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Deep learning visual field global 
index prediction with optical 
coherence tomography parameters 
in glaucoma patients
Dongbock Kim 1,4, Sat Byul Seo 1,4, Seong Joon Park 1 & Hyun‑kyung Cho 2,3*

The aim of this study was to predict three visual filed (VF) global indexes, mean deviation (MD), 
pattern standard deviation (PSD), and visual field index (VFI), from optical coherence tomography 
(OCT) parameters including Bruch’s Membrane Opening‑Minimum Rim Width (BMO‑MRW) and 
retinal nerve fiber layer (RNFL) based on a deep‑learning model. Subjects consisted of 224 eyes with 
Glaucoma suspects (GS), 245 eyes with early NTG, 58 eyes with moderate stage of NTG, 36 eyes 
with PACG, 57 eyes with PEXG, and 99 eyes with POAG. A deep neural network (DNN) algorithm was 
developed to predict values of VF global indexes such as MD, VFI, and PSD. To evaluate performance 
of the model, mean absolute error (MAE) was determined. The MAE range of the DNN model on cross 
validation was 1.9–2.9 (dB) for MD, 1.6–2.0 (dB) for PSD, and 5.0 to 7.0 (%) for VFI. Ranges of Pearson’s 
correlation coefficients were 0.76–0.85, 0.74–0.82, and 0.70–0.81 for MD, PSD, and VFI, respectively. 
Our deep‑learning model might be useful in the management of glaucoma for diagnosis and follow‑up, 
especially in situations when immediate VF results are not available because VF test requires time and 
space with a subjective nature.

Glaucoma is caused by injuries to retinal ganglion cells (RGC) and their axons, leading to retinal nerve fiber layer 
(RNFL) deficit and neuroretinal rim (NRR) thinning that can result in visual field (VF)  defects1. Measurement 
of peripapillary RNFL using optical coherence tomography (OCT) scan is a broadly accepted method for the 
quantitative assessment of structural damage in  glaucoma2. Standard automated perimetry (SAP) is the standard 
method to detect and monitor functional VF defect in the management of  glaucoma3,4. However, there are some 
intrinsic limitations of a VF test. First of all, this test has a subjective nature. Moreover, it has a high intra-subject 
variability (high test-to-test variability), a lengthy test time, and a necessity for a designated place to perform 
 SAP5,6. Structure–function relationship is important in the understanding and management of  glaucoma7–10. 
Detectable structural changes usually precede VF functional loss at each individual  degree10–14.

Recently, spectral-domain OCT provides Bruch’s membrane opening-minimum rim width (BMO-MRW) 
as a new parameter in addition to conventional peripapillary RNFL. BMO-MRW measures the shortest length 
from the inner opening of BMO to the internal limiting membrane (Fig. 1A), which has been introduced for 
assessing optic nerve  head15–19. BMO-MRW provides more accurate evaluation of the NRR than conventional 
optic disc  inspection15–20. Previous studies have demonstrated that BMO-MRW showed superior diagnostic 
ability in glaucoma to previously used parameters of  NRR21–23. BMO-MRW has also been reported to show a 
better structure–function relationship than other NRR parameters using conventional confocal scanning laser 
ophthalmoscopy or peripapillary  RNFL23,24.

We have previously reported a high diagnostic performance in distinguishing early normal-tension glaucoma 
(NTG) from glaucoma suspect (GS) (AUC, 0.966) based on a deep learning model using OCT parameters of 
BMO-MRW, peripapillary RNFL, and color classification of  RNFL25. Interestingly, BMO-MRW, as a single param-
eter, provided a higher diagnostic performance (AUC: 0.959) than RNFL alone (AUC: 0.914) and RNFL with its 
color code classification (AUC: 0.934)25. Moreover, BMO-MRW alone showed similar diagnostic performance to 
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that of all three OCT parameters combined. These results suggest that BMO-based optic disc assessment might 
be a better evaluation for different aspects of the optic disc than conventional disc assessments in the diagnosis 
of glaucoma.

Previous structure–function studies have used deep learning models to predict global VF indexes includ-
ing mean deviation (MD) from OCT-derived images such as RNFL thickness  maps26,27. Other previous studies 
have predicted pointwise threshold of VF from OCT-derived image scans like peripapillary RNFL or macular 
ganglion cell complex thickness  maps28–31. However, none of these previous studies included any information 
regarding BMO-MRW. Moreover, none predicted all three VF global indexes of MD, pattern standard deviation 
(PSD), and visual field index (VFI) from OCT-derived images or maps. Each global index of VF test has its own 
advantage, and therefore, only one index cannot tell all the aspects of VF test results. Actual figures of global 
indexes of VF could provide an outline of VF summary, which might be clinically useful in the management of 
glaucoma including diagnosis and detection of progression.

Thus, the aim of the present retrospective cross-sectional study was to predict three VF global indexes using 
deep-learning model from OCT-derived parameters of BMO-MRW and RNFL. We intended to assess the use-
fulness of this deep-learning model as a reference in glaucoma clinic. It might be beneficial in situations when 
immediate VF results are not available since VF test takes time and cooperation of the patient. We applied a 
deep-learning model to integrate all data available from spectral-domain OCT images to predict VF global 
indexes, which might be challenging for general physicians.

Results
Baseline characteristics of subjects
A total of 720 eyes (720 patients) with glaucoma and glaucoma suspect (GS) were included in the final analysis. 
Glaucoma diagnosis included early normal-tension glaucoma (NTG), moderate stage of NTG, pseudo exfoliation 
glaucoma (PEXG), primary angle closure glaucoma (PACG), and primary open angle glaucoma (POAG). The 
mean age of glaucoma patients was 53.7 ± 13.3 (mean ± standard deviation) years. Females accounted for 46% 

Figure 1.  (A) Workflow of this study. Input data extracted from OCT images are used to predict VF indexes 
(MD, PSD, VFI) through a DNN model. Detailed structure of dashed line box with a red star is described in 
(B). (B) Detailed structure of the DNN model. Each number above each box represents the number of nodes 
in the prior layer. The number below each box means the number of nodes in the present layer. OCT = optical 
coherence tomography; MD = mean deviation; PSD = pattern standard deviation; VFI = visual field index; 
DNN = deep neural network.
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(328/720). Of all patients, 8.3% (60/720) had a family history of glaucoma. Baseline spherical equivalent (SE) 
was − 1.8 ± 2.9 diopters. Baseline intraocular pressure (IOP) was 15.6 ± 4.1 mmHg with central corneal thickness 
(CCT) of 542.0 ± 42.7 um. Baseline MD was − 4.5 ± 5.8 dB, PSD was 5.3 ± 4.2 dB, and VFI was 88.6 ± 17.0 dB. 
Baseline characteristics including VF global indexes for the training set and test set, respectively, are summarized 
in Table 1. Baseline OCT parameters of BMO-MRW and RNFL are demonstrated in Table 2.

Table 1.  Baseline characteristics of included glaucoma patients. NTG normal tension glaucoma; PACG  
primary angle closure glaucoma; PEXG pseudoexfoliation glaucoma; POAG primary open angle glaucoma; D 
diopters; CCT  central corneal thickness; IOP intraocular pressure; MD mean deviation; PSD pattern standard 
deviation; VFI visual field index. NN unaffected control (MD ≥ 0.0); G1 mild glaucoma grade (− 6.0 < MD < 
0.0); G2 moderate glaucoma grade (− 12.0 < MD ≤ − 6.0); G3 severe glaucoma grade (MD ≤ − 12.0).

Characteristics Training set Test set

Number of subjects (n = 720) 684 eyes (684 patients) 36 eyes (36 patients)

Diagnosis

NTG 289 eyes 15 eyes

PACG 33 eyes 3 eyes

PEXG 55 eyes 2 eyes

POAG 93 eyes 6 eyes

Glaucoma suspects 216 eyes 8 eyes

Mean age (year) 53.75 ± 13.46 53.26 ± 14.69

Female gender (%) 312 (46%) 14 (39%)

Family history of glaucoma (%) 56 (8.0%) 4 (11.1%)

Spherical equivalent (D) − 1.79 ± 2.90 − 1.65 ± 2.84

CCT (um) 542.06 ± 42.96 544.48 ± 34.80

Baseline IOP (mmHg) 15.46 ± 3.94 16.45 ± 5.66

MD (dB) − 4.41 ± 5.69 − 5.37 ± 7.54

PSD (dB) 5.32 ± 4.17 4.48 ± 3.75

VFI (%) 88.69 ± 16.61 86.78 ± 22.99

Glaucoma severity

NN 116 eyes 6 eyes

G1 387 eyes 20 eyes

G2 112 eyes 6 eyes

G3 69 eyes 4 eyes

Table 2.  Baseline OCT parameters in glaucoma patients. SD standard deviation; OCT optical coherence 
tomography; BMO-MRW bruch’s membrane opening-minimum rim width; RNFL retinal nerve fiber layer; G 
Global; T temporal; TS superotemporal; TI inferotemporal; N nasal; NS superonasal; NI inferonasal.

Characteristics Values (mean ± SD)

BMO-fovea angle◦ − 6.24 ± 3.54

BMO area ( mm2) 2.35 ± 0.57

BMO-MRW G (um) 215.57 ± 58.37

BMO-MRW T 167.29 ± 48.03

BMO-MRW TS 212.91 ± 74.23

BMO-MRW TI 214.90 ± 74.23

BMO-MRW N 2133.70 ± 67.56

BMO-MRW NS 242.66 ± 73.29

BMO-MRW NI 250.61 ± 82.34

RNFL G 84.85 ± 19.69

RNFL T 69.89 ± 17.35

RNFL TS 113.43 ± 37.43

RNFL TI 111.52 ± 46.85

RNFL N 68.07 ± 18.23

RNFL NS 100.51 ± 30.97

RNFL NI 93.25 ± 28.94
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Workflow of deep learning model for predicting visual field global indexes
We aimed to estimate three VF global indexes, MD, PSD, and VFI among parameters of BMO-MRW and RNFL 
based on deep learning. The main workflow of our deep learning model for predicting visual field indexes is 
as follows. First, we extracted numerical parameters of BMO-MRW and RNFL from OCT scan images using 
Heidelberg licensed software and included the age of patients in the dataset to train and test the deep neural 
network (DNN) model. A total of 720 eyes from 720 patients were used. Sixteen sub-parameters were used as 
input parameters in the dataset. Three DNN models were built and trained independently to predict the value 
of each VF global index: MD, PSD, and VFI. These models had three hidden layers and a single output layer. 
Exponential linear unit (ELU) was used as activation function. Batch normalization was applied after each hid-
den layer. The three models were constructed with the same structure. The model for each VF global index (MD, 
PSD, and VFI) had minor differences in the number of nodes and the degree of regulation in detail. To improve 
model performance, we applied fivefold cross validation and tuned model hyper-parameters such as learning 
rate, the degree of regulation, the number of layers, and the number of nodes in each layer. In each fold, the 
validation set consisted of 137 eyes (137 patients) and the training set consisted of 547 eyes (537 patients). We 
calculated the MAE in the validation set for each VF global index. To evaluate predicting performance, mean 
absolute error (MAE), Pearson’s correlation coefficient, and R2 of each model were calculated, and the results 
showed in Table 4. The overview of the workflow of each model is illustrated in Fig. 1A. Figure 1B shows the 
detailed structure of the DNN model.

Predictive performances of DNN and ML models
To evaluate performance of prediction for our DNN model, we calculated MAE for each VF global index with 
the validation set. The loss curves of the DNN model for predicting VF global indexes with increasing number 
of epochs was plotted in Fig. 2A–C. With these loss functions of each index, it was verified that the performance 
of the DNN model was stable and robust. We also trained other machine learning (ML) models: Random Forest, 
extreme gradient boosting (XGBoost), and support vector machine (SVM) using Radial Basis Function (RBF) 
kernel to compare their performances with the DNN model. Results of MAE comparison of DNN and ML models 
for each VF global index on a fivefold cross validation are demonstrated in Fig. 2D–F. The DNN model showed 
the lowest MAE VF global indexes. First, the MAE of MD in each model was as follows. The MAE of MD ranged 
from 1.9 to 2.9 dB for our DNN model, 2.2–2.9 dB for SVM using RBF kernel, 2.3–3.0 dB for Random Forest, and 
2.4–3.2 dB for XGBoost. The MAE range of PSD was 1.6–2.0 dB for DNN, 1.8–2.3 dB for XGBoost, 1.8–2.2 dB 
for Random Forest, and 1.7–2.3 dB SVM using RBF kernel. The MAE of VFI in each model was as follows. The 
MAE of VFI ranged from 5.0 to 7.0% (6.3–6.9% for Random Forest, 6.5–7.4% for XGBoost, and 6.5–8.0% for 
SVM using RBF kernel). These results are summarized in Table 3.

Comparison of actual and DNN predicted values of VF global indexes
Statistical analysis was proceeded to compare actual data of each VF global index with data predicted by the 
DNN model. Figure 2G–I show scatter plots of predicted and actual values of three indexes (MD, PSD, and VFI) 
in the dataset. Pearson’s correlation coefficient and R2 were also measured. Between predicted values and actual 
values of MD in the fivefold cross validation, Pearson’s correlation coefficient was in the range of 0.76 to 0.85 
( p < 0.001) . In the PSD estimation, Pearson’s correlation coefficient ranged from 0.74 to 0.82 ( p < 0.001) . In 
VFI prediction, the Pearson’s correlation coefficient ranged from 0.70 to 0.81 ( p < 0.001) . In addition, R2 ranges 
were 0.59–0.65, 0.58–0.66, and 0.58–0.65 for MD, VFI, and PSD, respectively. Statistical results of the DNN on 
five-fold cross validation are summarized in Table 4.

Predictive performances of DNN model according to OCT‑ derived parameters
We evaluated performances of DNN model for predicting VF index (MD) according to the OCT-based param-
eters respectively: BMO-MRW alone, RNFL alone, and both BMO-MRW and RNFL combined. The mean 
absolute error (MAE) of the DNN model based on the parameters of BMO-MRW alone and RNFL alone were 
2.72 dB and 2.87 dB, respectively. The performance of the DNN model based on both BMO-MRW and RNFL 
combined was 2.28 dB of MAE, which showed the smallest value.

Deep learning predictive performance analysis according to glaucoma severity
To evaluate the predictive performances of the DNN model according to glaucoma severity, we measured absolute 
errors of the actual value and predicted value of MD for each eye. Figure 3A shows a scatter plot of absolute error 
showing the prediction performance according to the actual MD values of each eye. The mean absolute error 
(MAE) of the DNN model was 2.19± 1.84 dB in the test set as shown in Fig. 3B. The prediction performance 
for each glaucoma severity in the test set is as follows. The MAE for unaffected control (NN; MD ≥ 0.0) was 
1.76± 1.31 dB, and the mild glaucoma grade (G1; − 6.0 < MD < 0.0) showed its MAE was 2.05± 1.98 dB. The 
MAE for moderate glaucoma grade (G2; − 12.0 < MD ≤ − 6.0) class was 2.17± 0.87 dB, and the severe glau-
coma grade (G3; MD ≤ − 12.0) was it MAE was 3.58± 2.75 dB. It is noticeable that the MAE of the early stage 
of glaucoma is the smallest among all the stages of glaucoma.

Discussion
To our knowledge, the present study was the first to predict all of VF global indexes including MD, PSD, and 
VFI from OCT-derived parameters of BMO-MRW, a new parameter, and RNFL using a deep learning model. 
We found that the performance of our DNN model was outstanding along with other machine-learning models 
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in predicting VF global indexes. For all three indexes, the DNN model showed the best performance. We also 
found that there was a strong correlation between each predicted value and the actual value.

The availability of BMO-MRW obtained from spectral-domain OCT has grown for clinicians. It provides 
some advantages when compared to the previous standard morphometric optic nerve head analysis confocal 
scanning laser tomographic  measurements21–23. Compared to existing ophthalmic examinations, BMO-MRW 
allows for a more precise geometric assessment of the neuroretinal rim (NRR)15–17,20. It has been shown that 
BMO-MRW is advantageous in providing an accurate reflection of the amount of neural tissue present in the 
optic  nerve32. Our previous study reported a high diagnostic performance in discriminating early normal-
tension glaucoma (NTG) from glaucoma suspect (GS) (AUC, 0.966) based on a deep learning model using OCT 
parameters of BMO-MRW, peripapillary RNFL, and color classification of  RNFL25. Interestingly, BMO-MRW, as 
a single parameter, provided a higher diagnostic performance (AUC: 0.959) than RNFL alone (AUC: 0.914) and 
RNFL with its color code classification (AUC: 0.934)25. Moreover, BMO-MRW alone showed similar diagnostic 
performance to that of all three OCT parameters combined. These results suggest that BMO-based optic disc 
assessment might be a better evaluation for different aspects of the optic disc than conventional disc assessments 
in the diagnosis of glaucoma. These findings suggest that BMO-MRW is clinically useful in the diagnosis of 
glaucoma. It might be even better than conventional RNFL. Integrating assessment of BMO-MRW and RNFL is 
beneficial for better diagnosis of glaucoma based on these findings. However, the integration of these two different 
parameters is a complex and challenging for human beings, including general physicians other than glaucoma 
specialists. This is where the latest technology of artificial intelligence can be useful. Recent reports indicate that 
machine-learning classifiers can aid in clinical practice and efficiently enhance glaucoma diagnosis for general 

Figure 2.  (A–C) Loss curve of the DNN model for predicting VF global indexes, MD, PSD, and VFI. The 
blue line is for the training set and the orange one is for the validation set. The axis x is epoch and the axis y is 
the value of each loss function. (D–F) Comparison of MAE for predicting VF global indexes on fivefold cross 
validation. In each figure, blue, orange, green, and red bar represent the MAE of XGBoost, Random Forest, SVM 
with RBF kernel, and the DNN model, respectively. The black bar on all bars means the standard deviation on 
a fivefold cross validation. The axis x is MAE value. (G–I) Scatter plots of deep learning predicted and actual 
values of three indexes (MD, PSD, and VFI) in the dataset. Blue, orange, and green points mean training set, 
validation set, and test set, respectively. The axis x means predicted value from the DNN model and the axis y is 
actual value. VF = visual field; MD = mean deviation; PSD = pattern standard deviation; VFI = visual field index; 
MAE = mean absolute error; DNN = deep neural network; XGBoost = extreme gradient boosting; SVM = support 
vector machine; RBF = radial basis function.
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ophthalmologists in the primary eye care setting when there is a lack of glaucoma  specialists33. The deep learning 
model can provide rapid diagnostic results in the clinics after inputting ophthalmic examination data without 
the need for a multi-day analysis. Ultimately, the decision to treat glaucoma is up to the physician, but the deep 
learning model can suggest a preliminary diagnosis for  reference34. Moreover, the DNN diagnostic model is more 

Table 3.  The MAE for DNN model with other machine learning algorithms. MAE mean absolute error; SD 
standard deviation; MD mean deviation; PSD pattern standard deviation; VFI visual field index; SVM support 
vector machine; RF random forest; XGB extreme gradient boosting; DNN deep neural network.

MD prediction

MAE ± SD (dB) Min (dB) Max (dB)

SVM 2.64± 0.26 2.15 2.92

RF 2.73± 0.23 2.31 3.02

XGB 2.97± 0.27 2.48 3.24

DNN 2.57± 0.33 1.95 2.87

PSD prediction

MAE ± SD (dB) Min (dB) Max (dB)

SVM 2.04± 0.23 1.71 2.30

RF 1.99± 0.18 1.76 2.23

XGB 2.08± 0.20 1.84 2.37

DNN 1.80± 0.14 1.63 2.00

VFI prediction

MAE± SD (%) Min (%) Max (%)

SVM 7.09± 0.55 6.50 8.00

RF 6.61± 0.24 6.29 6.88

XGB 7.01± 0.35 6.50 7.39

DNN 6.06± 0.66 4.95 6.97

Table 4.  Statistical results of the DNN model on five-fold cross validation. PCC Pearson’s correlation 
coefficient; MD mean deviation; PSD pattern standard deviation; VFI visual field index.

PCC (min–max) R
2(min–max)

MD 0.76–0.85 ( p < 0.001) 0.59–0.65

PSD 0.74–0.82 ( p < 0.001) 0.58–0.65

VFI 0.70–0.81 ( p < 0.001) 0.58–0.66

Figure 3.  (A) Scatter plot of absolute errors of the actual MD and predicted MD for each eye in the data set to 
evaluate performances of the DNN model according to glaucoma severity. (B) The mean absolute error (MAE) 
of the DNN model according to glaucoma severity in test set. Note that the MAE is the smallest in G1 group, 
which is early stage of glaucoma. MD = mean deviation; DNN = deep neural network; MAE = mean absolute 
error; SD = standard deviation; NN = unaffected control (MD ≥ 0.0 ); G1 = mild glaucoma grade (− 6.0 < MD < 
0.0); G2 = moderate glaucoma grade (− 12.0 < MD ≤ − 6.0); G3 = severe glaucoma grade (MD ≤ − 12.0).
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cost-effective clinically easy to access compared to other imaging-based CNN diagnostic programs that require 
costly equipment, such as workstations with GPUs and take several days to produce results.

A previous study by Park et al.29 has predicted VF regional thresholds with deep learning based on incep-
tion V3 using combined OCT images of macular ganglion cell-inner plexiform layer (mGCIPL) and peripapil-
lary pRNFL thicknesses maps. They conducted pointwise estimation of VF for a regional analysis. With the 
deep learning method, the root mean squared error (RMSE) of the entire VF area for all patients was 4.79 ± 
2.56 dB (mean ± standard deviation). In our study, we estimated global VF. The MAE of MD was found to be 
2.57 ± 0.33 dB. Our results showed lower MAE, suggesting better results in predicting the entire VF threshold. 
Hemelings et al.31 have conducted a study to predict VF MD and 52 threshold values based on a customized 
CNN model with Xception using peripapillary RNFL map and scanning laser ophthalmoscopy en face images. 
The MAE for MD estimation the deep learning model was 2.89 dB (range, 2.50–3.30 dB).

In our study, the MAE for MD prediction was 2.57 dB (range, 1.95–2.87 dB). Therefore, the present study 
showed lower MAE, indicating better results for predicting the entire VF threshold. Christopher et al.26 have 
developed a deep learning system based on ResNet50 to predict MD, PSD, and mean VF sectoral pattern devia-
tion (PD) using image data of RNFL thickness map, RNFL enface image, and confocal scanning laser ophthal-
moscopy image. In MD estimation, the deep learning model with RNFL enface image achieved the highest 
performance with R2 of 0.70 (range, 0.64–0.74) and MAE of 2.5 dB (range, 2.3–2.7 dB). In PSD estimation, R2 
was 0.61(range, 0.55–0.66) and MAE was 1.5 dB (range, 1.4–1.6 dB). Our deep learning model, which utilized 
combined parameters of RNFL and BMO-MRW, demonstrated similar performance to other previous studies. 
It could also predict additional VF global indexes such as VFI. Results of our study were highly comparable to 
those of previous research, thus having a significant meaning. Yu et al. have used 3D CNN model to estimate 
VF global indexes of MD and VFI, but not all three indexes from combining macula and optic disc OCT scans 
in healthy, glaucoma suspect, and glaucoma  patients27. Each global index of VF test has its own advantage, and 
thus, only one index cannot tell all the aspects of the entire VF results. For example, MD is useful to estimate 
the overall stage of glaucoma. On the other hand, PSD reflects the focal VF defect in an early stage of glaucoma, 
which is beneficial in the diagnosis of early glaucoma.

Using the deep learning model based on macular and optic nerve head scans, the MAE was 1.57 dB for MD 
and 2.7% for VFI. Yu et al. have shown great results with a larger number of images. However, their study included 
multiple visit data from one patient to have a larger number of images. We used single visit data from each sub-
ject, which might be more independent and reliable. Moreover, we used data extracted from OCT using lighter 
and cost-effective model to predict VF global indexes. Our results were quite comparable to results of the study 
by Yu et al. using images from OCT with a more complicated model. Results of VFI seemed to be better in the 
study by Yu et al. (2.7 dB for VFI). However, considering VFI percentage in our study, results were substantially 
good. The VFI reflects RGC loss and function as a percentage, with central points having more  weights35. It is 
expressed as a percentage of remaining proportion of visual function. It is a reliable index on which glaucoma-
tous visual field severity staging can be based. VFI can also be used to calculate the rate of progression which 
is shown in trend-based glaucoma progression analysis of Humphrey Field Analyzer  software36. While VFI is 
important in the management of glaucoma, previous studies have predicted that this global index (VFI) is rare 
to be found in the field of AI (artificial intelligence) using deep learning methods. Most of previous studies have 
mainly focused on predicting MD as a global index from different images of OCT or HRT  device26–31. Our study 
also had a significant meaning in that we predicted VFI as a global index from extracted OCT data. This has not 
been reported before in the field of AI using deep learning method.

The result of the current study has a significant clinical meaning in that it provides summary outline numbers 
of functional VF test from structural OCT test. OCT test is objective. It offers quantitative values of optic nerve 
head parameters. However, VF requires patient cooperation, a relatively long time, and designated space to be 
performed. Sometimes and quite frequently, VF test results are not available at the time of clinical practice. Since 
VF test also requires cognitive ability and motor reaction, for old patients and those with dementia or stroke 
and/or those with motor disability, VF test cannot be performed correctly. Moreover, in some clinics, VF tests 
need appointment. They cannot be done at the first visit because all appointed VF tests are being performed at 
that time. If that patient cannot come back in a short time, VF test can be delayed for a very long time. Thus, 
correct diagnosis of glaucoma or decision for the disease progression is difficult to be made. In such situations, 
if summary results of VF test could be predicted from OCT test without actually performing the VF test, it could 
be clinically very helpful in the management of glaucoma. Especially, in our deep learning VF global indexes 
prediction model, the performance of the prediction was the best in early stage of glaucoma based on the MAE 
as shown in Fig. 3A. Early stage of glaucoma or glaucoma suspects usually visit glaucoma clinic to be diagnosed 
of glaucoma for the first time and in these cases VF test results are necessary. Our relatively quick DNN model 
may be also useful in these situations, which frequently occur in clinics.

NTG comprises the majority (76.3%) among patients with POAG in Asian populations as reported by previ-
ous population-based  studies37. Thus, information regarding NTG is clinically important for Asians. It applies to 
Asian countries and also other countries elsewhere with a substantial proportion of Asian population. However, 
previous deep-learning studies rarely included NTG. It is difficult to find studies including data of NTG or those 
even classified NTG. As previous deep-learning studies including data of NTG are scarce, the current study 
might have a significant meaning to be added in the literature for providing additive information and future 
deep-learning studies in the field of glaucoma.

The current study had several limitations. First of all, there are potential limitations owing to its retrospec-
tive design. We included only those who had taken both RNFL and BMO-MRW tests with an acceptable images 
quality. In addition, only those who had reliable VF tests were included. The impact of the subject selection on 
our results remains unclear. Second, the study was conducted at a referral university hospital within the province 
using a hospital-based design, rather than a population-based approach.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18304  | https://doi.org/10.1038/s41598-023-43104-y

www.nature.com/scientificreports/

The individuals included in the study may not be fully representative sample of the general population. 
Additionally, this study included only Korean patients. Thus, results of our study, including NTG, might not be 
applicable to other ethnic groups. Third, it should be considered that the sample size of this study is relatively 
small. Although 720 subjects with either glaucoma or GS were included in this study, this number might not be 
insufficient to train or test the performance to predict a single test result from single device data. Other studies 
with large number used both eyes from multiple visits. However, we used only one randomly selected eye from 
one person from a single visit. Our data might be more independent and more reliable/correct than previous 
studies. If we have included both eyes from multiple visits, the number of data could be much larger, for example, 
six times. Finally, the analysis of OCT images utilizing deep neural network (DNN) in this study was based on 
the extraction of numerical data from the images rather than using direct images. However, it is still meaningful 
in that clinicians can use deep-learning models with free open-sources to obtain prompt results and get aid in the 
management of glaucoma. This approach is more economically feasible than using convolutional neural networks 
(ConvNets) for image analysis, which can be costly to achieve high accuracy. We might consider developing 
our own program to be used in clinical practice to aid preliminary diagnosis from direct OCT-image analysis 
employing ConvNets in future studies achieving accurate performance.

In conclusion, our DNN model showed high performance in predicting VF global indexes of MD, PSD, and 
VFI based on OCT-derived parameters of BMO-MRW, a new parameter, and RNFL. Prediction based on VFI 
was the highest, followed by that based on MD and PSD using our DNN model in GS and glaucoma patients. 
Our DNN model might be beneficial in clinical practice in the management of glaucoma including diagnosis and 
monitoring progression. Given that our DNN model provides prompt outputs, it has the potential to the particu-
larly valuable in settings where there are no glaucoma specialists available, such as primary eye care. Nonetheless, 
a more conclusive determination would require a larger, multi-center study with a substantial patient cohort.

Material & methods
Ethics statement
This retrospective observational, cross-sectional study was conducted in accordance with the tenets of the Dec-
laration of Helsinki. It was approved by the Institutional Review Board (IRB) of Gyeongsang National University 
Changwon Hospital, Gyeongsang National University School of Medicine. The requirement for informed consent 
was waived by the IRB of Gyeongsang National University Changwon Hospital due to its retrospective nature.

Subjects
Among 1487 patients with glaucoma and glaucoma suspects who were evaluated between February 2016 and 
December 2021 in a glaucoma clinic at Gyeongsang National University Changwon Hospital, a total of 720 eyes 
(720 subjects) were included. Glaucoma diagnosis included early NTG, PACG, PEXG, POAG, and GS. Subjects 
consisted of 224 eyes of those with GS, 245 eyes of those with early NTG, 59 eyes of those with moderate stage 
of NTG, 36 eyes of those with PACG, 57 eyes of those with PEXG, and 99 eyes of those with POAG. The study 
included only those participants who met the diagnostic criteria below and demonstrated reliable results for 
both BMO-MRW and RNFL.

Diagnosis of glaucoma was assessed by a single glaucoma specialist (H-k Cho) applying consistent criteria. 
To diagnose NTG, patients needed to meet specific criteria, including having an IOP ≤ 21 mmHg without treat-
ment who demonstrated glaucomatous optic disc injury and corresponding VF loss, an open-angle assessed 
by gonioscopic inspection, and no other underlying cause of optic disc injury other than  glaucoma38. Early 
NTG was defined as the VF test results of MD > − 6.0 dB. PACG was determined as eyes with shallow anterior 
chamber (appositional contact between the peripheral iris and the trabecular meshwork (TM) > 270 degrees on 
gonioscopy and showed glaucomatous optic disc damage (decline of NRR with a vertical cup-to-disc ratio of 0.7 
or an asymmetry between eyes of 0.2, or notching ascribe to glaucoma) and showing corresponding visual field 
 defects39. To diagnose PEX glaucoma, the criteria included the observation of PEX material at the margin of the 
pupil and on the anterior lens capsule after maximal pupil dilatation, along with the presence of baseline IOP of 
at least 22 mmHg, glaucomatous optic nerve head damage, visual field loss consistent with optic disc injury, and 
the absence of other conditions causing secondary  glaucoma40. POAG was defined as a patient with a baseline 
IOP of more than 21 mmHg prior to treatment who showed findings of glaucomatous optic nerve head injury 
and corresponding VF loss, an open-angle assessed by gonioscopic inspection, and no other underlying cause 
for optic nerve head injury besides  glaucoma1.

The exclusion criteria were as follows: low-quality image scans resulting from eyelid blinking or poor fixation, 
history of optic neuropathies aside from glaucoma or an acute angle-closure crisis that could affect the thick-
ness of the RNFL or BMO-MRW (e.g., optic neuritis, acute ischemic optic neuritis), history of any intraocular 
surgery except for uneventful phacoemulsification, and retinal disease associated with retinal swelling or edema 
and subsequent RNFL or BMO-MRW swelling. Preperimetric glaucoma was excluded from the current study. 
Subjects were not excluded by axial length or refractive error, or the size of optic disc for the present study.

Optical coherence tomography
Imaging of spectral-domain OCT was accomplished using the Glaucoma Module Premium Edition. Radial 
B-scans of 24 in number were acquired to analyze BMO-MRW. Among three scan circle diameters (3.5, 4.1, and 
4.7 mm), a scan circle diameter of 3.5 mm was chosen for peripapillary RNFL thickness measurement. Only 
those images that were correctly centered and accurately segmented and quality scores ≥ 20 were selected for 
this study. Images taken with OCT were aligned in FoBMO axis, that is an individual specific axis that measures 
between the center of BMO and the fovea of macula. Employing this FoBMO axis could enable more correct 
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analysis of Garway-Heath sector considering cyclotorsion of each individual and more precise analysis compared 
with normative database than the existing way of using only simple clock-hour locations.

Perimetry
We used a Humphrey Field Analyzer (HFA model 840; Humphrey Instruments Inc.) for perimetry with a central 
30-2 program of Swedish Interactive Threshold Algorithm standard strategy. A reliable VF test had to qualify the 
following criteria: false-positive rate < 15%; false-negative rate < 15%; and fixation loss less than 20%.

Data preprocessing
The dataset consisted of OCT parameters and age of 720 eyes. Parameters included the following: age, BMO Area, 
BMO-MRW Global, BMO-MRW Temporal, BMO-MRW superotemporal (TS), BMO-MRW inferotemporal 
(TI), BMO-MRW Nasal, BMO-MRW superonasal (NS), BMO-MRW inferonasal (NI), RNFL Mean Global, 
RNFL Mean Temporal, RNFL Mean TS, RNFL Mean TI, RNFL Mean Nasal, RNFL Mean NS, and RNFL Mean 
NI. Each feature was standardized by its mean and standard deviation to make learning process more efficiently. 
Stratified sampling was used to compensate for the relatively small size of dataset to be divided randomly. Out 
of 720 eyes, 684 eyes were used to construct a train set (95%) and 36 eyes were used to form a test set (5%). 
Since test data were used for comparing prediction performances of each model, they contained five percent of 
the dataset. K-fold cross validation (k = 5) was applied. The train set was re-slitted to a ratio of 8:2 for train set 
(n = 541) and validation set (n = 137). Programming language Python version 3.9.7 (https:// www. python. org/) 
and the package Scikit-learn 0.24.2 (https:// scikit- learn. org/) were used to preprocess all data.

Machine learning algorithm
Machine learning means the use of an algorithm to make prediction not based on logics but based on data. 
Models rarely had any explicit rule or strict logic. Instead, they generate results by using the  data41. The process 
of getting results can vary depending on the method of the ML algorithm. In our study, several ML models, Ran-
dom Forest, XGBoost, SVM, and SVM with Radial Basis Function, were used and compared with a DNN model. 
Random Forest algorithm is one of the mainly used ML algorithms for tasks of classification and regression. It 
combines several decision trees and makes predictions by using voting system which averages all decision trees’ 
 results42. XGBoost is also based on decision tree like Random Forest. However, it implements a boosting process 
which is the ensemble learning technique of building several models  sequentially43. SVM is an ML algorithm that 
maps data from the feature space into the kernel  space44. We also used SVM with RBF  kernel45.

Deep neural network architecture
A DNN is an artificial neural network with more than two hidden layers and a non-linear activation function. 
DNN proceeds learning process by repeating feedforward and  backpropagation46. We built our model using 
open-source neural network APIs, Keras (https:// keras. io/), and TensorFlow (https:// www. tenso rflow. org/). Each 
model was built slightly differently because each VF global index had different meaning, values, and distributions. 
According to the index, we made three DNN models in this study: MD prediction model (MD model), PSD 
prediction model (PSD model), and VFI prediction model (VFI model). These models had the same number 
of layers: a single input layer, three hidden layers, and an output layer as shown in Fig. 1B. Each model received 
input data with 16 parameters which consisted of age and other ocular parameters extracted from OCT scans 
and related to BMO-MRW and RNFL. Batch Normalization was used after each hidden  layer47. An ELU func-
tion was used as an activation  function48. To prevent overfitting, l2-regularizer was used. An adaptive moment 
estimation optimizer (Adam) (learning rate = 0.05) was used for each  model49. Learning rate decay method was 
applied. MSE was used for its loss function. Architectures of these models used in this study are shown in Fig. 1.

Statistical analysis
To evaluate the performance of the deep-learning model, MAE was utilized. MAE was evaluated to determine the 
performance of a regression model interpretably. It is generally known as more intuitive and easier to interpret 
than root mean squared error. MAE is the average of the absolute value of the deviation. The formula to calculate 
MAE for each indicator is shown as follows:

We also calculated Pearson’s correlation coefficient ( ρ ) and R2 to evaluate how our models were trained and 
whether they showed convincing  prediction50. All statistical analyses were performed using programming lan-
guage Python version 3.9.7 (https:// www. python. org/) and the package Scikit-learn 0.24.2 (https:// scikit- learn. 
org/).

Data availability
Dataset used in this study might be obtained from Hyun-kyung Cho (MD, PhD) upon reasonable request.
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