
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16793  | https://doi.org/10.1038/s41598-023-43063-4

www.nature.com/scientificreports

Predicting cognitive decline 
in a low‑dimensional 
representation of brain 
morphology
Rémi Lamontagne‑Caron 1,2*, Patrick Desrosiers 2,3,4, Olivier Potvin 2, Nicolas Doyon 2,3,5 & 
Simon Duchesne 2,6

Identifying early signs of neurodegeneration due to Alzheimer’s disease (AD) is a necessary 
first step towards preventing cognitive decline. Individual cortical thickness measures, 
available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers 
of neurodegeneration. However, normal aging cortical decline and high inter-individual 
variability complicate the comparison and statistical determination of the impact of AD-related 
neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of 
a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, 
we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation 
and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 
cognitively healthy participants aged 18–100 years old and the other on 233 mild cognitively impaired 
(MCI) and AD participants from the longitudinal database, the Alzheimer’s Disease Neuroimaging 
Initiative database (ADNI). Each participant had multiple visits ( n ≥ 2 ), one year apart. The first 
embedding’s principal axis was shown to be positively associated ( r = 0.65 ) with participants’ age. 
Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories 
between clusters were shown to be significantly different between MCI and AD subjects. Moreover, 
some clusters and trajectories between clusters were more prone to host AD subjects. This study was 
able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 
with 10-fold cross-validation.

A proper understanding of brain morphology trajectory during cognitively healthy aging can be leveraged 
to detect departures due to neurodegeneration (e.g. from Alzheimer’s disease (AD)) and therefore serve as 
an early indicator of incipient dementia. As the socio-economic costs of AD increase with the aging of global 
populations1,2, early detection becomes the only approach that allows for the possibility of interventions able to 
reduce the risk of conversion to dementia.

Brain morphology can be assessed via magnetic resonance imaging (MRI)3–6. Morphometry has been shown 
to be a sensitive marker of neurodegeneration7,8. However, normal aging cortical decline and high inter-indi-
vidual variability complicate the comparison and statistical determination of the impact of AD-related neu-
rodegeneration on trajectories. Further, the high-dimensional nature of morphometry (whereas the available 
measurements routinely surpass the number of study participants) necessitates the use of a transformation into 
lower-dimensional spaces in order to perform statistical analyses, modeling or machine learning9–12. In these 
resulting spaces of low dimensionality, the task then turns to the identification of criteria with which to determine 
whether a given brain morphology trajectory is pathological or not, which implies having comparative instances 
of both successful and pathological natures.
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High-to-low dimensionality transformations have been carried out via a number of approaches in the past. In 
some instances, dimensionality reduction or machine learning algorithms were applied directly to the raw voxel 
data13–17. Other approaches first use tools (e.g. FreeSurfer18) to extract features such as volumes, thicknesses or 
surface areas for individual brain structure, then perform dimensionality reduction on the feature vectors19–23. 
While the first family of approaches may yield classifiers with adequate accuracy, the lower-dimensional space 
and resulting classification functions are usually difficult to interpret. On the other hand, the second family 
of approaches allows the association between principal dimensions to interpretable features with biological 
meaning24, which in turn might suggest intervention strategies. In recent years, the brain age field of research 
has used both approaches to predict biological age for the whole spectrum of cognitive health with successful 
results. In turn, this technique has also shown potential for the prediction of cognitive decline25–29.

Uniform Manifold Approximation and Projection (UMAP) is a novel entry in the domain of high-to-low 
dimensionality reduction techniques. First published in 201830, UMAP’s backbone rests on Riemannian manifold 
theory and topological data analysis. In a high-dimensional space in which each brain is a point, a manifold 
is a lower dimensional embedded space. UMAP is a method for projecting brains (points in the full space) 
onto a 2-D or 3-D manifold in a way that preserves essential relations but makes visualization possible. Being 
a Riemannian manifold, the space in which the brain points live has a distance function (Riemannian metric) 
that is non-Euclidean, and UMAP can project them onto visible 2 or 3D manifold in a way that preserves their 
distance relations under that metric. To accomplish this, UMAP uses two hyperparameters: n_neighbors and 
min_dist. The former describes how global the preserved relationships are, while the latter defines the dis-
tances between points in 2-D. Furthermore, its main advantage over other nonlinear methods, like t-distributed 
Stochastic Neighbor Embedding (t-SNE)31 or nonlinear principal component analysis32, comes from its agility, 
performance and conservation of global structures. Arising from Riemannian mathematics, the algorithm is 
highly generalizable and doesn’t necessitate strict priors on the data, such as the features being linearly depend-
ent between each other. As to not imbue priors on the low-dimension embedding, UMAP is a good candidate. 
Further, as opposed to highly nonlinear deep learning networks, a UMAP based method is interpretable through 
visualization. It is therefore a suitable technique to handle the nonlinear nature of brain morphological trajec-
tories and embed our data vectors in a lower-dimensional space. Examples of similar applications can be found 
in Campbell et al. and Becht et al.33,34

In this article, we present our work on brain morphology trajectory estimation on a number of well-known, 
publicly available datasets composed of individuals across the spectrum of cognitive health. Our general goal is 
to use UMAP to generate a reference low-dimensional representation of morphology from vectors of features 
describing the thicknesses of different brain regions; then project in this space data from individuals across the 
spectrum of cognitive decline. A discretization scheme alongside probabilistic analysis of trajectories is used 
to achieve the best possible accuracy at predicting the longitudinal cognitive outcome in individuals. As a first 
experiment, we built the reference space using a dataset composed of cognitively healthy (CH) individuals, in 
which we projected data on subjects with mild cognitive impairment (MCI; a prodromal state of AD) that either 
progressed to dementia due to probable Alzheimer’s disease (MCI-AD) or remained cognitively stable (MCI-
MCI). In a second experiment, we used data on MCI-AD and MCI-MCI individuals to form the reference space 
as a basis for classification. In both experiments we tested the association with aging.

Methods
Figure 1 shows a diagram of the data processing pipeline used for this research, described in more detail in the 
following section.

Ethics
Approval for the study was obtained from the Ethics review committee of the CERVO Brain Research Center 
(NSM-2021-2022). Approval for this study was obtained from the local ethics board and informed consent for 
all participants were obtained for all datasets in this study (see Acknowledgements). All methods were carried 
out in accordance with relevant guidelines and regulations.

Participants
NOMIS
The NOMIS database35 was used to train UMAP’s dimensionality reduction model. The database is composed of 
a total of 6237 CH participants (3,556 women), aged 18–100 years old (median 56 y.o.), and aggregated from 26 
different databases35. Participants had no history of: psychotic disorders, mood, anxiety, post-traumatic stress, 
or substance abuse/dependence disorders; neurodegenerative and neurological disorders; head injury with loss 
of consciousness/amnesia; lead poisoning; or geriatric depression. Since those participants were scanned once, 
the NOMIS data is cross-sectional.

ADNI
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (ADNI1, GO, 2 and 3)36 was used to test the 
UMAP model for the prediction of cognitive decline. Launched in 2003 as a public-private partnership, led by 
Principal Investigator Michael W. Weiner, MD, ADNI’s goal has been to test whether serial MRI, positron emis-
sion tomography, other biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of MCI and early AD. For up-to-date information, see www.​adni-​info.​org. All ADNI 
participants with longitudinal time points and at least one follow-up after the baseline scan were selected for 
this project, for a total of 1354 participants (604 women). We used ADNI’s clinical diagnostic categorization at 

http://www.adni-info.org
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baseline (526 CH; 828 MCI; 0 AD) and last available follow-up (477 CH, 537 MCI; 340 AD), see Supplementary 
Table S5 for more details.

Diagnostic criteria
For the first ADNI cohort, the criteria for classification between CH, MCI and AD were based on memory loss, 
the Mini-Mental State Examination (MMSE), the Clinical Dementia Rating score and one paragraph from the 
Logical Memory II subscale of the Wechsler Memory Scale-Revised. For memory loss, participants needed to 
have complained about lapses in their memory to be classified as MCI or AD, while CH subjects did not experi-
ence memory lapses. With the MMSE, CH and MCI subjects had to have a score between 24 and 30, and for 
AD, 20–26. Cognitively healthy participants had to have a Clinical Dementia Rating score of 0, MCI 0.5 with 
the memory box score being 0.5 and AD a score of 0.5 or 1. For the last test, result depended on education. CH 
participants had a score ≥ 9 for 16 years of education, ≥ 5 for 8–15 years of education and ≥ 3 for 0–7 years of 
education. In the other hand, MCI and AD subjects had to have a score ≤ 8 , ≤ 4 and ≤ 2 for the same education 
groups37.

Outcome
Throughout this article, we will refer to the evolution of clinical diagnostic categories as trajectory types. For 
instance, a subject with a MCI diagnostic at their first and last MRI was considered “stable” (MCI-MCI) while 
another who developed AD at a later stage would be a “converter” (MCI-AD).

Figure 1.   Methodological pipeline for the prediction of cognitive outcome. (1) We separate the different 
datasets (NOMIS and ADNI) into the necessary subsets (test, cross-validation and space set). (2) Different 
UMAP models are trained on one of the two space sets which results in the an embedding referred to as 
“UMAP embedding”. This embedding is linearly transformed so its axes are align with its principal axes. This 
transformation in turns results in a new embedding referred to as “t-UMAP embedding”. The latter embedding 
is fed to the probability atlas algorithm. The figures displayed under “UMAP embedding” and “t-UMAP 
embedding” were made using the NOMIS dataset with n_neighbors = 20 as the UMAP parameter. (3) The 
probability atlas algorithm reduces the longitudinal data (ADNI for this paper) using the previously trained 
embedding, clusters the resulting data and computes the population and probability associated with each 
trajectory. (4) Finally, the performance is assessed through 10-fold cross-validation using the “cross-validation 
set”, and the model with the best AUC is tested on the test set to generate the final accuracy of the method.
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MRI data
NOMIS
Each NOMIS participant had an available T1-weighted MRI. Because the origin of the data is multiple, the pro-
tocol, MRI manufacturer and magnetic field strengths used were not uniform throughout the sample. Regarding 
manufacturers, 1160 scans (18.60%) were made with a Philips Medical Systems MRI (Best, Netherlands), 3853 
(61.77%) with a Siemens Healthcare (Erlangen, Germany) scanner and 1224 (19.63%) using GE Healthcare’s 
products (Milwaukee, WI). Of these scans, 4778 were done at magnetic field strengths of 3.0 Tesla and 1459 at 
a field of 1.5 Tesla.

Part of the data used in the preparation of this article were obtained from the Parkinson’s Progression Markers 
Initiative (PPMI) database. For up-to-date information on the study, visit www.ppmi-info.org.

ADNI
Participants were scanned on different MRI units albeit with a standardized protocol38. In total, there were 7414 
scans and 4157 of those from MCI individuals at baseline. From those, the distribution of scans was similar to 
NOMIS with 547 (13.16%) using Philips Healthcare products, 2048 (49.26%) on Siemens Medical Systems units 
and 1562 (37.58%) on GE Healthcare. MRIs were taken with two field strengths; 2157 at 3.0 Tesla and 2000 at 
1.5 Tesla. The age distribution was similar between MCI-AD (range: 55.1–95.9 y/o; average 76.1, SD 7.2 y/o) and 
MCI-MCI indviduals (range: 55.2–97.4 y/o; average 74.6, SD 7.7 y/o). For a full list of ADNI’s subjects, refer to 
Supplementary Tables S6–S10.

ADNI pre‑processing
ADNI being a longitudinal, multi-centric study, some subjects were scanned every six months while others every 
year, with different lengths of follow-up (median of 10.2 months, mean of 11.04 months and a standard devia-
tion of 7.8 months). Thus, before being processed, ADNI longitudinal data was binned into standardized time 
step of 1 year (+/− 5 months), based on the distribution of time steps in the index. This process and its impact 
on the data is documented in Supplementary Figs. S1–S4. This served to make trajectories comparable among 
participants. Further, in ADNI1/GO, some participants were scanned initially at a field of 1.5 T, but at every 
other follow-up at 3.0 T. In these cases the first scan was discarded in order to not bias morphometry estimates 
by scanner and field strength changes. In fine, the ADNI sample consisted of 1780 scans from 549 MCI subjects 
with at least one follow-up, an average age of 74.6 (7.8) y/o for the MCI-MCI and 76.8 (7.3) y/o for MCI-AD. 
The distribution of regularized time steps had a median of 1.01, a mean of 1.00 and a standard deviation of 0.14.

Image processing
Each T1-weighted MRI was processed using FreeSurfer version 6.0, a free open-source software used to quantify 
brain anatomy. FreeSurfer encompasses multiple brain atlases to produce brain segmentation. We selected the 
Desikan-Killiany-Tourville atlas39 (DKT, aparc.DKT.stats file) for the cortical segmentation. The MRI data were 
processed using the “recon-all -all” command in FreeSurfer with the fully automated directive parameters (no 
manual intervention or expert flag options) on the CBRAIN40 platform to extract thicknesses for all defined 
atlas regions.

The processing techniques used by FreeSurfer18 to generate the cortical models consisted mainly of motion 
correction, removal of non-brain tissues using watershed/surface deformation procedure, automated Talairach 
transformation, intensity normalization, tessellation of the gray matter white matter boundary, automated topol-
ogy correction, and surface deformation following intensity gradients to accurately place the tissue boundaries 
between gray/white matter and gray/cerebrospinal fluid. Additional processes are available following the cortical 
model : surface inflation, registration to a spherical atlas and parcellation of the cerebral cortex into units. These 
allow for a better representation of cortical thickness by using the intensity values and the whole information 
from the volume segmentation. Thickness is calculated using the closest distance from the gray/white boundary 
to the gray/CSF boundary at each vertex on the tessellated surface35.

For this project, we average regional cortical thickness per region as a proxy of cortical neuronal degeneration, 
as validated in the work of Cardinal and Belathur41,42. This average was turned into a Z-score using the NOMIS 
tool, which normalizes the data based on a two-step regression model taking into account image quality and head 
size (eTIV), and sex. Since age is an important factor in AD it was not used here to normalize data. Hence, for 
each participant, expected measure values were generated in the form of Z-scores that demonstrate deviations 
from the normative NOMIS values.

Data analysis
Low dimensional reduction
According to the DKT atlas, the cortex was divided in 31 regions for each of the left and right hemispheres, and 
hence each data point was represented by a 62-dimensional vector. To facilitate predictive modeling, dimensional 
reduction of the data with UMAP was an important step. UMAP is a nonlinear algorithm based on Riemannian 
geometry and algebraic topology used for dimension reduction of high-dimensional datasets. To accomplish 
this, UMAP first computes the topology of the manifold as a k-nearest neighbor graph. The graph is weighted 
by the probability that two points are connected based on their distance computed with the Riemannian metric. 
The further two points are from each other, the least probable they are to be connected. For a given node, the 
number of nearest neighbors with which distances can be calculated are determined by the hyperparameter 
n_neighbors, denoted by k in the mathematical and computer science literature30,31. The other hyperparam-
eter, min_dist, describes the minimum distance between points in the reduce space. When, UMAP tries to 
project the data from a high Riemannian space onto a lower Euclidean space, it does so by respecting the minimal 
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possible distance between points in that space. Finally, the topological graph is generated for the low-dimension 
space, and by optimizing the cross-entropy between the lower and higher dimension topology, the algorithm 
finds the projection that represents the most the data topology43(further details are included in McInnes30). As 
previously mentioned, the two hyperparameters give the algorithm generalizability while allowing us to find the 
embedding that fits our need. In our first experiment, we generated a low-dimensional manifold using UMAP by 
reducing the 62-dimensional cortical thickness data from NOMIS to m-dimensions (with its axes being UMAP0, 
UMAP1, ..., UMAPm− 1 ), where m ≪ 62 , using min_dist = 0 and different n_neighbors values of 2–100 
(Figs. 3 and 4). We initially verified if m = 2 or m = 3 was the better target dimension for our problem. To do 
so, the explained variance of each dimension was calculated to verify if the third dimension was useful. We then 
used the trained model to transform the entire ADNI data in the new m-D space.

In our second experiment, we created a low dimension embedding model using the ADNI database only. 
For this model, we randomly selected 40% of the subjects in the ADNI dataset to generate the UMAP embed-
ding, in which we projected data from the remaining participants, performed clustering, and calculated the 
probability of AD associated with trajectories. For both models, no feature selection was made on the data so 
that UMAP has full information to maximize the distance between MCI-MCI and MCI-AD and see if relevant 
cortical regions can be extracted.

We hypothesized that the first model would encompass the characteristics of normal aging which could 
distinguish AD and MCI patients, but the second model could directly represent the morphological decline 
related to dementia and thus be more predictive of the cognitive outcome. In the rest of the paper, we will use 
NOMIS embedding to refer to the embedding trained on NOMIS and ADNI embedding to refer to UMAP models 
trained on ADNI.

Transformation for axis analysis
In this application of the nonlinear UMAP method, it is difficult to interpret axes in terms of the features 
(thickness of cortical regions). Remark that algorithms such as PCA provide a linear combination of features 
to generate axes, while with UMAP these relations come from correlations. Moreover, the UMAP embedding 
doesn’t impose an orientation on the data and thus, any rotation is equally valid. Therefore, after having applied 
the UMAP algorithm, we used a linear transformation over the UMAP embedding to rotate the data such that 
its principal axes could explain most of the variance in the embedding. As described by the principal component 
analysis, this rotation is given by the singular value decomposition of the embedding44. This method allowed us to 
determine which features correlated the most with UMAP embedding axes. These transformed axes are referred 
to as t-UMAP. Because aging is a strong confounder in the study of dementia, we tested whether the algorithm 
implicitly embedded age in both NOMIS and ADNI embedding representations. To test this, we used Pearson’s 
correlation between age and t-UMAP vectors. We further tested if there were correlations between the axes and 
the thickness of the different brain regions.

Clustering
In either embedding experiment, the low-dimensional t-UMAP space was then parcellated into data clusters, 
each containing the same number of data points, in order to achieve similar statistical power in our trajectory 
analyses. The clustering was done on the t-UMAP coordinates only. To this end, we adapted scikit-learn’s k-means 
algorithm45 to our need of segmenting the data in equal groups.

A number of clusters (C) can be specified by the user and the number of data points in each cluster (n) 
is determined from the overall size of the data set. The clusters’ centroids were initialized using scikit-learn’s 
k-means++ algorithm46. A distance matrix between each pair of points and centroids was then computed, and 
a probability matrix calculated. The entries of the latter matrix describe the probability that a given data point 
(row) belongs to a given cluster (column). These probabilities are based on the distances between data points and 
the centroids according to the formula: Wij = 1−Dij/Vi where W is the probability matrix, D is the distance 
matrix and V is a column vector where each element is the maximum value of the corresponding row in D . The 
matrix entry has a value of 0 if the corresponding centroid is the furthest from the data point.

For each cluster, the n likeliest points were then assigned to it. If the number of data points was not divisible 
by C, the unassigned data points were assigned to their likeliest cluster.

An iterative process followed, in which, at each iteration, centroids’ position and their distances from every 
point were calculated; probabilities for a point to switch cluster were ordered; and assignments performed. The 
process was run until the inertia (within-cluster sum-of-squares of the distances between points and their closest 
centroid) could not be minimized further, or a maximum number of iterations was reached45.

Probabilistic Trajectory
In the m-dimensional space computed from the embedding data, we projected the remaining ADNI data points 
and segmented them into identical-size clusters, after which we turned our attention to the problem of trajec-
tory prediction.

We first defined as a trajectory the ordered sequence of clusters through which a participant’s data belonged in 
its longitudinal course. Figure 2 shows a simplified representation of an embedding with four clusters. As shown 
in the figure, we defined a subject’s trajectories from their latest data point, meaning a trajectory of length 3 is 
composed of the 3 oldest datum for a subject. To characterize trajectories at the group level, in every possible 
trajectory, we computed the probability that an individual in this trajectory developed AD. First, given an embed-
ding with C clusters, the total number of trajectories T, for every possible trajectory of length one to L, is given 
by T =

∑L
l=1

Cl . Each set of T trajectories is initialized with a null probability. The probabilistic atlas was then 
generated, in which every entry was composed of a trajectory and its associated AD progression probability. Then, 
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Figure 2.   Defining trajectories. An arbitrary embedding with four clusters. The arrows represent the direction 
in time for each subject. Given an embedding with clusters, we can define the longitudinal trajectory of subjects 
as follows. In this example, subject 1 would have a full trajectory of [0-1-3-3] while subject 2 [2-3-1]. The 
trajectory of length 1 would be [3] for subject 1 and [1] for subject 2 and the trajectory of length 3 would be 
[1-3-3] for subject 1 and [2-3-1] again for subject 2. Subject 2 wouldn’t have a trajectory of length 4 and subject 
1’s would be equivalent to its full trajectory.

Figure 3.   UMAP embeddings of the NOMIS (left figures) database and ADNI database (right figures) 
using three different values of n_neighbors. The age (years) of the participants is color coded, from 18 
to 100 for NOMIS and 55–97 for ADNI. The parameter min_dist = 0 for all embeddings. (a) and (d) Has 
n_neighbors = 3, (b) and (e) has n_neighbors = 20 and (c) and (f) has n_neighbors = 100. Note that 
axes have been scaled to fit every point in the frame.
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for every participant, we pieced together cluster trajectories for the last, two last and three last data points, thus 
creating trajectories of length one, two and three steps for the participants. Depending on the final diagnosis at 
the last step (i.e. whether the participant remained stable or progressed to AD), the probability of this trajectory 
with respect to AD was updated consequently. Once the whole dataset was processed, we had an atlas tying the 
probability of developing AD to each possible trajectory of lengths 1–3.

A disadvantage of this approach is that empty trajectories (paths not taken by any participant) were evaluated 
as paths with a probability of zero, even though no data were available. These trajectories cannot be tossed aside 
since future participants might follow such trajectories, and a statistic will be required to “predict” diagnosis. 
We then arbitrarily chose for these trajectories to remain at a value of zero.

Given that ADNI has 949 MCI individuals at baseline, Cl must be ≪ 949 so that trajectories of length l are 
reasonably populated. Because of this limitation, we empirically limited the length of a trajectory to the last three 
data points (i.e., three years before diagnostic of AD) and the maximum number of clusters to 7, which gave us a 
maximum of 343 unique trajectories. Since the subjects are not uniformly distributed between every trajectory, 
as shown in Supplementary Figs. S5 and S6, we could afford Cl to be ≈ 1/3 of the number of subjects. Indeed 
a lot of trajectories will never be used and can thus be discarded. Supplementary Fig. S5 shows that C = 7 and 
l = 3 gives 108 used trajectories. Given larger datasets, these limitations could be lifted.

Statistical analysis
We performed a sensitivity analysis using 10-fold stratified cross-validation as follows. First, we separate the 
ADNI dataset into three groups : the test set (10% of total MCI-MCI and 10% of total MCI-AD subjects), the 
space set (40% of total MCI-MCI and 40% of total MCI-AD subjects) and the cross-validation set. The latter is 
then separated using 10-fold stratified cross-validation.

For the NOMIS embedding, only the test and cross-validation set were used. These groups were projected in 
the transformed UMAP space, created by the NOMIS dataset. One of the fold was chosen as the validation set 
and the rest were used as the training set. The cluster segmentation algorithm was then applied on the training 
group, and the probabilistic atlas is calculated as defined above. We then extracted the final results using the 
validation group. For each participant, we calculated the probability of progressing to AD given their last 1, 2 
and 3 data points. We then set an arbitrary threshold to binarize predictions (e.g., every prediction with a prob-
ability higher than a threshold of 0.5 would be qualified as an AD subject). We computed a receiver operating 
characteristic (ROC) curve for each trajectory length (1, 2, or 3) by varying the value of this threshold from 0 
to 1, calculating the true positive rate (sensitivity), false positive rate ( 1− specificity ) and area under the curve 
(AUC). The process is done on different values of n_clusters. The best model was chosen from this and was 
then applied to the test set to calculate the actual accuracy of the model.

As for the model generated from ADNI embedding, we used the exact same test, space, and cross-validation 
sets. In this case, the space set was used to generate the ADNI embedding. Following this embedding, the test 
and cross-validation set were reduced and the latter separated using 10-fold stratified method. From that point, 
the same cross-validation process was applied. Finally, the test set was clustered using the trained model and a 
sensitivity analysis performed.

Figure 4.   The choice of hyperparameter. The Pearson correlation (r) between the values on the t-UMAP0 
axis (full line), the values on the t-UMAP1 axis (dashed line) and the age of corresponding participants in 
the NOMIS dataset (orange) and ADNI dataset (blue). The correlations are plotted against the value of the 
hyperparameter n_neighbors used to generate the t-UMAP embedding. This allows us to find the value 
where the correlation is greater.
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Results
UMAP transformation
Using UMAP on the standardized NOMIS and ADNI data, we explored different embedding possibilities as a 
function of n_neighbors values (Fig. 3). For the NOMIS dataset, each embedding encompasses a strong cor-
relation between the first (UMAP0) axis and age, as shown by the color gradient. However, for high n_neigh-
bors values, changes in the embeddings were less prominent. For instance, Fig. 4 shows that the correlation 
between t-UMAP0 and age varies only slightly after n_neighbors = 5. On the other hand, for the ADNI 
embedding, changes were much more prominent. By changing n_neighbors, points were more and more 
uniformly distributed along the space. Moreover, the participants’ longitudinal scans were closely grouped up in 
embeddings with lower n_neighbors ( Fig. 3d and e). This result reflects the choice of min_dist=0 since 
it makes feature vectors resembling each others as close as possible in the UMAP space. On the other hand, age 
was not well characterized in these models with n_neighbors=3 showing no signs of age-related gradient 
and n_neighbors >= 20 only displaying clear differences between the extremities.

To select the embedding for our trajectory analysis, we computed the correlation between t-UMAP0 (full 
line) and t-UMAP1 (dashed line) with the age of subjects from NOMIS (orange) and ADNI (blue) when varying 
the parameter n_neighbors (Fig. 4). For the NOMIS model, t-UMAP0 at low values of n_neighbors, the 
correlation steeply increases before quickly converging towards an asymptote. The correlation between age and 
t-UMAP1 also seems to converge to an asymptotic value albeit in a more noisy fashion. Hence, to choose the 
optimal n_neighbors value, we wanted to maximize the correlation between t-UMAP0 and age, while mini-
mizing the one between t-UMAP1 and age. Optimal correlations were contained between n_neighbors=20 
and n_neighbors=47, meaning that differences were most likely due to random noise. Therefore, to preserve 
computer resources and the local structure of the underlying manifold, we chose n_neighbors=20.

For the ADNI model, the models were not strongly correlated with age with a maximum r just over 0.4 for 
t-UMAP0 and around 0.05 for t-UMAP1. Even though these models do not seem to be related to biological age, 
we chose n_neighbors=16 since the correlation with t-UMAP1 is at its minimum and starting to plateau 
for t-UMAP0.

We also tested higher dimensional embeddings. Using a 3-dimensional embedding with n_neighbors=20, 
we computed the explained variance of each dimension to quantify the usefulness of each dimension. The first 
dimension explained 95.91%, the second 2.93% and the third 1.16% of the variance. We felt therefore justified 
in working with only the first two dimensions.

Reorientation of UMAP embedding along its principal axes and correlations
In our first experiment, once the embedding’s axes were aligned with the principal axes, we noticed that partici-
pants’ ages correlated with the transformed main UMAP axis (t-UMAP0; r = 0.65 ) (Fig. 5). It has to be noted 
that chronological age was not used as an input in the UMAP transformation and this is therefore an emergent 
property of the embedding. There were six brain regions that were heavily negatively correlated with t-UMAP0 
: superior frontal gyrus ( r = − 0.88 ), supramarginal gyrus ( r = − 0.85 ), inferior parietal gyrus ( r = − 0.83 ), 
rostral middle frontal gyrus ( r = − 0.83 ), caudal middle frontal gyrus ( r = − 0.82 ) and superior temporal 
gyrus ( r = − 0.81 ). As for t-UMAP1, the peri-calcarine ( r = 0.55 ), the cuneus ( r = 0.48 ) and the lingual gyrus 
( r = 0.47 ) were the three regions with the highest correlation. One notices in Fig. 5 how the older ADNI partici-
pants (age at entry > 65 y.o.) preferentially concentrate along the positive t-UMAP0 direction, congruent with 
its correlation with age in the NOMIS dataset.

For the ADNI embedding, Fig. 5c) shows different patterns. First, the AD population is once again concen-
trated to the right, but in a less aggregated manner, implying that although the AD population moves towards 
the right of the figure, there are no clear attraction points, when compared with the NOMIS embedding. Again, 
the MCI-MCI are mostly uniformly distributed over the space. The data does not form well-defined clusters, 
but interestingly they tend to group up in small aggregates of less than 10 points that can look like a single point 
on Fig. 5c) (for example the singular point around (0,7) that is in reality 6 points). The data in these aggregates 
usually come from the same patient. Interestingly, the correlations for the ADNI embedding are less significant. 
Most correlations were smaller than previously observed with the four most correlated brain regions being 
supramarginal gyrus ( r = −0.81 ), superior temporal gyrus ( r = −0.76 ), superior frontal gyrus ( r = −0.75 ) and 
middle temporal gyrus ( r = −0.74 ). The age is no longer correlated ( r = 0.4 ). For t-UMAP1, only the entorhinal 
cortex stands out ( r = 0.54 ), with the other regions being mostly uncorrelated ( 0.3 > r > −0.3 ) and the same 
is true for the age ( r = 0.003).

For further information, consult Supplementary Tables S1–S4 for the full extent of the correlations between 
cortical regions and t-UMAP0 and t-UMAP1.

Trajectories
In our first experiment, to get the trajectory of each individual, we first separated the ADNI dataset into the 
training data, projected it in the NOMIS t-UMAP space, and separated this embedding into clusters. In Figs. 6 
and 7, we used the same_size cluster algorithm defined in the section Clustering with n_clusters=4.

For illustrative purpose, we show in Fig. 7 how different participants move through the embedding with time 
(a “trajectory”). ADNI participants tend to move in a positive direction along t-UMAP0, i.e. from clusters on 
the left (clusters 0 and 1) to those on the right (clusters 2 and 3) as they age. Some subjects have a direct trajec-
tory to the right-most cluster (solid blue line in Fig. 7a), while others have a more convoluted path (dotted red 
line in Fig. 7a). On the other hand, some participants move from right to left (not displayed on 7, see 8), in the 
negative t-UMAP0 direction.
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For the ADNI embedding (Fig. 7b), trajectories are less chaotic and most move in a straight direction. Some 
trajectories, like the full red line, still loop around and some others have less linear paths, but they are much 
smaller in scale as compared to the linear trajectories. Moreover, some trajectories are much shorter, which is 
reflected by the fact that the same patient’s scan are often in the same neighborhood.

Figure 7c demonstrates the trends for the average MCI-MCI and MCI-AD groups. Notably, MCI-AD subjects 
whose trajectory initiates in cluster 3 tend to remain in this cluster, while MCI-MCIs move back towards cluster 2. 
Also, MCI participants whose trajectory initiates in clusters 1 and 2 display shorter movement towards the right 
for MCI-MCIs and a greater movement in this direction for AD. Thus, there seems to be an attraction towards 
a center of mass in cluster 3 for ADs, and in between clusters 1 and 2 for MCI-MCIs.

For Fig. 7d, the average trajectories are overall significantly shorter than those from the NOMIS embed-
ding. We see that MCI-MCI average trajectories are always shorter than MCI-AD’s (excluding the final cluster) 
and AD trajectories do not exert significant movement in cluster 0 and 1, but all averages are still moving on 
the t-UMAP0 axis in a positive direction. This can again be explained by the fact that many patient’s scans are 
grouped closely together, making the averages shorter also. The last cluster seems to again attract AD subjects, 
but MCI-MCI subjects do not move significantly away from it for this embedding.

Figure 8 displays the probabilistic atlas in its entirety. Using the embedding and clusters from Fig. 6, we 
computed the proportion of individuals having converted to AD in each possible trajectory of length 1, 2 and 
3, using participants’ last l data points. This allows us to make some further observations on the trajectories. 
First of all, in Fig. 8a there seems to be a relationship between the last cluster being visited and prognosis. For 

Figure 5.   Transformed UMAP embedding and fitted ADNI data. A linear transformation is applied on the 
UMAP embedding with n_neighbors = 20 and the ADNI embedding with n_neighbors = 16 to align 
the principal axes with UMAP0 and UMAP1. In (a), the NOMIS database (embedding data) with participants’ 
chronological age (years) at scan color-coded using the color scale displayed on the right. In (b), participants 
from the ADNI database were projected in the NOMIS-defined UMAP embedding. Subject’s final diagnosis 
was used to color the points on (b). One notices how the older ADNI participants (age at entry > 65 y.o.) 
preferentially concentrate along the positive t-UMAP0 direction, congruent with its correlation with age in the 
NOMIS dataset. In (c), subjects from ADNI are reduced using UMAP and color coded by the final diagnosis.
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instance, trajectories 0 ; 0-0 ; 0-0-0 have a very low probability of developing AD ( < 18% ), while trajectories 3 ; 
3-3 ; 3-3-3 have a probability between 62% and 77% to be converting MCIs, with intermediate clusters display-
ing a progressive relation. Secondly, out of the 56 trajectories with at least one subject, 30 were monotonically 
increasing or stable (i.e. moving from lower to higher cluster ID or staying in the same cluster). These seem to 
follow the previous phenomena related to aging and eventual conversion to AD. The second half of trajectories 
(n = 26) were more random. However, the population distribution for these trajectories have a median of three 
subjects; while the five trajectories with 10 or more subjects all had an associated conversion probability of under 
42% . Thus, they seem more representative of either noisy data or morphological variability without association 
to conversion. Moreover, trajectories that have a point in cluster 3 without finishing in it have all probabilities 
≤ 50% and are more populated than most of the abnormal trajectories ; with a median at 4, a mean at 6.6. This 
shows that these trajectories are more often associated with MCI even though this cluster is by itself more associ-
ated with the AD. Finally, there are a number of outlier quadrants with either a probability of zero or one, due 
to a limited sample size (1–3 subjects). Figure 8b shows a similar pattern. Indeed, we see again that patients in 
the last cluster have a greater probability of developing AD with this probability augmenting the longer the stay 
(68–74% ) while patients in the first cluster have the lowest probability associated ( < 17% ). On the other hand, the 
in-between clusters behave differently. Subjects ending in cluster 1 have a higher probability (38–41% ) than what 
was observed in the NOMIS embedding and cluster 2 patients have a lower probability (28–31% ) than cluster 1.

ROC curves
We computed the AUC of our ROC curves as an indication of the efficiency of our probabilistic atlas at classifying 
the test group. We first randomly divided ADNI into a test set (10% of every MCI-MCI and MCI-AD), space set 
(40%) and a set for the validation process (50%). The latter was then separated into a training group, containing 
45% of every MCI-MCI and 45% of every MCI-AD participant, which we used to compute the probabilistic atlas 
for trajectories of length 1, 2 and 3, with the previously mentioned dimensional reduction method and clustering 
method. 5% of data left was used to validate the accuracy of our method. Varying the threshold probability value 
at which the participant was deemed to convert allowed us to generate ROC curves shown on Fig. 9.

The training and validation sets were resampled using 10-fold cross-validation which is repeated 10 times with 
different random states. The average and standard deviations for this AUC distribution were calculated and are 
displayed as an insert in Fig. 9. Accuracy grows as a function of n_clusters for a given length, with the most 
accurate models at n_clusters=6 for the NOMIS embedding and ADNI embedding, but high variance on 
length 3 makes this relation difficult to confirm. The algorithm was also tested on 7 and 8 clusters, but the AUC 
plateaued for those. Alongside higher standard deviations caused by the increasing number of empty trajectories 
(Supplementary Figs. S5 and S6), these models were excluded for simplicity.

Finally, the test set was applied on the NOMIS and ADNI model that yielded the best AUC during validation. 
From those we got a final accuracy of 0.72 for the NOMIS embedding with 6 clusters and trajectory length of 3 
and 0.80 for the ADNI embedding with 4 clusters and trajectory length of 3.

Discussion
Our goal in the present work was to investigate low-dimensional representations of aging trajectories in order 
to identify differences between trajectories related to stable cognition and decline due to probable AD. We 
wanted to develop a method that has a good predictive accuracy, but at the same time, remains interpretable. 

Figure 6.   Clustering of the ADNI embedding with same size k-means. Dimensional reduction of the ADNI 
database using a linearly transformed UMAP model trained on the NOMIS database using n_neighbors = 
20 and min_dist = 0. The four colors represent the clusters made from the positional values, using a variation 
of the k-means algorithm with n_clusters = 4. For simplicity’s sake, the axes are not displayed since they are 
the same as Fig. 5.
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To do so, we first extracted a vector of cortical thicknesses of different brain regions using FreeSurfer. We then 
further reduced the dimensionality of the data using the nonlinear method UMAP and linearly transformed the 
UMAP embedding while maximizing the correlation of the main axis with age. We then investigated the different 
aging trajectories in this space and found significant differences between MCI-MCI and MCI-AD trajectories. 
We estimated that our novel approach could yield a good predictive accuracy, with a maximum AUC of about 
0.72 on the NOMIS embedding and 0.8 on ADNI embedding. We now discuss the novelty of our approach, its 
limitations and possible future research directions.

UMAP as a nonlinear embedding technique
UMAP was chosen over PCA since the former provided a more compact and homogeneous embedding of the 
data, with a lesser standard deviation in both the x and y axes, which is advantageous when dividing the space 
into clusters of similar size. The nonlinearity of UMAP is advantageous as it represents more accurately cortical 
thickness atrophy happening with age, while preserving both local and global features of the original high-
dimensional dataset. The optimization of UMAP parameters required us to fix min_dist to 0. This means that 
two MRIs yielding the same image will occupy the same position in the t-UMAP space. This is useful since it 
will induce a positive distance between two points only if they are different, and thus a participant’s trajectory is 
not artificially modified. Furthermore, two similar points are more likely to be in the same cluster. Then, for the 
parameter n_neighbors, Fig. 3 showed the different embeddings given a value of the parameter. As explained 
in the UMAP paper30, lower values make the embedding locally connected while higher values make it globally 
connected, meaning that global structures in the data are represented over local ones. The figure represents this 
by showing the softening of internal structures for high n_neighbors values. Indeed, for the lowest value of 

Figure 7.   Individual and average trajectories for MCI-MCI and MCI-AD subjects for the NOMIS (left) and 
ADNI (right) embeddings. On top, the individual trajectory of four MCI-MCI and four MCI-AD patients in the 
NOMIS embedding (a) and the ADNI embedding (b). Different dashed lines are used to differentiate between 
different subjects, within the same diagnosis, and the arrows point in the direction of time. The same patients 
are shown in both figures. (c) and (d) Shows the average trajectories for both types of trajectories. Some vectors 
are represented by a point because the trajectory is too short to be represented by an arrow. (b) and (d) have had 
their t-UMAP1 axis cropped to exclude extreme values and visualize trajectories seamlessly.
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n_neighbors, the embedding from NOMIS takes a very different form. With low values, local resemblance 
between members of the NOMIS database are put forth while the more n_neighbors is high and the more 
the embedding starts looking alike : points are uniformly distributed inside an ellipsoid. This is even more appar-
ent for the ADNI embeddings where, on low values, the data is grouped in tightly packed clusters to the point 
of resembling a single data point in some case. Increasing n_neighbors also causes this embedding to take 
an elliptical form, while conserving a level of local connectivity. This connectivity comes most likely from the 
fact that ADNI is a longitudinal database as opposed to NOMIS. Since the data is standardized, a scan should 
be located in the vicinity of its subject’s other scans in the UMAP space, unless a significant change happened in 
the morphometry. In the embedding, this is reflected by a locally connected plot where each subject’s scans are 
often grouped together in the space, even with high n_neighbors. For the current paper, we prioritize global 
structures since embeddings with lower n_neighbors are less suitable for the same reason PCA was not. 
Moreover, we chose the correlation between t-UMAP0 and subject’s age as a metric of how much the embedding 
encompasses the aging process. Figure 4 shows that this value is optimized from n_neighbors = 20 for the 
NOMIS embedding and n_neighbors = 16 for the ADNI embedding. In light of this, we chose the embedding 
with n_neighbors at 20 and 16 since it offered a good compromise between local and global structures and 
the correlation with age is optimized for all axes (Fig. 4). Finally, before settling on a two-dimensional repre-
sentative space, we verified that a higher-order embedding would not better fit the data. The explained variance 
of the third dimension (1.16%) showed that the first two dimensions were sufficient to represent our datasets.

In hindsight, the correlation with age might not be the most accurate metric for choosing n_neighbors. 
Although it makes sense for the point of view of having an embedding representing aging, the fact that the ADNI 
embedding has very low correlations with age and yet manages to obtain better predictive accuracy shows that 
this metric doesn’t paint a full picture of the embedding’s predictive power. Future studies should either find a 
relevant measure to evaluate the embedding, or if computational power is not a problem, include n_neighbors 
as a parameter of the cross-validation process.

Age dependency
Applying a linear transformation on the embedding in order to align the principal axes with the UMAP0 and 
UMAP1 axes yielded a new space where the t-UMAP0 axis correlated the most with the age. Indeed, the age 
gradient on Fig. 5 seems to progress parallel to the axis with younger individuals are located on the left of the 
figure while older ones are on the right. The t-UMAP0 axis can be interpreted as a participant’s “brain age”; the 
fact that some younger participants had a strong “positive” brain age is indicative of individual variability. Note 
however that FreeSurfer seems to introduce significant noise in morphometric measurements, which causes 
highly variable trajectories for some individuals.

In this paper, we specifically chose to use a dataset of healthy individuals with a wide age range to train the 
UMAP embedding. This was done with the idea that the embedding would encompass the normal aging pro-
cess which would make it easier to differentiate AD trajectories down the line. In a way, it is what we were able 
to do since the embedding correlates with the brain age of subjects. Interestingly enough, the data is relatively 
uniformly distributed in the embedding and no clearly defined clusters are present. This shows again that UMAP 

Figure 8.   Probabilistic atlas. The distribution of the proportion of AD subjects in each trajectory of length 
1–3, color coded for the population in each trajectory. For the sake of visibility, unpopulated trajectories are 
not displayed. These charts are obtained by counting the number of MCI-MCI and MCI-AD participants in 
each trajectories. The full bars represent trajectories containing only MCI-AD participants while empty bars 
have only MCI-MCI participants. (a) Is the atlas for the NOMIS embedding and (b) the atlas for the ADNI 
embedding.
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wasn’t able to find defined characteristics in the data and so every subject is represented in a spectrum of the 
aging process. Moreover, we chose to use no prior to select the features to be reduced. This again goes with the 
idea we wanted the embedding to represent the aging process of the brain. For the specific purpose of predict-
ing decline, we could have used Dickerson et al.’s cortical AD signature7 to select specific AD related regions, 
which would have helped increase the sensitivity of our model and hence its predictive power. On that note, the 
inferior parietal and superior frontal gyrus are both heavily correlated with the t-UMAP0 axis and have been 
identified as regions within the AD signature7. On the other hand, the ADNI embedding doesn’t express similar 
correlations. The correlations are all lower as compared to the NOMIS embedding (− 0.81 versus − 0.76 for the 
most negatively correlated regions), with only the superior frontal gyrus, supramarginal gyrus, and superior 
temporal gyrus being still strongly correlated with t-UMAP0. The age dependency completely disappeared for 
the ADNI embedding both for t-UMAP0 and t-UMAP1. It is likely that, since ADNI’s age range is restricted, so 
is the cortical thickness loss due to aging. A possible other explanation comes from the fact that MCI and AD-
related aging should not affect cortical thickness the same way as non-pathological aging. This way, the subject’s 
state shouldn’t be correlated with its age.

Trajectory definition and analyses
From Fig. 7c and d it is clear that MCI-MCI trajectories are different from MCI-AD. Both trajectory types have 
different attracting points and different averages, although it could be construed that most of these differences 
between trajectory types could be explained by the differences in the samples represented in each type. The 
ADNI embedding displays similar properties, as exemplified by differences in the average trajectories between 

Figure 9.   ROC curves of 4 different clustering of the transformed UMAP embeddings (with 3, 4, 5, and 6 
clusters). The ROC curves are generated from the classification between MCI-MCI and MCI-AD trajectories 
probabilities from the probabilistic atlas (Fig. 8). For each clustering, we verify the effect of trajectory length, 
the last l longitudinal time points of a participant; see Fig. 2. (a) shows the ROC curves obtained using the 
NOMIS embedding, while (b) is made using the ADNI embedding. Both figures use the same cross-validation 
set (subset of ADNI). For each clustering, predictions are made using trajectory length of 1, 2, and 3 last time 
points. The dashed black line represents the diagonal with an area under curve (AUC) of 0.5 for reference. The 
AUC of each ROC curve is displayed in the table at the bottom right of the figures. This value is obtained by 
averaging the AUC from the 10-fold resamplings of the train/validation subsets and the value following the ± is 
the standard deviation of this distribution. Moreover, the ROC curves displayed are obtained by averaging the 
ROC curves from the same 10-fold resamplings.
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MCI-MCI and MCI-AD in Fig. 7d. For this embedding, since none of the axis are correlated with age, the dif-
ferences between both groups can only be explained by an underlying property of the embedding. On the other 
hand, the average trajectories have a smaller norm overall. Scans coming from a same individual are usually 
grouped together in the same cluster.

Clusters
Some interesting patterns emerge in the atlas shown in Fig. 8a. First of all, there is a strong relationship between 
the final cluster and AD diagnosis. Indeed, trajectories with the most subjects show a trend where subjects with 
a final scan in cluster 0 have a low ( ∼ 17%) probability of developing AD and the probability goes up with the 
index of the final cluster : cluster 1 ∼30%, cluster 2 ∼38% and cluster 3 ∼62%. Moreover, the longer a subject 
stays in the cluster the stronger is this trend. For example, the 3-step trajectory “0-0-0” has a similar probability 
than its homologous 1-step trajectory “0”, while “1-1-1” shows a ∼ 2% increase in probability when compared to 
“1”, “2-2-2” a ∼10% increase when compared to “2” and “3-3-3” a ∼15% increase when compared to “3”. Since 
age is distributed similarly between AD and MCI-MCI subjects, there seems to be a clear relationship between 
cluster 3 and the diagnosis of AD. Moreover, trajectories with an intermediary data point in cluster 3 and another 
in cluster 0, 1 or 2 afterwards, have a significantly lower probability to describe AD. This phenomenon is directly 
related to our observations that MCI-MCI subjects in cluster 3 go towards the other clusters on average, while 
AD subjects stay in cluster 3. From this figure we can then conclude the clusters and trajectories are correlated 
with certain diagnosis.

The ADNI embedding in Fig. 8b shows very similar trends. We already know that the first and last cluster are 
respectively associated with the lowest and highest AD probability. The behavior at the center is much different 
for the ADNI embedding, since the probability doesn’t seem to augment the closer you move to the right of the 
figure. Indeed we saw that cluster 1 (38–41%) has a higher probability than cluster 2 (28–31%). This discrepancy 
can be explained by the fact that clusters 1 and 2 are overlapping on the t-UMAP0 (see Fig. 7) as compared to the 
NOMIS embedding where clusters mostly encompass a different range on the axis. Additionally, from Fig. 5c) 
we observed that AD subjects seems to prefer lower values of the t-UMAP1 axis, which also supports the fact 
that cluster 1 is associated with a higher probability developing AD. From this, both embeddings have prediction 
potential based on their clustering.

The predictive analysis shown in Fig. 9 corroborates the previous observations. The AUC shows that trajec-
tories, based on cortical thickness only, are able to classify subjects between MCI-MCIs and MCI-ADs in more 
than 72% of cases for the best models (6 clusters) on the test set. Even though the AUC is higher on average 
for trajectories of length 1 on the validation set, the models with the highest predictive power was, for both 
embedding with length of 3. For every model of the NOMIS embedding, the essential information necessary 
for classification seems to be located in the last cluster of the trajectory, since longer trajectory length reduces 
the accuracy and enhances the standard deviation on the validation set. For the ADNI embedding the predictive 
power on the validation set is more divided between length of one and two, with the model with four clusters 
having a higher AUC with length of two. On the test set, the ADNI embedding manages to outperform the 
NOMIS embedding with a respective AUC of 0.80 and 0.72. The embedding trained directly on the ADNI space 
set seems better suited for predicting decline than the NOMIS embedding, even though the ladder has a strong 
correlation with participants age. The hypothesis that an embedding representing normal aging would help dif-
ferentiate participants on the AD spectrum is then incorrect.

Conclusion
This study explored the visualization and statistical analysis of morphometric aging trajectories using UMAP, 
a novel dimensionality reduction technique, for subjects with AD or a MCI. We demonstrated the potential 
advantages of using this approach. We showed that using this method leads to an embedding space in which 
subjects exhibit trajectories between clusters that are significantly different depending on their remaining cog-
nitively stable or declining to AD. Our results thus indicate that UMAP is a new and effective tool that not only 
can visualize aging trajectories, but also accurately differentiate between MCI-AD and MCI-MCI trajectories. 
To further improve the accuracy of the model, it would be of interest to perform a UMAP-based analysis using 
only the thickness of cortical regions related to AD7,35,47 and other data related to AD biomarkers such as amyloid 
beta concentration48,49, cognitive score50 and cognitive reserve51.

Data availibility
We are not the owners of the data used in this study, but all the databases are publicly available upon request. 
The links to the different databases and the instructions to obtain the datasets, can be found here : Autism 
Brain Imaging Data Exchange (ABIDE): https://fcon_1000.projects.nitrc.org/indi/abide/. Alzheimer’s Disease 
Neuroimaging Initiative (ADNI): http://​adni.​loni.​usc.​edu/. Australian Imaging Biomarkers and Lifestyle flag-
ship study of ageing (AIBL) : https://​aibl.​csiro.​au/. Berlin Mind and Brain (Margulies, Villringer) CoRR sample 
(BMB): https://fcon_1000.projects.nitrc.org/indi/CoRR/html/bmb_1.html. Cambridge Centre for Ageing and 
Neuroscience (CamCAN): https://​www.​mrc-​cbu.​cam.​ac.​uk/​datas​ets/​camcan/. Center of Biomedical Research 
Excellence (COBRE): https://fcon_1000.projects.nitrc.org/indi/retro/cobre.html. Cleveland Clinic (Cleveland 
CCF): https://fcon_1000.projects.nitrc.org/indi/retro/ClevelandCCF.html. Consortium for the Early Identifi-
cation of Alzheimer’s Disease (CIMA-Q): https://​www.​cima-q.​ca. Dallas Lifespan Brain Study (DLBS): https://
fcon_1000.projects.nitrc.org/indi/retro/dlbs.html. FIND lab sample: https://fcon_1000.projects.nitrc.org/indi/
retro/find_stanford.html. Functional Biomedical Informatics Research Network (FBIRN): https://​www.​birnc​
ommun​ity.​org/​resou​rces/​data/. Lifespan Human Connectome Project in Aging (HCP-Aging): http://​dx.​doi.​
org/​10.​15154/​15201​38. International Consortium for Brain Mapping (ICBM): https://​ida.​loni.​usc.​edu/​login.​

http://adni.loni.usc.edu/
https://aibl.csiro.au/
https://www.mrc-cbu.cam.ac.uk/datasets/camcan/
https://www.cima-q.ca
https://www.birncommunity.org/resources/data/
https://www.birncommunity.org/resources/data/
http://dx.doi.org/10.15154/1520138
http://dx.doi.org/10.15154/1520138
https://ida.loni.usc.edu/login.jsp?project=ICBM
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jsp?​proje​ct=​ICBM. Information eXtraction from Images (IXI): http://​brain-​devel​opment.​org/​ixi-​datas​et/. F.M. 
Kirby Research Center neuroimaging reproducibility data (KIRBY-21): https://​www.​nitrc.​org/​proje​cts/​multi​
modal. Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD): http://​miriad.​drc.​ion.​ucl.​ac.​
uk. National Alzheimer’s Coordinating Center (NACC): https://​www.​alz.​washi​ngton.​edu/. National Database 
for Autism Research (NDAR): http://​nda.​nih.​gov. Nathan Kline Institute Rockland (NKI-R) sample (NKI-RS): 
https://fcon_1000.projects.nitrc.org/indi/pro/nki.html.  NKI-R enhanced Sample (NKI-RES): https://fcon_1000.
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