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Interpretable artificial intelligence 
for classification of alveolar bone 
defect in patients with cleft lip 
and palate
Felicia Miranda 1,2*, Vishakha Choudhari 1, Selene Barone 1,3, Luc Anchling 1,4, 
Nathan Hutin 1,4, Marcela Gurgel 1, Najla Al Turkestani 1,5, Marilia Yatabe 1, Jonas Bianchi 6, 
Aron Aliaga‑Del Castillo 1, Paulo Zupelari‑Gonçalves 7, Sean Edwards 7, Daniela Garib 2,8, 
Lucia Cevidanes 1 & Juan Prieto 9

Cleft lip and/or palate (CLP) is the most common congenital craniofacial anomaly and requires bone 
grafting of the alveolar cleft. This study aimed to develop a novel classification algorithm to assess 
the severity of alveolar bone defects in patients with CLP using three‑dimensional (3D) surface 
models and to demonstrate through an interpretable artificial intelligence (AI)‑based algorithm 
the decisions provided by the classifier. Cone‑beam computed tomography scans of 194 patients 
with CLP were used to train and test the performance of an automatic classification of the severity 
of alveolar bone defect. The shape, height, and width of the alveolar bone defect were assessed in 
automatically segmented maxillary 3D surface models to determine the ground truth classification 
index of its severity. The novel classifier algorithm renders the 3D surface models from different 
viewpoints and captures 2D image snapshots fed into a 2D Convolutional Neural Network. An 
interpretable AI algorithm was developed that uses features from each view and aggregated via 
Attention Layers to explain the classification. The precision, recall and F‑1 score were 0.823, 0.816, 
and 0.817, respectively, with agreement ranging from 97.4 to 100% on the severity index within 1 
group difference. The new classifier and interpretable AI algorithm presented satisfactory accuracy 
to classify the severity of alveolar bone defect morphology using 3D surface models of patients with 
CLP and graphically displaying the features that were considered during the deep learning model’s 
classification decision.

Cleft lip and/or palate (CLP) is considered the most common congenital craniofacial anomaly by the World 
Health  Organization1. Due to the complexity of this craniofacial anomaly, the rehabilitation process of patients 
with orofacial clefts is based on a multidisciplinary team widely accepted as a standard approach. The challenges 
include the surgical closure of the cleft, speech and hearing pathology, anteroposterior and transverse deficiency 
of the maxilla and dentoalveolar irregularities. The bone grafting of the alveolar cleft is an essential part of the 
treatment protocol of patients with CLP once it promotes the alveolar bone continuity in the cleft side. The sec-
ondary alveolar bone graft (SABG) is considered the standard option to restore the alveolar bone once it presents 
satisfactory clinical outcomes due to the timing of the surgical  intervention2–4.

The success of secondary alveolar bone graft can be influenced by several factors such as dental development, 
age, cleft size and timing of orthodontic  treatment5–9. A systematic review showed that timing of the SABG (prior 
to the eruption of maxillary permanent canines), surgical material, and presurgical orthodontics are factors 
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related to the success of  SABG6. However, there was no sufficient evidence to determine if cleft width or volume 
influences the clinical outcomes of  SABG6.

Computed tomography and cone-beam computed tomography (CBCT) scans allow a three-dimensional (3D) 
assessment of alveolar bone defects of patients with  CLP10–13. The 3D analysis of the alveolar bone defect allows 
better surgical planning for the graft and can minimize surgical  complications10,14. However, 3D image analysis 
can be a complex and time-consuming task. The use of artificial intelligence (AI) in 3D image analysis tools has 
increased significantly in the last years with the purpose to simplify and increase the efficiency of this  process15–17. 
For this reason, AI-based methods for 3D assessments have become more popular and recent developments are 
being described. A previous study has demonstrated an efficient novel method for automatic estimation of the 
alveolar bone defect volume of patients with CLP using a convolutional neural network (CNN)16. An open-source 
algorithm for automated segmentation of multiple anatomic skeletal, dental, and soft tissue structures in the 
craniofacial complex of CBCT scans based on UNEt Transformers of the Medical Open Network for Artificial 
Intelligence (MONAI) framework was also described with applications for patients with  CLP17.

With advancements in AI-driven 3D image analysis, clinical decision support systems (CDSS) are being 
developed to provide support for clinicians during decisions regarding prevention, diagnosis, and treatment 
 planning18. Before these tools can be translated effectively to healthcare, there is still a need to understand the 
exact features that AI is considering during the decision-making  process19. An interpretable AI algorithm may 
provide explainable models to demonstrate the features used by the AI during the prediction task, with the 
potential benefits of enhancing trust and understanding of AI  outputs19. For this reason, this study aimed to 
evaluate the performance of an automated 3D classification index for the severity of alveolar bone defects in 
patients with CLP based on an interpretable AI algorithm.

Material and methods
This study was approved by the Institutional Review Board of the University of Michigan School of Dentistry 
(HUM00222338) and all methods were performed in accordance with the relevant guidelines and regulations. 
Informed consent was waived by the Institutional Review Board of the University of Michigan School of Den-
tistry. The sample consisted of secondary data analysis of 194 de-identified cone-beam computed tomography 
(CBCT) scans of patients with cleft lip and palate acquired in three different university centers (University of 
Michigan—School of Dentistry, Hospital for Rehabilitation of Craniofacial Anomalies—University of São Paulo 
and University of Pacific—Arthur A. Dugoni School of Dentistry). The eligibility criteria included: patients with 
unilateral or bilateral cleft lip and palate or cleft lip and alveolus, mixed or early permanent dentition, and CBCT 
scan taken for clinical purposes. The exclusion criteria were patients with CBCT scans with artifacts produced 
by orthodontic appliances.

The 3D analysis was performed using two open-source software packages ITK-SNAP, version 3.8 (https:// 
www. itksn ap. org)20, and 3D Slicer, version 5.1.0 (http:// www. slicer. org)21. First, all scans were oriented using the 
Frankfort horizontal plane perpendicular to the midsagittal  plane22. Secondly, automatic segmentations of the 
maxilla were obtained using the automatic multi-anatomical skull structure segmentation (AMASSS) algorithm 
on Slicer Automated Dental  Tools17. 3D volumetric label maps (segmentations) and 3D surface models (vtk files) 
were obtained for all patients.

The shape, height and width of the alveolar bone defect were assessed to determine the severity of the alveo-
lar bone defect and to develop a classification of the severity of the alveolar bone defect using the 3D surface 
models. The severity of the alveolar bone defect was classified from 0 to 3, where 0 was considered a lower level 
of severity and 3 a greater level of severity (Fig. 1, Table 1). To determine the ground truth classification index, 
the sample was classified independently by two calibrated examiners. Examiner 1 repeated all the assessments 
after a 30-day interval. In cases of no agreement between the examiners’ scores, a third examiner expert in 3D 
imaging analysis and Orthodontics gave a consensus score. To test the inter and intra-examiner agreement, the 
Kappa coefficient was used. Inter and intra-examiner reproducibility showed high agreement with kappa values 
of 0.93 and 0.94,  respectively23.

A shape analysis technique was developed and applied in a severity classification task for the alveolar bone 
defect. The key step in the approach was to extract features that can represent and characterize the 3D shapes in 
a compact way. This approach is a learning-based method and falls into the multi-view  category24.

The approach starts using our novel Fly-by-CNN  algorithm25 by rendering the 3D object from different 
viewpoints and capturing 2D image snapshots that are then fed to a 2D Convolutional Neural Network (CNN). 
We aggregate the features from each view via an Attention Layer that encourages the model to select specific 
 features26.

In addition to the novel shape classification technique, an explainability approach for 3D shape models 
called Surface Gradient-weighted Class Activation Mapping (SurfGradCAM), which is an extension of Gradient-
weighted Class Activation Mapping (GradCAM)27 was implemented. It generates a heatmap that highlights the 
most important regions of the 3D model. This is achieved by backpropagating the gradients of the output class 
with respect to the feature maps of the final convolutional layer of each view. The heatmaps are then pooled using 
a max function and mapped onto the surface of the 3D object.

Statistical analysis
The data was split as follows: 70% for training, 10% for validation and 20% for testing (5-folds of 38 patients = 190 
testing datasets). A fivefold cross-validation was performed. The performance of the algorithm was assessed using 
the precision, recall, F1 score, and accuracy. A confusion matrix was also performed to allow the visualization 
of the performance of the algorithm. The agreement between the ground truth classification and the algorithm-
predicted classification was represented by the main diagonal of the table. Cells adjacent to the main diagonal 
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(1 diagonal to the right and 1 diagonal to the left) indicate the classification of the severity index was within 1 
group difference. A receiver operating characteristic (ROC) curve was also performed to show the sensitivity of 
the classification model performance.

Results
The performance of the classifier algorithm is shown in Table 2. The classifier task achieved an overall accuracy 
of 0.816. In addition, a high overall precision (0.823, SD 0.95), recall (0.816, SD 0.47), F-1 score (0.817, SD 0.59) 
and AUC (0.948, SD 0.15) were observed for the classifier task (Table 2). The class 0 achieved the highest preci-
sion, recall, f-1 score and AUC, while the class 1 achieved the lowest recall, F-1 score and AUC. The confusion 
matrix shows that the classifier could predict the correct class with an agreement above 97.3% within 1 group 
difference for the testing data sets (Fig. 2A). The main diagonal cells show when the group was classified correctly 
by the algorithm when compared to the ground truth (Fig. 2A). A range from 0.75 to 0.85 was found in the main 
diagonal when comparing the algorithm prediction with the ground truth. High sensitivity can be observed for 
the AI-predictions in all classes (Fig. 2B).

Figures 3, 4, 5 and 6 show the heatmaps generated by the SurfGradCam algorithm that graphically display the 
features used by the classifier. The heatmaps were generated by each different class (columns) in different view 
perspectives (rows). The color-coded graphic display ranges from blue to red, where in dark red are the most 
important features considered by the algorithm to output the classification, and in blue are the least important 
features. Figures 3, 4, 5 and 6 demonstrate that the algorithm was capable to adequately distinguish the most 
important features to determine each class in different models. The heatmap for class 0 focused correctly on the 

Figure 1.  3D surface models of patients classified using the severity index. 0 was considered a lower level of 
severity and 3 was a greater level of severity.

Table 1.  Definition of the severity index for the alveolar bone defect in cleft lip and palate patients.

Index Description

0 Bone depression in the buccal or at least one wall of bone support in the palatal aspect

1 Complete cleft of the alveolar bone defect in at least one side

2 Projected premaxilla with an alveolar bone defect and some palatal bone continuity or bilateral well aligned defects

3 Projected premaxilla with large alveolar bone defect with a small or no palatal bone continuity
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buccal and palatal aspect of the cleft side, with a dark red color in most of this region (Fig. 3). The dark red areas 
continuously decrease when assessing the same model for each class, with an increase in the blue areas (Fig. 3, 
second to third column). Note that Fig. 3 exemplify a model that was correctly predicted as class 0, and when 
the algorithm assessed this model as class 3 (Fig. 3, fourth column), most of the anterior region of the maxilla 
was displayed in dark blue, meaning that no important feature for this class was found in this 3D model. The 
same interpretation was found for different models predicted in each class. Figure 6 demonstrates a case that 
was correctly classified as class 3 and shows a dark red area emphasizing the projected pre-maxilla with the large 
alveolar bone defect and complete palatal discontinuity as the most important features for this classification. In 
the same figure, when the algorithm assessed for different classes, it becomes clear that no important feature was 
considered in the maxilla to classify this model as 0 or 1 (first and second column), and the different degree of 
red in the palate elucidates why this model was not classified as 2 (third column).

Discussion
This is the first study to demonstrate a tool to automatically classify the alveolar bone defect of patients with 
CLP using an explainable algorithm. The use of AI technology has changed the 3D imaging analysis in the past 
years. The 3D assessment of the alveolar bone defect is an essential but complex task. For this reason, the use of 
AI-based models has increased with the purpose to simplify and increase the efficiency of this task. However, 
exist an increased concern regarding comprehending the full approach and reasons behind how an AI model 
predicts a  decision28–30. Interpretable or explainable AI initiatives was proposed to promote more transparent 
AI models with more understandable  outputs28,29. In this study, it was investigated through an interpretable AI 
algorithm which shape features were relevant to the classification/regression task for each training class in our 
data set by visualizing the key features directly on the 3D surface. Both the development of a classifier algorithm 
based on 3D surface evaluation of the alveolar bone defect of patients with CLP and the incorporation of an 
explainable algorithm are innovative and important advancements in the field.

The classifier task proposed in this study was able to accurately predict the severity of the alveolar bone defect 
in patients with CLP (Table 2). Multi-view shape analysis methods have been shown to be effective in a variety 

Table 2.  Precision and accuracy for the trained model.

Class (n) Precision (SD) Recall (SD) F1-score (SD) Accuracy AUC (SD)

0 (62) 0.914 0.855 0.883 n/a 0.96

1 (45) 0.739 0.756 0.747 n/a 0.93

2 (45) 0.731 0.844 0.784 n/a 0.94

3 (38) 0.882 0.789 0.833 n/a 0.96

Total (190) 0.823 (0.95) 0.816 (0.47) 0.817 (0.59) 0.816 0.948 (0.15)

Figure 2.   (A) Confusion matrix demonstrating the sensitivity of the performance of the classifier algorithm. 
The rows represent the ground truth as assessed by the consensus between the clinical experts, and the columns 
represent the algorithm prediction of the severity index. The main diagonal cells (in dark blue) show when the 
group was classified correctly by the algorithm when compared to the ground truth. The cells in 1 diagonal 
to the right and 1 diagonal to the left show the differences in the predicted label from the ground truth by 
only 1 group. (B) ROC curve showing the performance of the classification model. High sensitivity in the 
AI-predictions can be observed for all classes.
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of tasks, including shape classification and retrieval, and they are particularly useful for 3D shapes that lack a 
clear orientation. The SurfGradCam algorithm was created to work directly on 3D surface models and was based 
on previously validated algorithms created for images or  volumes27,31–33. The novelty of SurfGradCAM lies in 
its ability to provide a visual representation of the reasoning behind a neural network’s classification decision 
for 3D shape models, which may support researchers to validate the shape features used in the task and address 
concerns related to the impact of machine learning systems on human lives. Figures 3, 4, 5 and 6 demonstrate 
that the algorithm is targeting the neighboring areas of the alveolar bone defect as the main features to predict 
the output. By visualizing the heatmap, researchers and clinicians can better understand the reasoning behind 
the classification decision and validate the shape features used in the task. This approach offers a novel way of 
explaining the decision-making process of a neural network and can be useful for addressing concerns related 
to the impact of machine learning systems on human lives.

In addition, a future clinical application includes the implementation of this classification task and inter-
pretable algorithm in a clinical decision support system for planning the SABG in patients with cleft lip and 
palate. CDSS can combine clinical and imaging data to provide support for healthcare providers during the 
decision-making process. There is a growing interest in the implementation of CDSS in dentistry with different 
applications due to the usefulness and increase in the performance of AI  algorithms18,34–37. Due to the complex 
and multidisciplinary face of the rehabilitation process of patients with CLP, the CDSS implementation would be 
beneficial by providing a standardized and full assessment of the alveolar bone morphology of patients with CLP 
before the SABG. This CDSS can be helpful in reducing treatment risks as well as providing relevant information 
necessary to surgical success. However, before this system can be effectively translated to a healthcare scenario, 
there is still a need for comparative effectiveness research that can provide the true value of AI and CDSS during 
the diagnosis and treatment  planning38. A recent comparative effectiveness research application in Orthodontics 
showed that 3D image analysis and severity index promoted an overall change in responses of 43% regarding the 
diagnosis and treatment planning of impacted canines when compared to 2D image  analysis39.

The 3D image analysis presents a more thorough assessment of bone morphology when compared to 2D 
assessments. However, it is still controversial in the literature the role of the morphology or shape of the cleft 
alveolar defect in the success of the surgical repair of the alveolar bone. A previous study showed a correlation 
between the morphology of the alveolar bone defect and SABG outcomes in patients with CLP using 3D imaging 
 analysis14. In the future, other imaging inputs will also be included in this classifier index and a new model will 
be trained to be able to address different challenges and limitations that may influence the success of SABG in 
patients with CLP. The identification of treatment risks based on the alveolar bone defect characterization and 

Figure 3.  Explainability maps for a 3D surface model properly predicted as a class 0 of the severity index. 
The heatmaps were generated by each different class (columns) in different view perspectives (rows). In dark 
red are the most important features considered by the algorithm to output the classification and in blue the 
less important features. Note that it is necessary to assess the heatmaps of all classes to determine which class 
highlights in red (or dark red) the cleft features. It can be observed that the algorithm is capable to distinguish 
the important features in the different classes.
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Figure 4.  Explainability maps for a 3D surface model properly predicted as a class 1 of the severity index. In 
dark red are the most important features considered by the algorithm to output the classification, and in blue are 
the less important features. Note that the heatmap for class 1 focused correctly on the unilateral bone defect.

Figure 5.  Explainability maps for a 3D surface model properly predicted as a class 2 of the severity index. In 
dark red are the most important features considered by the algorithm to output the classification and in blue the 
less important features. Note that the heatmap for class 2 demonstrated the projected pre-maxilla and palatal 
continuity as important features for this classification.
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tooth position near the alveolar cleft will be included as well as clinical data. A previous study has demonstrated 
the use of intraoral and extraoral 3D surface scans to satisfactorily design and print individualized appliances 
in patients with craniofacial  disorders40. The future incorporation of AI technologies to automate this complex 
rehabilitation process will benefit these approaches even more. In addition, the use of optical scans for the crea-
tion of surface models that allows a 3D assessment of the facial characteristics are other important imaging input 
that can be added to assess and predict the severity of craniofacial morphology in patients with CLP.

Even though the use of AI algorithms has increased significantly, clinicians/experts are still required to 
supervise the outcomes of the AI predictions to allow new training and improve the performance of the models. 
As a limitation of this study, approximately 18% of the sample required a refinement of the alveolar bone defect 
segmentation after automatic segmentation. The refinements were necessary once that the alveolar bone defect 
shows a challenge and variable morphology for 3D automatic  segmentation15. The alveolar bone defect morphol-
ogy will vary from individual to individual, and therefore is a challenge to train an algorithm capable of segment-
ing these structures with a high level of accuracy. However, when compared to manual segmentation, automatic 
segmentation of the alveolar bone defect provides a less complex and time-consuming  task15. New models with 
bigger samples are necessary to improve the performance of the segmentation algorithm. The clinician refine-
ment allowed a new model to be trained to improve the performance of the AI segmentation tools for patients 
with CLP. This algorithm will be deployed as a new tool of the open-source 3D Slicer  software21. In addition, 
future studies with larger samples should also be conducted to improve the robustness and performance of the 
segmentation algorithm for patients with CLP.

Conclusion
A high overall precision, recall, F-1 score and AUC were observed for the classifier task. An overall accuracy of 
0.816 was found for the automatic classification of the severity of the alveolar bone defect of patients with cleft 
lip and palate. The proposed interpretable AI algorithm showed a satisfactory level of accuracy to automatically 
predict the severity of the alveolar bone defect of patients with cleft lip and palate. In addition, the interpretable 
AI algorithm demonstrated adequately the correct features used for the severity index, focusing specifically on 
the regions neighboring the alveolar bone defect. Future applications will include the implementation of this new 
tool in a clinical decision support system to identify the treatment risks and favor surgical success. In addition, 
this automated severity index clinical decision support system can help in the diagnosis and treatment planning 
of presurgical orthodontics for patients with cleft lip and palate. The implementation of this clinical decision 
support system will incorporate other important imaging inputs and new models with larger sample will be 
trained to improve the robustness and performance of the algorithm.

Figure 6.  Explainability maps for a 3D surface model properly predicted as a class 3 of the severity index. In 
dark red are the most important features considered by the algorithm to output the classification, and in blue 
are the less important features. Note that in the heatmap for class 3, the premaxilla was considered the most 
important feature for this classification.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15861  | https://doi.org/10.1038/s41598-023-43125-7

www.nature.com/scientificreports/

Data availability
The data analyzed during the current study are available from the corresponding author on a reasonable request. 
The code and detailed read-me files used in this study are available in our GitHub repository (https:// github. 
com/ DCBIA- Ortho Lab/ Cl3ft). After additional validation, this algorithm will also be available for clinical and 
research use in an open-source web-based clinical decision support system (Smart-DOC: https:// dsci. dent. umich. 
edu) and the 3D Slicer open-source platform (https:// www. slicer. org/).
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