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Meta‑learning 
for transformer‑based prediction 
of potent compounds
Hengwei Chen  & Jürgen Bajorath *

For many machine learning applications in drug discovery, only limited amounts of training data 
are available. This typically applies to compound design and activity prediction and often restricts 
machine learning, especially deep learning. For low‑data applications, specialized learning strategies 
can be considered to limit required training data. Among these is meta‑learning that attempts to 
enable learning in low‑data regimes by combining outputs of different models and utilizing meta‑data 
from these predictions. However, in drug discovery settings, meta‑learning is still in its infancy. In this 
study, we have explored meta‑learning for the prediction of potent compounds via generative design 
using transformer models. For different activity classes, meta‑learning models were derived to predict 
highly potent compounds from weakly potent templates in the presence of varying amounts of fine‑
tuning data and compared to other transformers developed for this task. Meta‑learning consistently 
led to statistically significant improvements in model performance, in particular, when fine‑tuning 
data were limited. Moreover, meta‑learning models generated target compounds with higher potency 
and larger potency differences between templates and targets than other transformers, indicating 
their potential for low‑data compound design.

Predicting new active compounds is one of the major tasks in computer-aided drug discovery, for which machine 
learning approaches have been widely applied over the past two  decades1,2. In recent years, deep learning has 
also been increasingly applied for compound activity and property  predictions1,2. The prediction of compounds 
exhibiting a desired biological activity (that is, activity against a target of interest) is mostly attempted using 
machine learning models for binary classification (that is, a compound is predicted to have or not to have 
a specific activity)3–5. For this purpose, models for class label prediction (active versus inactive compounds) 
are typically derived based on training sets of known specifically active compounds and randomly selected 
compounds assumed to be inactive. These qualitative activity predictions mostly involve virtual screening of 
compound databases to identify new hits. In addition to qualitative predictions of biological activity, predicting 
compounds that are highly potent against a given target also is of interest. Compound potency prediction can 
be quantitative or semi-quantitative in nature. Quantitative predictions aim to specify numerical potency values 
using, for example, quantitative structure–activity relationship (QSAR)6,7 or free energy  methods8,9. Different 
from qualitative predictions and virtual screening, quantitative potency predictions are usually carried out for 
small compound sets or structural analogues from lead series. Furthermore, semi-quantitative approaches aim 
to predict new potent compounds, that is, compounds having higher potency than known actives. For example, 
such predictions might focus on activity  cliffs10, which are defined as pairs of structurally similar compounds 
or structural analogues with large potency  differences10. Prediction of activity cliffs fall outside the applicability 
domain of standard QSAR  methods4.

While quantitative potency predictions are widely carried out, they are difficult to evaluate in benchmark 
settings. It has been observed that benchmark predictions of different machine learning models and randomized 
predictions are typically only separated by small error  margins11, which makes it difficult to non-ambiguously 
assess relative method  performance11. Therefore, we currently prefer semi-quantitative approaches focusing 
on the prediction of potent compounds (rather than trying to predict compound potency values across wide 
potency ranges). Semi-quantitative predictions can be attempted by deep generative  modeling2. For example, 
transformer models have been derived based on pairs of active structural analogues with varying potency to 
predict activity cliffs and design potent  compounds12,13. Therefore, the transformer models were conditioned on 
observed potency differences. This generative design approach successfully reproduced highly potent compounds 
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for different activity classes based on weakly potent input  compounds13. Transformer models have also been 
derived for other compound property  predictions14–16 and generative compound design  applications17–19 as well 
as for the prediction of drug-target  interactions20–22.

Notably, all compound activity and potency predictions depend on available data for learning. Like many 
other data in early-phase drug discovery, high-quality compound potency measurements for given targets are 
generally sparse, which limits generative design. Therefore, we are considering machine learning approaches for 
low-data regimes to enable predictions of potent compounds for targets, for which only little compound data is 
available. Among learning strategies for sparsely distributed data, active  learning23,24 and transfer  learning25,26 
have been investigated for machine learning in drug discovery in various  studies24,26. Transfer learning attempts 
to use information obtained from related prediction tasks to streamline model derivation for such tasks, while 
active learning focuses on the selection of most informative training instances for iterative model building. Meta-
learning including few-shot learning represents another low-data approach that is relevant for drug  discovery27–30. 
In artificial intelligence, meta-learning is a sub-discipline of machine  learning27. It aims to combine the output 
of different machine learning models and/or meta-data from these models such as parameters derived from 
training instances to generate models for other prediction  tasks27. Alternatively, the same algorithm might be 
applied to generate models for individual prediction tasks whose outputs are then used to iteratively update a 
meta-learning model. Hence, meta-learning can also be regarded as a form of ensemble learning. The general aim 
of meta-learning is achieving transferability of models to related prediction tasks, including the application of 
prior model knowledge to limit the number of training instances required for new tasks. Given the use of meta-
data for learning, the approach is well-suited for parameter-rich deep learning  architectures28 and -compared to 
transfer learning- principally applicable to a wider spectrum of predictions tasks. However, in compound design 
and property prediction, the exploration of meta-learning is still in its early stages. Therefore, we have explored 
meta-learning in semi-quantitative potency predictions. To this end, we have adapted a transformer architec-
ture designed for the prediction of potent  compounds13 as a base model for deriving meta-learning models and 
assessed the potential of meta-learning for predicting highly potent compounds for different activity classes and 
varying amounts of training data.

Methods
Compounds, activity data, and analogue series
Bioactive compounds with high-confidence activity data were collected from ChEMBL (release 29)31. Only 
compounds with direct interactions (assay relationship type: "D") with human targets at the highest assay con-
fidence level (assay confidence score 9) were considered. In addition, potency measurements were restricted to 
numerically specified equilibrium constants  (Ki values), which were recorded as (negative decadic logarithmic) 
 pKi values. When multiple measurements were available for the same compound, the geometric mean was cal-
culated as the final potency annotation, provided all values fell within the same order of magnitude. If not, the 
compound was disregarded. Qualifying compounds were organized into target-based activity classes.

In activity classes, analogue series (AS) with one to five substitution sites were identified using the compound-
core relationship (CCR)  algorithm32. The core structure of an AS was required to consist of at least twice the 
number of non-hydrogen atoms as the combined substituents. For each AS, all possible pairs of analogues were 
generated, termed All_CCR pairs. For each activity class, ALL_CCR pairs from all AS were pooled. All_CCR 
pairs were then divided into CCR pairs with a potency difference of less than 100-fold and activity cliff (AC)-
CCR pairs with a potency difference of at least 100-fold.

On the basis of the specified data curation criteria and AS distributions, 10 activity classes were assembled 
that consisted of at least ~ 500 qualifying compounds and ~ 50 AS, as summarized in Table 1. These activity 
classes included ligands of various G protein coupled receptors and inhibitors of different enzymes. Figure 1 
shows exemplary AC_CCR pairs for each class.

Table 1.  Activity classes. The composition of activity classes is summarized. For each class, the ChEMBL 
target ID and target name are provided.

ChEMBL ID Target name Compounds AS CCR pairs AC-CCR pairs

226 Adenosine A1 receptor 1924 318 18,623 1207

234 Dopamine D3 receptor 1529 213 21,008 755

237 Kappa opioid receptor 940 129 19,277 2897

244 Coagulation factor X 702 92 9718 1288

251 Adenosine A2a receptor 1825 312 16,084 870

259 Melanocortin receptor 4 543 145 25,126 3086

264 Histamine H3 receptor 1235 173 10,812 532

1862 Tyrosine-protein kinase ABL 499 64 15,573 1873

2014 Nociceptin receptor 512 52 11,472 1058

4792 Orexin receptor 2 1133 131 12,368 1271
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Meta‑learning approach
The basic premise of meta-learning, as investigated herein, is parameterizing a model on a series of training tasks 
by combining and updating parameter settings across individual tasks. This process aims to improve the ability 
of the model to adapt to new prediction tasks through the use of meta-data.

For designing the meta-learning module of Meta-CLM, we adopted the model-agnostic meta-learning 
(MAML)  framework28 for an activity class-specific prediction task distribution p(T). Given its model-agnostic 
nature, the only assumption underlying the MAML approach is that a given model is parameterized using a 
parameter vector θ. Accordingly, a meta-learning model is considered as a function fθ with parameter vector θ. 
The model aims to learn parameter settings θmeta that are derived for individual training tasks and updated across 
different tasks such that they can be effectively adjusted to new prediction tasks. Therefore, for each of a series 
of prediction tasks, training data are randomly divided into a support set and a query set Accordingly, when the 
meta-learning module is applied to a new prediction task Ti such as an activity class the current parameter vector 
θmeta is updated for task Ti with activity class-specific parameters θi obtained by gradient descent optimization 
minimizing training errors.

During meta-training, as summarized in Fig. 2, the model fθ is first updated to a task-specific model fθ′ using 
its support set. Then, the corresponding query set is used to determine the prediction loss of model fθ′ for this 
task. The procedure is repeated for all prediction tasks (activity classes). Finally, model parameters are further 
adjusted for testing by minimizing the sum of the prediction loss over all activity classes. Model derivation based 
on the support sets and evaluation based on query sets are implemented as inner and outer loops, respectively. 
For meta-testing, the trained meta-learning module is fine-tuned on a specific activity class, for which parameters 
are adjusted, as also illustrated in Fig. 2. For each class, an individual fine-tuned model is generated.

The meta-learning process aims to capture prior training information through initial parameter vector 
adjustments, followed by updates through monitoring of the joint loss across all training  tasks29. Capturing 
prior training knowledge should enable the model to more effectively adapt to new prediction tasks based on 

Figure 1.  Analogue pairs representing activity cliffs. For each activity class, exemplary AC_CCR pairs are 
shown and their potency differences are reported. Numbers on arrows identify activity classes according to 
Table 1. Core structures and substituents are colored blue and red, respectively.
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advanced parameter settings available for initialization and shorter optimization paths with reduced training 
data  requirments33,34.

This algorithmic approach differs from conventional multi-task learning where a single model is trained on 
multiple tasks, aiming to share representations and knowledge between these tasks to collectively improve the 
basis for learning. Hence, the primary goal of multi-task learning is to improve predictive performance for all 
tasks by leveraging commonalities between them. Accordingly, model weights are updated based on a combina-
tion of the losses from all tasks in a single optimization step. Shared representations for multiple tasks support 
the model’s ability to simultaneously learn features common to these tasks.

Transformer models
Base model
For meta-learning, the transformer architecture derived previously for the prediction of highly potent compounds 
based on weakly potent templates was  adopted13. Figure 3 illustrates the architecture of the base CLM. The 
transformer consisted of multiple encoder-decoder modules with attention  mechanism35 and was designed for 
translating string-based representations of chemical structure. Accordingly, the transformer can be perceived as 
a chemical language model (CLM). The base model (referred to as CLM in the following) was devised to predict 
compounds with higher potency for given input  compounds13. An encoder module consisted of encoding sub-
layers including a multi-head self-attention sub-layer and a fully connected feed-forward network sub-layer. The 
encoder compressed an input sequence into a context vector in its final hidden state, providing the input for the 
decoder module composed of a feed-forward sub-layer and two multi-head attention sub-layers. The decoder 
transformed the context vector into a sequence of tokens. Both the encoder and decoder modules utilized the 
attention mechanism during training to effectively learn from the underlying feature space.

Figure 2.  Meta-learning. The illustration summarizes training, fine-tuning, and testing of the meta-learning 
module of Meta-CLM using exemplary AC-CCR pairs. For each activity class, the support set is used for the 
initial parameterization of the model (θ). The support loss Lsupport is calculated for updating model parameters 
(θ′). Then, the query set is used to calculate the prediction loss L′

query for this task. The process is repeated for 
all training classes, followed by summation of L′

query over all tasks to further adjust the parameter settings. The 
trained module then enters the fine-tuning and testing phase. Solid and dashed lines indicate inner and outer 
loops, respectively, for meta-training and -testing including fine-tuning.
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During training, the CLM was challenged to learn mappings of template/source compounds (SCs) to target 
compounds (TCs) conditioned on potency differences (ΔPot) resulting from replacements of substituent(s):

Hence, training focused on structural analogues with specific potency differences. Then, given a new (SC, 
ΔPot) test instance, the model generated a set of structurally related TCs with putatively higher potency than SCs.

For transformer modeling, compounds and potency differences must be tokenized. Accordingly, compounds 
were represented as molecular-input line-entry system (SMILES)  strings36 generated using  RDKit37. Tokenization 
was facilitated by representing atoms with single-character tokens (e.g., "C"or "N"), two-character tokens (e.g., 
"Cl" or "Br"), or tokens enclosed in brackets (e.g. "[nH]" or "[O-]"). Potency differences were subjected to binning 
 tokenization12,13,38,39 by dividing the global range of potency differences (-6.62 to 6.52  pKi units) into 1314 bins 
with a constant width of 0.01. Each bin was encoded by a single token and each potency difference was assigned 
to the corresponding  token12,13. In addition, two special "start" and "end" tokens were defined as the start and 
end points of a sequence, respectively.

The model was pre-trained using a large set of 881,990 All_CCR pairs originating from 496 public activity 
 classes13. For pre-training, All_CCR triples (CpdA, CpdB, PotB-PotA) were generated in in which CpdA and CpdB 
represented the SC and TC, respectively, and (PotB-PotA) their potency difference.

CLM was implemented using  Pytorch40. Default hyperparameter settings were used for the transformer archi-
tecture together with a batch size of 64, learning rate of 0.001, and encoding dimension of 256. During training, 
the transformer model minimized the cross-entropy loss between the ground-truth and output sequence. The 
Adam optimizer was  used41. The model was trained for a maximum of 1000 epochs. At each epoch, a checkpoint 
was saved, and the final model was selected based on the minimal loss.

The base model achieved a reproducibility of 0.857 for the entire test set (corresponding to 10% of pre-
training set). Hence, the base CLM model regenerated ~ 86% of the target compounds from CCR-triples not 
used for training.

Model for meta-learning
The CLM variant for meta-learning was also implemented using Pytorch following the protocol described above. 
The meta-learning model, designated Meta-CLM, consisted of two modules including the base model for gener-
ating mappings of SCs to TCs conditioned on potency differences and the meta-learning module (the design of 
which is detailed below). For derivation of the metal-learning module, a subset of 176 of the 496 activity classes 
was selected for which at least 300 All-CCR pairs per class were available, amounting to a total of 491,688 qualify-
ing All_CCR triples. For meta-learning, each activity class was considered a separate training task (see below). 
Therefore, All_CCR triples from each class were randomly split into support set (80%) and query set (20%). The 
Adam optimizer was used for gradient descent optimization during meta-learning.

(SC,�Pot) → (TC).

Figure 3.  Base CLM. The architecture of the base CLM for designing potent compounds is schematically 
illustrated (the representation was adapted from ref. 13).
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Model fine-tuning
For fine-tuning and comparative evaluation of CLM and Meta-CLM, the 10 activity classes in Table 1 were used. 
Fine-tuning was separately carried out using AC-CCR pairs from each class. The AC-CCR pairs from each class 
were randomly divided into fine-tuning (80%) and test instances (20%). In each case, it was confirmed that 
the fine-tuning and test pairs had no core structure overlap (otherwise, a new partition was generated). For 
fine-tuning, AC_CCR pairs were exclusively used. AC_CCR triples were ordered such that TC was the highly 
potent compound. To assess the ability of CLM and Meta-CLM to learn in low-data regimes, model variants 
were derived based on 10%, 25%, 50% and 100% of the training data. To adapt to differently sized training sets, 
the pre-trained model was fine-tuned with a smaller learning rate of 0.0001. With a maximum of 200 training 
epochs, the final fine-tuned model was selected based on minimal cross-entropy loss.

Model evaluation
For each activity class, CCR pairs sharing core structures with the fine-tuning set were excluded, then the final 
test set was generated by adding the remaining CCR pairs to test AC-CCR pairs. Test set CCR and AC-CCR pairs 
yielded class-dependent numbers of unique CCR and AC-CCR test compounds. To evaluate the performance 
of each fine-tuned CLM and corresponding Meta-CLM, test compounds were divided into two categories: SCs 
with a maximum potency of 1 μM (corresponding to a  pKi value of 6) and TCs with a potency greater than 1 
μMol  (pKi > 6). These test TCs were termed known target compounds (KTCs), which represented highly potent 
test compounds. Table 2 reports the test composition for each activity class. Depending on the activity class, 139 
to 3838 KTCs were available.

For each test set SC, 50 hypothetical TCs were sampled and compared to available KTCs. The ability of a 
model to reproduce KTCs was considered as the key criterion for model validation.

Results
Reproducibility of known target compounds
We first analyzed the ability of Meta-CLM to reproduce KTCs in comparison to CLM. The results are reported 
in Table 3. For all activity classes, Meta-CLM and CLM correctly reproduced multiple KTCs over all fine-tuning 
conditions, thus providing non-ambiguous proof for the models’ ability to predict potent compounds. From 
correctly predicted SC-KTC pairs, unique KTCs were extracted (a given KTC can occur in multiple pairs). The 
number of correctly predicted SC-KTC pairs and unique KTCs varied depending on the activity class. Impor-
tantly, Meta-CLM consistently predicted more SC-KTC pairs and unique KTCs than CLM across all activity 
classes, without an exception. For Meta-CLM, the number of SC-KTC pairs varied from 71 to 5102 pairs when 
utilizing 100% of the training samples and the number of unique KTCs varied from 27 to 287, corresponding 
to a reproducibility ratio of ~ 7% to ~ 45% of available KTCs per class. For comparison, CLM, the base model, 
generated from 53 to 4385 SC-KTC pairs, with 23 to 241 unique KTCs and a corresponding reproducibility ratio 
of ~ 5% to ~ 36% per class. Moreover, for decreasing numbers of fine-tuning samples, Meta-CLM consistently 
reproduced more KTCs than CLM. For complete fine-tuning sets, Meta-CLM and CLM reached mean repro-
ducibility rates of ~ 21% and ~ 14%, respectively. For only 10% of the fine-tuning samples, Meta-CLM reached a 
mean reproducibility rate of ~ 15% compared to only ~ 7% for CLM. Thus, Meta-CLM learned more effectively 
from sparse data than CLM, consistent with the aims of meta-learning.

Figure 4 illustrates the differences in KTC reproducibility rates between Meta-CLM and CLM. Independent-
samples t-tests were carried out to assess the statistical significance of the observed differences. For complete 
fine-tuning sets, increases in reproducibility detected for Meta-CLM were statistically significant for three of 10 
activity classes. However, for fine-tuning sets of deceasing size, 25 of 30 increases across all activity classes were 
statistically significant, thus providing further evidence for the ability of Meta-CLM to more effectively learn 
from sparse data. For most classes, there was a sharp decline in CLM reproducibility rates when 25% or 10% of 
the fine-tuning samples were used.

Table 2.  Test sets. For each activity class (ChEMBL IDs are used according to Table 1), the composition of the 
test set is reported. CPD stands for compound.

ChEMBL ID CCR Pairs
Unique CCR 
CPDs AC-CCR Pairs

Unique 
AC-CCR CPDs

Overlapping 
CPDs SCs  (pki <  = 6) KTCs  (pki > 6)

226 5950 1174 144 84 80 359 819

234 7790 913 50 53 53 89 824

237 1032 477 31 24 20 115 366

244 1949 308 287 118 88 90 248

251 4706 5210 85 57 38 1391 3838

259 702 169 59 69 33 66 139

264 4756 840 72 81 58 33 830

1862 4554 175 82 51 51 27 148

2014 1388 256 80 62 29 23 266

4792 1941 615 49 50 48 146 471
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We also note that both models produced large numbers of novel candidate compounds for SCs. For complete 
fine-tuning sets, Meta-CLM and CLM generated on average 2375 and 2818 new candidate compounds per activ-
ity class (ranging from 119 to 9952 and 234 to 10,779 candidates, respectively). While these new compounds 
cannot be considered for model validation, they provide large pools of candidates for practical applications in 
the search for potent compounds.

Table 3.  Reproducibility of compound pairs and known target compounds.

ChEMBL ID Ratio

SC-KTC Pairs Unique KTCs Reproducibility (%)

Meta-CLM CLM Meta-CLM CLM Meta-CLM CLM

226

10 799 379 223 118 27.2 14.4

25 965 510 263 167 32.1 20.4

50 1041 614 268 183 32.7 22.3

100 1193 735 287 216 35.0 26.4

234

10 174 75 50 19 6.1 2.3

25 268 130 68 36 8.3 4.4

50 343 197 87 58 10.6 7.0

100 398 239 101 71 12.3 8.6

237

10 397 325 90 52 24.6 14.2

25 449 366 101 66 27.6 18.0

50 433 362 103 81 28.1 22.1

100 480 429 118 102 32.2 27.9

244

10 109 62 26 11 10.5 4.4

25 111 66 31 17 12.5 6.9

50 160 98 39 28 15.7 11.3

100 193 129 45 36 18.2 14.5

251

10 3930 3288 233 138 6.1 3.6

25 4685 3959 249 172 6.5 4.5

50 4856 4153 245 201 6.4 5.2

100 5102 4385 264 241 6.9 6.3

259

10 51 40 14 5 10.1 3.6

25 73 60 24 13 17.3 9.4

50 98 88 30 22 21.6 15.8

100 129 116 33 30 23.7 21.6

264

10 16 11 14 6 1.7 0.7

25 33 19 28 17 3.3 2.1

50 54 33 42 31 5.1 3.7

100 71 53 57 40 6.9 4.8

1862

10 65 29 25 6 16.9 4.0

25 96 48 28 14 18.9 9.5

50 93 56 32 23 21.6 15.5

100 147 94 33 30 22.3 20.3

2014

10 85 53 20 9 7.5 3.4

25 102 71 25 12 9.4 4.5

50 113 84 22 16 8.3 6.0

100 131 99 27 23 10.2 8.7

4792

10 849 622 176 106 37.4 22.5

25 976 746 179 129 38.0 27.4

50 1085 828 199 151 42.3 32.1

100 1262 969 212 170 45.0 36.1
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Figure 4.  Reproducibility of known target compounds. For each activity class, the proportion of correctly 
reproduced KTCs is reported for Meta-CLM and CLM over varying percentages of fine-tuning samples. Mean 
and standard deviations (error bars) are provided. To assess the statistical significance of observed differences 
between reproducibility rates, independent-samples t tests were conducted: 0.05 < p ≤ 1.00 (ns), 0.01 <  p ≤  0.05 
(*), 0.001 <  p  ≤ 0.01 (**), 0.0001 <  p  ≤ 0.001 (***),  p ≤ 0.0001 (****). Stars denote increasing levels of statistical 
significance and “ns” stands for “not significant”.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16145  | https://doi.org/10.1038/s41598-023-43046-5

www.nature.com/scientificreports/

Figure 5.  Potency value distribution of reproduced known target compounds. For all activity classes, boxplots 
report the distributions of logarithmic potency values of KTCs correctly reproduced by Met-CLM and CLM 
over varying numbers of fine-tuning samples. To assess the statistical significance of differences between 
potency value distributions, independent-samples t tests were conducted: 0.05 <  p  ≤ 1.00 (ns), 0.01 <  p ≤ 0.05 (*), 
0.001 <  p ≤ 0.01 (**), 0.0001 <  p ≤ 0.001 (***),  p  ≤ 0.0001 (****).
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Compound potency
In addition to reproducing KTCs, the actual potency level of correctly predicted KTCs and potency differences 
between SCs and corresponding KTCs represented other highly relevant criteria for model assessment. Accord-
ing to our semi-quantitative design approach, ideally, the models should predict highly potent compounds from 
given SCs. Therefore, we next analyzed the potency of correctly predicted KTCs and potency differences between 
Meta-CLM and CLM.

Known target compounds
Figure 5 shows the distributions of logarithmic potency values of KTCs reproduced by Meta-CLM and CLM. 
Importantly, KTCs generated by Meta-CLM were overall consistently more potent than those generated by CLM 
across all activity classes and fine-tuning conditions. Thirty-eight of the total of 40 observed differences between 
the respective potency value distributions were statistically significant. Especially for 25% and 10% of the fine-
tuning samples, Meta-CLM generated multiple KTCs with low-nanomolar or even sub-nanomolar potency 
for each activity class, whereas CLM only generated a few KTCs with potency higher than 10 nM (pKi > 8) for 
three classes.

Potency differences between source and target compounds
Furthermore, we analyzed potency differences captured by SC-KTC pairs. Following our design strategy, increas-
ingly large potency differences between corresponding SCs and correctly reproduced KTCs were favored. Figure 6 
shows the distribution of potency differences between corresponding SCs and KTCs for Meta-CLM and CLM 
predictions. In the case of Meta-CLM (CLM), four (six) activity classes displayed median potency differences 
between SCs and corresponding KTCs between one and two orders of magnitude (10- to100-fold) and the 
remaining six (four) classes displayed median potency differences exceeding two orders of magnitude (> 100-
fold) for complete fine-tuning sets. Hence, significant potency differences were generally observed. For half of 
the activity classes, median potency differences were comparable for all fine-tuning conditions when separately 
viewed for Meta-CLM and CLM, respectively. However, when Meta-CLM and CLM were compared, potency 
differences of SC-KTC pairs were consistently larger for Meta-CLM. Again, 38 of 40 observed differences were 
statistically significant. Overall, many more KTCs with at least 1000-fold higher potency than the correspond-
ing SCs were generated by Meta-CLM compared to CLM. Thus, Meta-CLM predicted KTCs with overall higher 
potency than CLM and much larger potency differences between SCs and KTCs.

Conclusion
In this work, we have explored meta-learning for the prediction of potent compounds using conditional trans-
former models. Compound potency predictions are of high interest in drug discovery but high-quality activity 
data available for machine learning are typically sparse. For these predictions, meta-learning was of particular 
interest to us because the approach is well-suited for models that are rich in meta-data, yet currently only lit-
tle explored for drug discovery applications. Therefore, we have adapted a previously investigated transformer 
architecture to construct a meta-learning model by adding a special meta-learning module to a pre-trained 
transformer. Then, meta-learning model variants were derived for different activity classes and their performance 
in the design of potent compounds was compared to reference transformers. For model validation, the ability 
to reproduce potent KTCs served as the major criterion. All models successfully reproduced KTCs. However, 
compared to reference models, meta-learning significantly increased the number of correctly predicted KTCs 
across all activity classes, especially for decreasing numbers of fine-tuning samples. This was an encouraging find-
ing, consistent with expectations for successful meta-learning. Moreover, meta-learning models also produced 
target compounds with overall higher potency than other transformers and larger potency differences between 
templates and targets. These improvements were not anticipated but are highly attractive for practical applica-
tions. The generative models designed for predicting potent compounds produced large numbers of candidate 
compounds with novel structures. New candidate compounds predicted by the meta-learning models should 
represent an attractive resource for prospective applications in searching for potent compounds for targets of 
interest. Taken together, the results reported herein, provide proof-of-concept for the potential of meta-learning 
in generative design of potent compounds. Moreover, in light of our findings, we anticipate that meta-learning 
will also be a promising approach for other compound design applications in low-data regimes.
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Figure 6.  Distribution of potency differences between source and known target compounds. For all activity 
classes, boxplots report the distributions of logarithmic potency differences for SC-KTC pairs predicted by 
Meta-CLM and CLM over varying numbers of fine-tuning samples. To assess the statistical significance of 
differences between the distributions, independent-samples t tests were conducted: 0.05 <  p ≤ 1.00 (ns), 0.01 <  p  
≤ 0.05 (*), 0.001 <  p ≤ 0.01 (**), 0.0001 <  p ≤ 0.001 (***),  p ≤ 0.0001 (****).
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Data availability
Calculations were carried out using publicly available programs and compound data. Python scripts generated 
for the study and the activity classes used are available via the following link: https:// uni- bonn. sciebo. de/s/ 
kfAQZ 0mbCG Htr0m.
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