temperature was reached, indicated by thermocouple in the cloaca. After reaching the target temperature, ther-
mocouples were removed, and we placed chameleons at one end of a rubber mat divided into six, 0.25 m seg-
ments, and encouraged them to sprint across the mat by simultaneously tapping their tail gently with a gloved 
hand and luring with a bamboo branch ahead of the chameleon as it moved to the other side. During this, an 
observer used a stopwatch to record the time for the tip of the chameleon’s snout to pass each 0.25 m segment 
(segment time). Upon completing the entire length of the mat (1.5 m), we immediately repeated the process at 
the starting point of the mat; thus every trial consisted of two “laps”. Chameleons were allowed a minimum of 
30 min rest between trials and chameleons completed two trials at each temperature. If the chameleon refused to 
move or was uncooperative (i.e., clearly performed submaximally), we denoted trials as being unsuccessful and 
excluded these trials from further analyses. We calculated the velocity of each segment by dividing the distance 
by segment time. For each acclimation temperature and chameleon, we retained only the maximal sprint speed 
over a 0.25-m segment for further analysis.

To compare the thermal sensitivity of sprint performance among seasons, we calculated Q10 values for each 
temperature interval. These values represent the magnitude of increase in a rate with a 10 °C increase in tempera-
ture, such that a value of two represents a doubling the rate per 10 °C increase, values of one represent thermal 
independence, and values of 0.5 represent a halving of the rate per 10 °C increase. Q10 values were calculated 
using the following  equation61:

 where vi represents velocity and Ti the corresponding acclimation temperature. We calculated four Q10 values 
corresponding to intervals of 15–20, 20–25, 25–30, and 30–35 °C. Trials were discarded if they spanned larger 
intervals (i.e., if an individual was only tested at 15 and 25 °C). To determine if season affected thermal sensitivity, 
we performed a linear mixed model with Gaussian distribution on the Q10 values. We used temperature inter-
val and SVL as covariates; SVL was log-transformed to account for allometric effects. To account for repeated 
measures, we included individual ID as a random factor. All Q10 values were natural-log-transformed to meet 
model assumptions of homoskedasticity.

Distribution modeling
Correlative niche model
We used Maxent to construct correlative niche models using native range occurrence and climate data to pro-
ject onto Florida. Occurrence data for F. pardalis spanning from 1876 to 2022 were downloaded from various 
 databases62–64 and were sorted to remove duplicate records, records without georeferences, and improbable 
georeferences based on locality descriptions. Only points from the native range (Madagascar) were considered; 
we did not include data from nearby introduced populations of F. pardalis on Réunion. We thinned the points 
at a 4 km threshold to a total of 149 remaining points.

(1)Q10 =

(

v2

v1

)

(

10
T2−T1

)

,
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We calibrated models using  ENMeval65, using the ENMevaluate function with extrapolation and without 
clamping using default parameters and input of 19 bioclimatic layers at 1  km2 resolution  (WorldClim266) in the 
native range region. This method evaluates models constructed with varying combinations of regularization 
multipliers (0.5, 1, 2, 3, 4) and feature classes (linear, linear—quadratic, linear-quadratic-hinge, linear-quadratic-
hinge-product, and linear-quadratic-hinge-product-threshold). Before running models in ENMevaluate, and to 
avoid potentially problematic multicollinearity in our models, we calculated the variance inflation factors (VIF) 
of our initial model with all 19 bioclimatic variables. If any predictor variable had a VIF > 5, we removed the 
variable with the lowest permutation contribution to the model. ENMevaluate was used to select the top model 
based on the AICc value within 2 to the lowest AIC model. We then used the top model to project onto Florida 
using the Maxent graphical user  interface67 with extrapolation and no clamping and 10,000 background points.

Thresholded winter temperatures: cold tolerance, activity window, predicted performance
Because cold tolerance is often the most limiting factor for ectotherms at higher  latitudes68, and because F. parda-
lis CTgape exceeds typical annual maximum ambient temperatures in Florida, we chose to subset our distribution 
modeling to winter environmental data. To examine physiological data in the context of environmental tempera-
tures in Florida, we created thresholds based on our thermal trait data. First, we assembled PRISM climate data 
for the extent of Florida for December 15 to February 15 from 2001 to  202169,70 at 800 m resolution and extracted 
daily minimum (Tmin) and maximum (Tmax) temperatures. These dates encompass the 7 years prior to the first 
reported population, to account for potential lag times in reporting or discovery of this and other  populations71. 
While ambient air temperature data has been criticized for use in predictive modeling frameworks (reviewed 
 in16), such data may provide a decent approximation of available temperatures in this arboreal  species72.

We used package ChillR to calculate hourly temperatures for each 800 m pixel in Florida for each day over 
December 15th to February 15th time period for all years. ChillR takes as input Tmin and Tmax as well as sunrise 
and sunset times, and  latitude73. It then applies an algorithm  from74 which models hourly temperatures by fitting 
a sine curve for daytime temperatures, and a logarithmic decay function for nighttime temperatures. To assess 
how cold tolerance (CTmin) may influence F. pardalis distribution in Florida, we flagged the hourly temperature 
data where the temperature was below three different thresholds (see below) for six or more consecutive hours. 
The six-hour exposure time threshold accounts for time to overcome thermal inertia associated with differences 
in cooling rates of ambient temperature and body  temperature16, as well as removes potential noise in the data 
associated with rapid but unsustained changes in temperature (e.g., a passing storm front). We counted the num-
ber of days that met this condition for each threshold for each yearly period, and then averaged the number of 
occurrences across those winter periods for reporting. The thresholds were: 9 °C, representing ~ 1 °C below the 
average measured CTmin in this study; 6 °C, representing the lowest individual CTmin recorded in this study and 
the lowest temperature experienced in the exclosure; and 3 °C, below temperatures experienced by chameleons 
in this study and below recorded CTmin for the species.

To examine the remaining thermal traits, we subset the hourly temperature data to daylight hours, as F. parda-
lis is diurnal and reliably falls asleep upon darkness (Claunch and Goodman pers obs). We calculated an activity 
window for F. pardalis by categorizing all temperatures during daylight hours that fell within the recorded body 
temperatures in the thermal preference gradient as active hours. We examined the activity window in two ways: 
first by averaging the number of active hours across all winters for each pixel in Florida, then by calculating the 
percent of active hours falling within available daylight hours across all winters for each pixel. We also calculated 
predicted performance during winter to serve as a proxy for the relative ability for F. pardalis to forage or engage 
in escape behaviors. To do this, we generated a performance curve using a generalized additive model of the 
maximum individual velocities per 25 cm segment at each test temperature bookended by velocities equaling 
0 at CTmin and CTmax test temperatures, with k = 5 and smoothing parameter = 0.1 (Fig. 5). From this curve, we 
calculated the predicted performance for each daylight hour’s temperature at each pixel. We assessed perfor-
mance in two ways: (1) by averaging the predicted performance across all winters per pixel; (2) by thresholding 
performance values that fell within 80% of maximum performance in the GAM across all winters per pixel.

Assessing model predictions
We assessed model predictions in two ways. First, we overlaid known established or formerly established pres-
ences in Florida on the Florida projections from all models described above, then extracted the associated data 
at these localities for comparison and evaluation. Because verified established presences are limited in number 
for F. pardalis, we also compared state-wide model projections produced by each metric. Second, to compare the 
utility of activity versus performance models, we normalized model outputs by setting the lowest value to 0 and 
the maximum value to 1; this was achieved by subtracting the lowest output value from all records, then divid-
ing all output records by the resultant maximum value for each model. Thus, the scale reflects relative predicted 
activity and performance such that a value closer to 0 reflects the minimum predicted activity or performance, 
while a value closer to 1 reflects the maximum predicted activity or performance.

Ethical approval
All applicable institutional and/or national guidelines for the care and use of animals were followed. All protocols 
were approved by USDA QA-3214 (Study Director, Bryan Kluever) and University of Florida IACUC 201,910,938. 
The reporting in the manuscript follows the recommendations in the ARRIVE guidelines.

Data availability
Data for experimental determination of thermal traits are archived with  USDA75. The data and code generated 
during the current study are available at GitHub [https:// github. com/ nmcla unch/F_ parda lis_ therm al].

https://github.com/nmclaunch/F_pardalis_thermal
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