
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports

GPU‑acceleration
of the distributed‑memory
database peptide search of mass
spectrometry data
Muhammad Haseeb 1 & Fahad Saeed 1,2,3*

Database peptide search is the primary computational technique for identifying peptides from the
mass spectrometry (MS) data. Graphical Processing Units (GPU) computing is now ubiquitous in the
current-generation of high-performance computing (HPC) systems, yet its application in the database
peptide search domain remains limited. Part of the reason is the use of sub-optimal algorithms in the
existing GPU-accelerated methods resulting in significantly inefficient hardware utilization. In this
paper, we design and implement a new-age CPU-GPU HPC framework, called GiCOPS, for efficient and
complete GPU-acceleration of the modern database peptide search algorithms on supercomputers.
Our experimentation shows that the GiCOPS exhibits between 1.2 to 5 × speed improvement over
its CPU-only predecessor, HiCOPS, and over 10× improvement over several existing GPU-based
database search algorithms for sufficiently large experiment sizes. We further assess and optimize the
performance of our framework using the Roofline Model and report near-optimal results for several
metrics including computations per second, occupancy rate, memory workload, branch efficiency and
shared memory performance. Finally, the CPU-GPU methods and optimizations proposed in our work
for complex integer- and memory-bounded algorithmic pipelines can also be extended to accelerate
the existing and future peptide identification algorithms. GiCOPS is now integrated with our umbrella
HPC framework HiCOPS and is available at: https://​github.​com/​pcdsl​ab/​gicops.

Identification of peptides from the mass-spectrometry (MS) data is a critical step in computational proteomics1–4.
Database peptide search is the most commonly employed computational technique to deduce peptide sequences
from the large volumes of experimentally generated MS spectra data5–8. In database search, the experimental
spectra are searched against a database of indexed theoretically simulated spectra, to identify the most similar
and confident match(es)3. The similarity between a pair of experimental and theoretical spectrum is computed
using one or a combination of distance metrics such as cross-correlation (xcorr) score1,9, hyperscore4,7, and
Z-score10. More recently, open-search-based scoring techniques have been used to identify known and unknown
post-translational modifications (PTMs) at the expense of exponential increase space and time requirements4.
We have introduced both algorithmic11, and high-performance computing solutions4 to drastically reduce the
run times for these experiments from days into hours and minutes.

Graphics Processing Units (GPUs) have emerged as the primary and ubiquitous hardware accelerator in the
current-generation of (top-500) supercomputers12,13. As the high-performance computing (HPC) paradigm
continues to shift towards heterogeneous computing, GPU based algorithms are increasingly developed to speed
up the complex algorithms across several scientific domains14–17. However, the existing GPU-based database
search algorithms and software including Tempest18, Tide-for-PTM-search19, GPUScorer20, ProteinByGPU21,
GPU based SDP22, and MIC-Tandem23 are designed to accelerate only the spectral scoring computations and
do not leverage or accelerate the advanced reductive (pre-screening) algorithms such as fragment-ion indexing
and matching7,24 and sequence-tagging6,25. This results in excessive on-the-fly trivial computations, resulting in
the existing methods to exhibit sub-optimal performance, especially for open-search where the precursor-mass
filters are wide26 (Supplementary Sections 1 and 2).

OPEN

1Knight Foundation School of Computing and Information Sciences, Florida International University (FIU), Miami,
FL, USA. 2Biomolecular Sciences Institute (BSI), Miami, FL, USA. 3Department of Human and Molecular Genetics,
Herbert Wertheim School of Medicine, Florida International University, Miami, FL, USA. *email: fsaeed@fiu.edu

https://github.com/pcdslab/gicops
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-43033-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

The need for efficient GPU-accelerated database peptide search algorithms stems from the computational
demands of large-scale proteomics pipelines4, the post-Moore technological shift towards heterogeneous
computing12, and the increasing imbalance between the MS-data generation and database search speeds.

In this paper, we design and implement GPU-accelerated algorithms and software for scalable accelera-
tion of the database peptide search on CPU-GPU architectures. We integrate our developed techniques with
the HiCOPS’s high-performance computing (HPC) software framework to also accelerate the database search
across the distributed-memory supercomputing nodes. Our new framework, called GiCOPS (GPU-accelerated
HiCOPS), provides orders-of-magnitude speed improvement over its CPU-only predecessor i.e., HiCOPS, as
well as several existing GPU-based database peptide search algorithms for open-search application. The proposed
GiCOPS algorithms leverage reduction trees, lock-free computational strategies, shared memory computations,
and iterative performance tuning optimizations to scalably accelerate the complex integer- and memory-intensive
computations of the fragment-ion index-based4,7,24 database peptide search on GPU.

Our extensive experiments show that GiCOPS outperforms the existing GPU-based database search algo-
rithms by more than 10× in both closed- and open-search modes. Our experimentation also shows that the
GiCOPS provides a speed improvement of 1.2 to 5 × as compared to its CPU-only predecessor (HiCOPS) while
providing identical peptide identifications. Finally, our comprehensive performance analysis and optimization
using NVIDIA Nsight Compute (NCU) profiler and the Instruction Roofline Model27 show achieved performance
of 143.6 warp giga instructions per second (GIPS) (48% theoretical peak) and 64.65 warp GIPS (21.5% theoretical
peak) for open- and closed- database search respectively on NVIDIA RTX A6000 GPU.

Results
Methods overview
GiCOPS accelerates the core computational algorithms in the database peptide search workflow, and implements
optimizations and CPU-GPU pipelines to efficiently utilize all available compute and memory resources. The
database peptide search workflow consists of four main steps: (1) database construction, (2) experimental MS
data pre-processing, (3) database peptide search and (4) post-processing. In the first step (database construc-
tion), the peptide sequence database is offloaded to the GPU where the theoretical spectra are generated, indexed
and communicated back to the CPU. In the second step (data pre-processing), the experimental MS data are
streamed to the GPU where it is cleaned, pre-processed, and communicated back to the CPU. In the third step
(database peptide search), the entire database index is communicated to the GPU’s RAM and the experimen-
tal MS data are streamed in batches. GPU searches each batch against the in-memory database index. In the
fourth step (post-processing), the results are used to compute expected values and confidence scores, which are
finally communicated to the CPU. At each step, a priority-queue based work stealing pipeline is implemented
to simultaneously offload the ready compute work at both the CPU and GPU depending on their priority and
availability (Supplementary Fig. 1). The underlying algorithms are redesigned to efficiently exploit the GPU
architectures and are expressed in terms of building block kernels, each optimized using multi-level reductions,
lock-free synchronizations, register-exchange based thread communications, and shared memory computations
for maximum throughput. Finally, to accelerate across distributed-memory supercomputers, GiCOPS employs
the HiCOPS’s4 four Bulk Synchronous Parallel (BSP) superstep28 design where all parallel nodes asynchronously
execute each superstep while synchronizing between supersteps. Since all nodes execute the same code, the rest of
the paper will discuss the GiCOPS methods and results for a single-node CPU-GPU machine. GiCOPS requires
the minimum number of GPUs ( Gmin ) to be ≥ D/Mg ; where D is the database size and Mg is the GPU DRAM.

The total wall time ( TG ) for executing the four GiCOPS steps is the sum of individual steps (j) and each step’s
time ( Tj ) is the maximum time required by the (simultaneously operating) CPU-side to complete its compu-
tational work ( Tj,c ) or the GPU-side to complete its scheduled computational work and data communication
(round trip time) ( Tj,g ), given in Eq. (1):

Experimental setup
We used five custom experimental MS datasets (denoted Ei ) of increasing size for our experimentation. These
datasets were constructed by unionizing/appending several Pride Archive (PXDxxxxx) datasets. The details of
the five datasets are as follows: E1 : PXD009072, E2 : PXD020590, E3 : PXD009072 ∪ PXD010023 ∪ PXD012463 ∪
PXD013074 ∪ PXD013332 ∪ PXD014802 ∪ PXD015391, E4 : PXD015890, and E5 : PXD009072 ∪ PXD020590 ∪
PXD013332 ∪ PXD015890. The search experiments were conducted against increasing size theoretical databases
constructed by incrementally adding combinations of commonly occurring post-translational modifications
(PTMs) to the UniProt Homo sapiens (UP000005640) proteome sequence database. The database was fully
digested in-silico using Trypsin with the Digestor tool29 using the following settings: allowed missed cleavages: 2,
peptide lengths: 6 to 46, and peptide masses: 500 to 5000Da. The theoretical spectra were simulated by generating
b- and y-ions for up to +3 charge, and no isotope error and decoys. Cysteine carbamidomethylation was set as
fixed modification for all experiments whereas up to 5 PTMs per peptide were chosen from the combinations
of methionine oxidation, arginine and glutamine deamidation, serine, threonine and tyrosine phosphorylation.
The closed-search criterion in our experiments was set to δM ≈ ± 1 Da instead of a few ppms to cover the dif-
ferences in monoisotopic or average masses, and rounding off errors across tools. The open-search criteria was
set between ±100 to 500 Da across experiments. The fragment-ion mass tolerance ( δF ) was set to ±0.01 Da for
all tools (where applicable) and experiments. All experimental MS datasets Ei were converted to the MS2 format

(1)TG =

4∑

j=1

max(Tj,c ,Tj,g)

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

using the MSConvert tool30. The experimental MS data pre-processing settings were set to minimal across tools
for nearly identical algorithmic work (fairness), and were set as follows: precursor masses: 500 to 5000Da, precur-
sor charges: +1 to +4, minimum shared fragment-ions for candidacy: 4, minimum candidate hits for statistical
scoring: 4, de-noising: pick only top 100 or 150 peaks by intensity, no data reconstruction, no mass calibrations,
no precursor peak removal, and no n-term methionine clipping.

Runtime environment All experiments were run on the Dragon scientific computing cluster at the Florida
International University (FIU). The cluster is equipped with 6 compute nodes each powered by 2 × Intel Xeon
Gold 5215 (2 × 10 cores), 2 × NVIDIA RTX A6000 GPU (84 SMs, 48GB DRAM), 2 NUMA nodes × 128GB
DRAM, 3TB SSD local storage. The compute nodes are interconnected with each other and the storage nodes
(18TB) via a 10Gbps Ethernet interconnect in star topology.

Correctness analysis
We measured the correctness of GiCOPS’s algorithms by comparing the results, i.e., peptide identifications,
hyperscores and expected-scores, computed by GiCOPS against its CPU-only HPC framework, HiCOPS, for
single- and multi-node runs. The experiments were performed by searching all experimental MS-datasets against
various database combinations in open and closed search modes. Figure 1a and b show a comparison of scores
(100 samples out of 208K) computed by GiCOPS and HiCOPS when searching the experimental MS dataset E1
against the Homo sapiens database with methionine oxidation as PTM in both search modes. The results from
either mode were combined by concatenating them and removing the duplicate results.

Figure 1a and b depict that both HiCOPS and GiCOPS compute identical and consistent scores and peptide
identifications of the experimental spectra regardless of the number of parallel nodes. We also observed a small
number ( ≥0.05%) of discrepancies in the GiCOPS’s computed scores across runs. Upon investigation, we found
that this stems from the reduction loops (when multiple reduced candidate peptides have equal scores) and
floating-point precision errors (when database candidate peptides lie just at the δM boundaries). We mitigated
the first problem by modifying the reduction loops to pick the peptides with the smaller index. We mitigated the
second problem by slightly increasing the δM boundaries for GiCOPS experiments and did not convert floating
point computations to integers like in HiCOPS to avoid a 50% performance loss in database indexing step for
our GPUs (see Performance Evaluation section). Finally, we compared the peptide identification results between
GiCOPS and MSFragger7 (a database search engine that employs a similar, but proprietary, fragment-ion based
algorithm) and the obtained correlation between the two tools was identical to the correlation discussed for

6 8 10 12 14
hyperscore (HiCOPS)

6

8

10

12

14

hy
pe

rs
co

re
 (G

iC
O

P
S

)

0 1 2 3 4 5 6 7
e-values (HiCOPS)

0

1

2

3

4

5

6

7

e-
va

lu
es

 (G
iC

O
P

S
)

b

a

100 random samples
shown

100 random samples
shown

Figure 1.   Correctness analysis. (a,b) Comparison of 100 samples out of 208K data points of the GiCOPS-
(y-axis) and HiCOPS-computed (x-axis) hyperscores (a) and expected scores (or e-values) (b) is shown. The
results show near 100% consistency between the computed results across all 208K data points, but were sampled
to 100 for plotting feasibility.

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

HiCOPS and MSFragger in Ref.4. This is as expected because GiCOPS is only the GPU-accelerated version of
the HiCOPS’ algorithmic kernels.

Speed comparison against HiCOPS
We measured the speed improvement provided by GiCOPS against its CPU-only version, HiCOPS, by searching
all five datasets ( Ei ) against increasing size theoretical databases constructed by adding common PTMs in the
Homo sapiens database in both open- (at δM 500 Da) and closed-search (at δM = 1 Da) modes. Our experimental
results in Fig. 2a to c show that GiCOPS’s speedup (shown as go and gc for open and closed search respectively,
labeled in green) over HiCOPS (shown as ho and hc for open and closed search respectively, labeled in green)
varies between 3 to 5 × in the open-search setting and between 1.2 to 2 × in closed-search setting respectively.
The results also show that the achieved speedups are proportional to the computational workload, i.e., data-
base size, dataset size, and search setting, across experiments. In particular, the computational workload of an
experiment is quadratically proportional to the search mode (open or closed) setting as it controls the database
lookup constraints for each given experimental spectrum. In other words, it controls the total number of pairwise
comparisons to be computed between the experimental spectra in the dataset and the theoretical spectra in the
database, for a given experiment. In contrast, the computational workload varies linearly with the database and
experimental dataset sizes. Note that the computational workload also varies with several other factors such as
the properties and nature of the data. e.g., origin species of data, signal-to-noise ratio. This is in-line with our
performance analysis discussion in the Performance analysis section (see Eq. (5)).

The search mode also directly affects the computation-to-communication ratio of the database search step on
an experiment which makes up a significant fraction of GiCOPS’s overall speedup. Figure 2d plots the computa-
tion-to-communication ratios of the database search superstep of the experiments in Fig. 2b. Comparing the two
figures, we can see that the computation-to-communication ratio drops from ∼ 85 % kernel time (or 5.66 = 85/15
ratio) in the open-search mode to ∼ 50 % kernel time (or 1 = 50/50 ratio) in closed-search mode impacting the
corresponding speedups. For instance, Fig. 2b and d show that the experiment searching the dataset E2 exhibits
speedups of 4.85 and 2.33 corresponding to the percentage (database search) kernel times of 89% and 56.5% in
the open- and closed-search modes respectively. The same trend is observed for all experiments in Fig. 2a and c
as well. Therefore, we can infer that the experiments with similar computation-to-communication ratios also
roughly exhibit similar speedups unless data sizes are highly dissimilar.

The effect of the computation-to-communication ratio to the achieved speedup is also particularly evident
in the speedup results for the first two GiCOPS’s supersteps in Fig. 2e and f respectively. Here we observe, on
average, computation to communication ratios of 21 (95.45% kernel time) and 0.003 (0.29% kernel time) for
the database construction and experimental data pre-processing steps respectively resulting in corresponding
speedups. Note that the I/O constitutes more than 90% of the total time in the data preprocessing step for most
experiments. However, as noted in Methods section, experimental datasets only require preprocessing only
once and is skipped in subsequent experimental runs. Further, since the database construction consistently
depicts large speedups and only depends on the database size, it does have a significant positive impact on the
overall speedup of small-scale experiments. i.e., closed-search experiments, experiments with small dataset
sizes such as E1 This impact can be particularly seen for E1 in closed-search mode in Fig. 2c. We also measured
the performance of GiCOPS against HiCOPS on distributed-memory architecture by searching the dataset E1
against larger database sizes, on our distributed-memory HPC cluster. The experimental results in Fig. 2g and h
depict a similar trend in the GiCOPS’s speedup for either search modes relative to the computational workload
per node (Amdahl’s Law).

Speed comparison against existing GPU methods
We attempted to measure GiCOPS against several existing GPU-based database peptide search software for speed
comparison. These tools included Tempest, Tide-for-PTM-search, GPUScorer, ProteinByGPU, MIC-Tandem,
and PaSER. We could only perform experiments using Tide-for-PTM-search, referred to as GPU-Tide in the
rest of the text, as the other software tools were either outdated, unavailable, incompatible, proprietary, or faulty
(Supplementary Section 3). Therefore, we compared GiCOPS to the GPU-Tide across three experiments in both
closed- (at δM = 1 Da) and open-search modes (at δM = 100 Da). The δM was reduced to 100 Da from 500 Da
in other experiments, due to GPU-Tide software limitations.

In the first set of experiments, we searched all our datasets: E1 to E5 , except E3 (for which, GPU-Tide crashed)
against the Homo sapiens database using only methionine oxidation as PTM (size: 3.89 million) in both modes.
In the second experiment, we also added the arginine and glutamine deamidation as PTMs to the database (size:
10.3 million) and searched all above datasets in both modes. The obtained wall time results in Fig. 3a and b depict
that GiCOPS outperforms GPU-Tide by more than 10× ( > 50× for larger experiments) in the first experiment
set in both open- (Fig 3a) and closed-search (Fig 3b) modes. Similar results are seen for the second experiment
set in Figures 3c (open) and 3d (closed). To explain the speedup results, we also ran the same experiments using
HiCOPS and MSFragger and the results in Fig. 3a to d show that both the CPU-only tools also outperform the
GPU-Tide by > 10× . This is primarily because the GPU-Tide only relies on speeding up the spectral dot product
(hyperscore) computations and does not leverage (or accelerate) any database filtration techniques (reductive
optimizations) commonly employed in modern CPU-based open-search search algorithms4,6,7,24 leading to this
performance gap. Other existing GPU-based database search algorithms also do not leverage any filtration
techniques as discussed in Supplementary Section 2. Notice that the GiCOPS achieves slightly less speedups
over HiCOPS in these experiments as compared to results in Fig. 2 due to the reduced δM setting. Finally, the
execution times for GPU-Tide span several hours to multiple days even for our relatively small experiments,
making it unfeasible to run larger experiments with it.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

Performance evaluation
We analyzed the GiCOPS’s GPU throughput using the Instruction Roofline Model27. The Instruction Roofline
Model is an intuitive visual method to understand and evaluate the performance and bottlenecks of integer-
operation-intensive kernels relative to the theoretical maximum performance27. Since more than 85% of the
GiCOPS’s runtime consists of the database search step for most real-world experiments, we focus our perfor-
mance analysis and optimizations to that kernel only. For our performance analysis, we first computed the GPU’s
theoretical maximum throughputs - i.e. the roofs in the model - were computed using the Empirical Roofline

3.86 10.3 38.5 62.6 120.9
Database size (GB)

0

50

100

150

200

250

300

tim
e

(s
)

CPU
GPU

E1 E2 E3 E4 E5
Expt. MS Dataset

0

20

40

60

80

100

120

tim
e

(s
)

CPU
CPU+GPU

a b

c

d

g h

e

f

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho

go

hc

gc

Database size = 16.7 million

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho

go

hc

gc

Database size = 38.5 million

E1 E2 E3 E4 E5

Expt. MS Dataset

10 1

100

av
g.

 b
at

ch
 ti

m
e

(s
)

comm
kernel

open open

closeclose

Database size = 38.5 million
darks: open search
lights: closed search

E1 E2 E3 E4 E5
Expt. MS Dataset

10
2

10
3

10
4

tim
e

(s
)

ho

go

hc

gc

Database size = 49 million

avg. compute-to-comm
ratio = 21

avg. compute-to-comm
ratio = 0.003

* avg. compute-to-comm
ratio without I/O = 2.46

1 2 3 4 6
Number of parallel nodes

2
5

2
6

2
7

2
8

2
9

2
10

tim
e

(s
)

ho

go

hc

gc

2 3 4 6
Number of parallel nodes

2
6

2
7

2
8

2
9

tim
e

(s
)

ho

go

hc

gc

DB size = 98 million
Dset (E1) = 305,000
open (δM) = 500 Da

DB size = 49 million
Dset (E1) = 305,000
open (δM) = 200 Da

80
.2

%

88
.9

%

85
.4

%

72
.8

%

81
.3

%

58
.1

%

56
.5

%

50
%

44
.4

%

48
.3

%

open

close

open

close

open

close

2.44x
2.33x

1.78x
1.5x

2.5x3.52x

4.85x 4.6x
4.24x

4.5x

1.9x

1.3x 1.62x
1.42x

1.7x3.18x

5.24x 4.82x
3.72x

3.5x

2.3x

3.62x

3x

2.14x
1.92x

1.8x

3.48x
3.25x

2.4x

5.66x

1.9x

4.65x

2.1x
1.9x

1.92x
1.9x

4.2x
4.3x

3.5x

1.26x 1.54x

speedups

speedups speedups

speedups speedups

1.34x

1.24x3.5x

5.3x 4.3x
4.3x

4.1x

Figure 2.   Speed Comparison with HiCOPS. (a) to (c) GiCOPS provides on average, a 3-5× and 1.2-2×
speedup over HiCOPS in open (blue; go and ho ) and closed (reds; gc and hc ) search modes respectively across
experiments (labeled in green). (d) The percentage database search kernel time for the experiments in figure
(b) drops from 70-90% (dark colored bars) in open-search to 45-55% (light colored bars) in closed-search
significantly depreciating its speedup. (e,f) GiCOPS exhibits 3-6× speedup and no speedup compared to
HiCOPS for the database construction and experimental MS data pre-processing steps respectively due to their
corresponding computation-to-communication ratios. (g,h) Similar overall speedup results are seen for multi-
node GiCOPS and HiCOPS runs for both search modes.

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

Toolkit31. We then ran a GiCOPS experiment searching a batch of 10000 experimental MS spectra against the
Homo sapiens database incorporating methionine oxidation, arginine and glutamine deamidation, and serine,
threonine and tyrosine phosphorylation as PTMs in open- and closed-search modes using the NVIDIA Nsight
Compute (NCU). The collected metrics, along with the ERT parameters were then used to build the Instruction
Roofline Model for the both search modes using the methods explained in27.

The Instruction Roofline Model shown in Fig. 4a depicts that the GiCOPS’s database search kernel in open
(shown as squares) and closed-search (shown as diamonds) achieves a throughput - in warp Giga Instruc-
tions per Second (warp GIPS)27 - of 143.608 warp GIPS and 64.642 warp GIPS respectively. This achieved
throughput corresponds to 48% and 21.5% of theoretical integer instruction peak on NVIDIA RTX A6000 as
almost all computational instructions in GiCOPS are integer-based. The integer instruction peak performance
is computed by scaling the GPU’ theoretical peak instruction throughput (604.8 warp GIPS) by the ratio of
number of INT cores per warp to the warp size (=16/32 for NVIDIA RTX A6000 (Ampere architecture)) result-
ing in 0.5× 604.8 = 302.4 warp GIPS. Also, note that the LDST instructions make up a significant fraction of
GiCOPS’s instruction mix which further affects its maximum theoretical achievable throughput. Figure 4a also
shows that the effect of thread predication (branching) negligible as the achieved performance (squares and
diamonds) lie right on the dotted black lines that correspond to the thread-predication-free respective through-
puts of 145.67 warp GIPS (open-search) and 65.83 warp GIPS (closed-search). Finally, the Fig. 4a shows the
DRAM (global memory) access pattern between stride-1 and stride-8 walls (vertical orange lines) indicating
the expected intense usage of a 12-byte data structure to compute peptide similarity scores. Figure 4b depicts a
virtually bank-conflict-free shared-memory performance of GiCOPS’s database search for both open- (square)
and closed-search (diamond) modes.

Discussion
In this paper, we presented GiCOPS framework which is a GPU-accelerated technique applied to traditional
scientific computing database peptide search algorithms and the corresponding MS data flows. In stark contrast
to several existing (SIMD-based) methods, the GiCOPS framework is designed for high-level SIMT-architectures,
i.e. the implemented CUDA-based kernels can be directly deployed (with some fine-tuning) on most NVIDIA
GPU, as well as ported/translated for AMD and Intel GPUs using HIP/ROCm, and SYCL32. We expect wide
usage and experimentation and have made the GiCOPS code base publicly available for domain scientists and
researchers to use. Our extensive experimentation using real-worl experimental datasets and databases reveals
that GiCOPS exhibits speedups between 1.2 to 2 × in closed-search and 3 to 5 × in open-search mode, as compared
to its CPU-parallel version (HiCOPS). GiCOPS also exhibits >10× speedup ( > 50× for larger experiments) as
compared to the existing GPU-based methods in either search mode. The speed benefits provided by GiCOPS
are especially significant for the compute-intensive (open-search) experiments.

E1 E2 E4 E5

Expt. MS Dataset

10
2

10
3

10
4

10
5

10
6

tim
e(

s)

GPU-Tide
MSFragger
HiCOPS
GiCOPS

E1 E2 E4 E5

Expt. MS Dataset

10
2

10
3

10
4

10
5

tim
e(

s)

GPU-Tide
MSFragger
HiCOPS
GiCOPS

a

c

b

d
E1 E2 E4 E5

Expt. MS Dataset

10
2

10
3

10
4

10
5

tim
e(

s)

GPU-Tide
MSFragger
HiCOPS
GiCOPS

E1 E2 E4 E5

Expt. MS Dataset

10
2

10
3

10
4

tim
e(

s)

GPU-Tide
MSFragger
HiCOPS
GiCOPS

1

1

1

1

1

1

1

1

25
.2

25
.1

48
.7

13
.5

12
.2

51
.4

18
.6

48
.9

81
.9

75
.1

27
5.

2

13
.9

19
.4

46
.7 34

.8

34
.9

20
5

19
0.

6

17
4.

6

62
.6

62
.6

64
.1

15
.4

17
.8

36
5

94
.3

10
3.

7

64

18
.7

1

1

1

1

1

1

1

1

24
.6 20
.3

57
.8

14
.4

13

63
.3

21
.6

37 39
.8

74
.5 56
.7

91
.4

33
020

7.
9

22
7

12
996

.7

67

18

Figure 3.   Speed Comparison with GPU-Tide. (a,b) First experiment set: The execution time results (in log10
scale) depict that all MSFragger, HiCOPS, and GiCOPS outperform GPU-Tide by ≥ 10× (achieved speedups
over GPU-Tide written on top of bars) in both open (a) and closed (b) search modes. This speedup increases to
≥ 50× for larger experiments. (c,d) Second experiment set: Similar results are seen in both open (c) and closed
(d) search modes. Note that the open-search setting in these two experiment sets was set to δM = 100 Da instead
of δM = 500 Da in other experiments due to δM limit of 100 Da in GPU-Tide.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

Our proposed framework show that GPU based methods for database search-algorithms can significantly
improve the overall performance of the workflows - improving both the throughput and execution times for
pipelines that require executing large data sets e.g. meta-proteomics. While significant speedup results were
obtained, the peptide identification accuracy achieved by GiCOPS depends on the underlying algorithmic pipe-
lines being executed - and new algorithms that can improve the peptide deduction accuracy are not within the
scope of this paper. Recent advances in the machine and deep learning based algorithms for the database peptide
search have led to more accurate and confident peptide identifications (e.g. yHydra33). These complex models
require massive amounts of computational resources and with the existing software infrastructure, require several
hours and weeks to train, test and deploy33,34 these methods. Our future efforts of expanding and integrating the
presented infrastructure into a ML/DL based HPC-accelerated database peptide search software will increase the
speed at which models can be trained and tested - leading to better peptide deduction engines in the long run.
We are confident that our proposed framework will help bridge the gap between the computational demands
of current and future algorithms and machine-learning models and the available software infrastructure will
meet these demands using our framework on clusters, and supercomputing machines. Our current and future
research efforts will help accelerate and advance the scientific investigations in this application domain - and
will act as a the fourth pillar for scientific investigation in the field of MS based omics including proteomics,
and meta-proteomics.

Methods
Notations and symbols
For the rest of the manuscript, we will denote the size of the indexed theoretical spectra database as (D), a set
of experimental MS data as ( Q = q1, q2, · · · ) containing (q) spectra, with average length of ( η ) split across (b)
batches, the CPU/GPU thread ids as (tid), GPU thread block size as ( ψ ), the CPU-GPU communication latency
as ( ω ) and bandwidth as ( π ). Note that the indexed theoretical spectra database will be referred to simply as the
database in the rest of the paper.

CPU‑GPU pipeline
GiCOPS’s CPU-GPU pipeline consists of a global work queue wq, a priority queue pq and an oversubscribed
scheduling thread ts . In each GiCOPS’s step, the computational workload is divided across smaller chunks or files
(either database or experimental data) which need to be processed by either CPU or GPU. Based on the compu-
tational algorithm and the amount of data, the priorities of CPU and GPU can be adjusted to favor one resource
over the other as needed. The scheduling thread ts operates as a producer-consumer router and schedules each
work unit in wq to CPU or GPU. The routing is done by moving the work units from the global queue to CPU

10 4 10 2 100 102 104 106

Instruction Intensity (Warp Instructions per Transaction)

10 2

10 1

100

101

102

103

P
er

fo
rm

an
ce

 (w
ar

p
G

IP
S

)

L1 (tot_inst)
DRAM (tot_inst)
Global (ldst)

DBSearch (open)
DBSearch (closed)

st
rid

e-
0

st
rid

e-
1

st
rid

e-
8

Theoretical Peak: 604.8 warp GIPS

L1
: 1

17
.9

GTXN/s

DRAM: 2
1.8

1 GTXN/s

b

10 2 100 102 104 106

Instruction Intensity (Warp Instructions per Transaction)

10 1

100

101

102

103

P
er

fo
rm

an
ce

 (w
ar

p
G

IP
S

)

Shared (ldst_inst)
DBSearch (open)
DBSearch (closed)

32
-w

ay
 c

on
fli

ct

N
o

ba
nk

 c
on

fli
ct

Theoretical Peak: 604.8 warp GIPS

Sh
ar

ed
: 2

9.
47

 G
TX

N/
s

a

Figure 4.   Instruction roofline model. (a) GiCOPS’s database search kernel exhibits a throughput of 143.6 and
64.6 warp GIPS in open- (squares) and closed- (diamonds) search modes respectively on NVIDIA RTX A6000
GPU. The achieved performances correspond to 48% and 21.5% of the theoretical integer-instruction peak as
well as >99% corresponding thread-predication peaks (dotted black lines). All GPU peak throughputs were
measured using the ERT toolkit31. (b) The shared memory performance of GiCOPS is near-ideal with negligible
number of bank conflicts affecting the performance.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

or GPU’s local queues and thread signaling via C++ condition variables. When all compute resources are busy,
the ts simply remains in the sleep state. A schematic of the CPU-GPU pipeline is shown in Supplementary Fig. 1
and the scheduling algorithm is illustrated in Supplementary Algorithm 1. Notice that this scheduling thread ts
is different than the thread manager in HiCOPS which manages the speed of producer and consumer threads
and is also employed in GiCOPS with additional functionality for GPU.

Step 1: Database construction
In this step, GiCOPS constructs a database of indexed theoretical MS spectra data from one or more peptide
sequence database(s) using the CFIR-Index11 data structure (Fig. 5a). At the CPU side, the peptide sequences
and their PTM variants are generated and grouped by length. The peptide groups are communicated to the GPU
where an instance of the CFIR-Index is computed for each group11. The peptide index is first computed using a
two-fold parallel algorithm that computes the peptide precursor masses of each sequence and then Radix sorts
them using their computed masses as keys. Here, each thread block of size l processes a peptide sequence of
length l + 1 and each thread processes an amino acid character. Then, another two-fold parallel kernel is then
launched to generate and index the theoretical MS spectra data. Here each thread block is of size s × l where s
is the number of ion-series to be generated. Typically, only b- and y-ions are generated so the s is 2. Inside each
block, the first tid < sl/2 threads compute the forward ion-series (a, b, c) and operate on the amino acid character
at tid mod l , whereas the last tid ≥ sl/2 threads compute the reverse ion-series (x, y, z) and operate on the amino
acid character at l − (tid mod l) . The threads write the computed amino acid masses at the index tid of a shared
memory array (S). A multi-level (warp- and block-level) reduction algorithm is used to compute the prefix sum
of S. Then, each thread tid > l removes the sum of previous ion-series to get the current ion-series’s prefix sum
by computing S[tid] ← S[tid] − S[l ∗ (tid/l)] . The generated data are then scaled for ion-charges and written
to the global memory. Once all theoretical MS spectra data are generated, the CFIR-Index’s fragment-ion index
is computed using stable sort-by-key, and lowerbound kernels35. The GPU algorithm for fragment-ion construc-
tion is illustrated in Fig. 5a and Supplementary Algorithm 2. Finally, the constructed CFIR-Index instance is
communicated to the CPU memory.

Figure 5.   GiCOPS Steps 1 and 2. (a) Database Indexing: The CPU communicates the (small) peptide
sequence database to the GPU where the theoretical MS-spectra data are generated and indexed using the
CFIR-Index data structure. The CFIR-Index is then communicated back to the CPU. (b) Experimental
MS-Data Preprocessing: The experimental MS data are streamed to the GPU side where they are (in current
implementation) denoised using the Sorted Tag Array coupled peak picking algorithm. The preprocessed data
are streamed back to the CPU.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

Remark  Since database indexing is a compute-intensive step, it can be entirely executed on the GPU-side as
well with little to no aid from the CPU side in the CPU-GPU pipeline without significantly affecting the overall
performance.

Step 2: Experimental MS data preprocessing
In this step, GiCOPS pre-processes (i.e., normalize, clean, and filter) the experimental MS data and writes it back
to the disk (Fig. 5b). At the CPU side, the experimental spectra are read in batches Q and streamed to the GPU.
At the GPU side, the spectra in each batch are pre-processed and communicated back to the CPU side for index-
ing and writing back to the storage. For pre-processing, an algorithm like MSFragger and HiCOPS is employed
where the top-K (k = 100-150 usually) data points are normalized and extracted from each spectrum. The spectra
are first sorted using a Sorted Tag Approach36 and then the last or first-K data points depending on the sort-type
are normalized and extracted. In the Sorted Tag Approach, all spectra arrays qi in a batch are concatenated to a
global array Q = q1, q2, .., qq . The global array Q is then sorted and then rearranged to the sorted versions of the
spectra arrays qi,sorted . To preserve the position information during the global sort, a tag-array (T) is initialized
as T[j] = qi where qi is the spectrum id of the j-th data point in Q. For each wrangling operation on one or more
dimensions of Q, the wrangling position information is stored in I which is then used to gather the remaining
dimensions of Q as well as the T. Once all operations are done, Thrust’s stable-sort-by-key kernel35 is employed
using T as key to gather the processed versions of spectra Q = q1,sorted , q2,sorted , .., qq,sorted in the correct order.
Once sorted, another GPU kernel is launched where each sorted qi,sorted is processed by a thread block of size K
where each thread normalizes and extracts the q− tid-th data point in qi,sorted . The extracted data are written
to a DRAM array Q′ along with the metadata (including new spectrum lengths) and communicated back to the
CPU. The GPU algorithm for experimental MS data pre-processing is illustrated in Fig. 5b and the Supplementary
Algorithm 3. An example of the Sorted Tag Approach is shown in Supplementary Fig. 2.

Remark  Similar to HiCOPS, this step is only executed only once per experimental MS data set. Once an experi-
mental MS dataset is pre-processed and indexed by GiCOPS, this step is skipped for all subsequent runs unless
required due to a change in the setting. e.g., base intensities, normalization, number of data points, or the dataset
index is outdated. Also, since the current experimental data pre-processing is primarily a communication-
intensive step, it can be executed entirely at the CPU-side without significantly affecting the overall performance.

Step 3: Database peptide search
This is the core computational step in the entire GiCOPS pipeline contributing over 90% of the total algorithmic
workload in most real world experiments. In this step, GiCOPS searches the pre-processed experimental MS
spectra data against the database using the fragment-ion search method also employed in Refs.4,7,24 (Fig. 6).
Before the search, the CPU communicates all instance of the CFIR-Index to the GPU’s main memory. During
the search, the CPU reads the batches of the pre-processed experimental MS data ( q ∈ Q ) from the storage or
file system and streams them to the GPU. At the GPU side, these batches Q are searched against the indexed
database (CFIR-Index) D and the results (top database matches h and null distribution of scores N) are com-
municated back to the CPU. The search kernel is launched in sub-batches of � thread blocks depending on the
GPU’s DRAM (default: � = 512 ). Each thread blocks searches a spectrum q against the D using ψ threads (128
(closed-search) ≥ ψ ≥ 512 (open-search)) depending on the search mode. During the search, the peptide and
fragment-ion mass filters are first computed (lower- and upper-bounds) using ψ-ary reduction trees and stored
in shared-memory arrays Flower and Fupper . The fragment-ion search is then computed in data parallel fashion
for each ion i ∈ q ∈ Q between Flower[i] and Fupper[i] and updated to a scorecard memory in DRAM. The mas-
sively GPU-parallel fragment-ion search is prone to race conditions, for which a two-step algorithm is employed
(explained in Section 4.8.1) to alleviate the race conditions at a �(log(ψ)) cost. Once all fragment-ions have been
processed, the scorecard is data-parallel processed to compute the hyperscores h[q] and atomically build the
null distributions N[q]. The number of candidate peptide-to-spectrum matches (database hits) processed and
the maximum hyperscore hmax[q] are computed in local per-thread variables during data-parallel execution and
gathered at the end using optimized thread-shuffle based warp-wise block reductions (see Section 4.8.3). The
GPU database peptide search kernel along with relevant reduction blocks are illustrated in Fig. 6 and Supple-
mentary Algorithm 4. The final results (h[q] and N[q] ; ∀q ∈ Q ) are communicated back to the CPU where they
are encoded and written to the file system for distributed system-wide gathering, assembly and postprocessing4.

Remark  The database search step poses a complex mixed (compute- and memory-intensive) workload and
constitutes a large fraction of the total execution time, it is imperative to focus the optimization and fine-tuning
efforts to this kernel to yield the maximum performance. For that, we used the Nvidia Nsight Compute (NCU)
tool to iteratively profile and analyze the performance hotspots, and implemented optimizations to minimize
them (discussed in later sections).

Step 4: Result postprocessing
In this step, the database peptide search results are processed to compute the confidence scores (expected values
ev) of the peptide identifications (Fig. 6—confidence score computations). The CPU-GPU pipeline for this step
depends on whether the GiCOPS is running on a single-node or (distributed) multi-node machine. In case of
distributed memory case, all local results from the database search step for all experimental spectra batches Q
are partitioned across the parallel nodes where they are de-serialized and assembled using signal shift and add
operations at the CPU side as explained in HiCOPS4. The assembled batches of global results are communicated

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

to the GPU DRAM. However, in the single-node case, the results are not communicated to the CPU at the end of
database search step and the postprocessing step is fused into the database peptide search step. In either case, at
the GPU side, the post-processing kernel is launched where each thread blocks computes the confidence scores
for one experimental spectrum using its computed hyperscores h[q] and the null distributions N[q] from the
database peptide search step. The GPU block size ( ψ ) is set to the maximum length null distribution histogram
in the batch, computed as ψ ← max(hmax[q]) . The GPU kernel implements vectorized versions of the Linear
Tail Fit37 and Gumbel-Fit4 algorithms to compute expected values, built using thread-shuffle based block-wise
reductions (see Section 4.8.1). The GPU kernel for the result postprocessing is illustrated in Supplementary
Algorithm 5. The final results and confidence score are communicated to the CPU where they are either written
to the file system or communicated to other nodes depending on the computing architecture (single or multiple-
node computing) as explained in HiCOPS4.

Remark  The result post-processing step, although highly optimized due its compute-bound and GPU-friendly
computational nature, contributes less than 1% of the total computational work in the database peptide search
pipeline and thus, does not affect the overall performance yield.

Performance analysis
The GPU-performance of the GiCOPS can be modeled by analyzing the performance of its individual steps
as given in Eq. (1). In most real-world experiments, our experimental MS data will already be pre-processed
meaning we can prune the experimental MS data pre-processing step (step 2) from our analysis. Further, we
can prune the data post-processing step (step 4) from our analysis as it contributes to less than 1% of the total
computations and does not affect the overall performance. Using this, we re-write Eq. (1) as:

To analyze only the GPU-performance of GiCOPS, we assume that the CPU-GPU pipeline in GiCOPS only
schedules the work units on the GPU resulting in:

TG = max(T1,c ,T1,g)+max(T3,c ,T3,g)

Figure 6.   GiCOPS Steps 3 and 4. Database Peptide Search: The CFIR-Index and the pre-processed
experimental MS data are communicated to the GPU in at once and stream fashion respectively. The GPU
computes database filters Flower and Fupper for each batch and using that computes the (map-reduce) fragment-
ion match coupled hyperscore based database peptide search of Ref.4. Result Postprocessing: For single node
case, the computed scores and their distributions from the last step are directly used to compute confidence
scores which, along with peptide identifications are communicated back to the CPU. In multi-node case, the
scores are first assembled globally as explained in Ref.4 before computing confidence scores.

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

For simplicity, we can drop the ( g ) subscript from the above equation resulting in:

In the above equation T1 corresponds to the time to communicate the peptide sequences to the GPU, construct the
CFIR-Index and communicate the database index back to the CPU, whereas T3 includes the time to communicate
the database and experimental data batches to the GPU, compute the database search including computing mass
tolerance filters, fragment-ion search and hyperscores, and finally communicate the results back to the CPU.
Using the asymptotic time complexities of each algorithmic operation, and scaling factors ki,j where i denotes
the step number and kj incorporates the number of parallel GPU cores, clock speeds, occupancy factor and the
number of parallel thread blocks for the j-th algorithmic operation, we can write T1 and T3 as:

and

In Eq. (2), a is the number of fragment-ion bins in the CFIR-Index whereas in Eq. (3), α is the average fragment-
ion bin size in CFIR-Index, σ is the average number of fragment-ion matches per experimental spectrum frag-
ment, µ is the average number of candidate database peptides to be scored for an experimental spectrum, and υ
is the average number of collisions in atomic construction of null distributions. Combining all above equations,
we have:

Let us split the Eq. 4 into computational ( TP ) and overhead ( TO ) to analyze the effect of different parameters on
both parts and the overall performance.

and

From Eqs. 5 and 6, it can be seen that increasing either the database size (D) or the experimental dataset size
Q = qη the TP dominates over TO and vice versa for smaller database and dataset sizes. However, the most
impactful factors in the overall GiCOPS’s GPU-performance are the peptide ( δM ) and fragment-ion ( δF ) mass
tolerances impacting the σ and µ in equation 5. Since both these factors appear in quadratic terms of TP , they
can significantly boost or diminish the computational workload in TP even for large D and Q. For instance, for
large D and Q but small δM and δF , the TP would significantly drop to only database indexing factors ( k1,j ) and
the TO may dominate the overall performance.

Remark  GiCOPS provides a significant GPU-acceleration (up to 5 × ) for database search kernel in open-search
application even for small to medium sized database and dataset sizes. In closed-search the communication
overheads result in a performance drop even for large database and dataset sizes. In either search mode, the
GPU-accelerated database indexing step is unimpacted and provides a reasonable speedup over CPU-only code.

Optimizations
The following sections discuss the algorithms and optimization techniques employed to efficiently alleviate the
race conditions and boost the achieved performance in GiCOPS.

Race conditions in fragment‑ion matching
The fragment-ion matching kernel filters the number of database candidates for a given experimental spectrum by
computing the number and nature of shared fragment-ions between the experimental spectrum and the theoreti-
cal spectra in the database. The matches are recorded using a scorecard data structure updating (fetch, update,
write) which in a parallel algorithm design results in race conditions. Profiling the code reveals that fragment-ion
matching constitutes more than 50% of the total computational workload (both CPU and GPU) in the database
peptide search step making it the most important kernel to be optimized. In our CPU-only parallel design, race
conditions are alleviated by modifying the granularity of parallelism which is not applicable for GPUs.

Therefore, in GiCOPS, we implement a two-step method to eliminate these possible race conditions at the
cost of �(log(ψ)) operations, for the ψ threads to make a parallel update to the scorecard. The first step involves
stabilizing the sort operations during the CFIR-Index construction in the database indexing step. Stable sort
operations ensure that the indexed fragment-ions within a δF originating from the same peptide id are placed
at adjacent locations. This also ensures that the GPU threads that may participate in a race condition when

TG = T1,g + T3,g

TG = T1 + T3

(2)T1 = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k1,4(ω + D/π)

(3)
T3 = k3,1(bω + (Q + D)/π)+ k3,2(qη log(α))+ k3,3(qησ log(ψ))

+ k3,4(qµ log(ψ))+ k3,5(qυ/ψ)+ k3,6(bω + 2048q/π)

(4)
TG = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k1,4(ω + D/π)

+ k3,1(bω + (Q + D)/π)+ k3,2(qη log(α))+ k3,3(qησ log(ψ))

+ k3,4(qµ log(ψ))+ k3,6(bω + 2048q/π)

(5)
TP = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k3,2(qη log(α))

+ k3,3(qησ log(ψ))+ k3,4(qµ log(ψ))

(6)TO = k1,4(ω + D/π)+ k3,1(bω + (Q + D)/π)+ k3,5(qυ/ψ)+ k3,6(bω + 2048q/π)

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

updating fragment-ion match scores are also located adjacent to each other. We exploit this locality information
to eliminate the race conditions by applying a block-wise reduction in log(ψ) clock cycles using the algorithm
illustrated in Supplementary Section 4, before writing the reduced fragment-ion scores.

Performance tuning
We employed the Nvidia Nsight Compute (NCU) to iteratively collect and analyze several performance metrics
for the database search kernel, and fine tune its performance by adjusting the thread grid size, reducing the
shared memory and register usage, eliminating bank conflicts, reducing the required thread barriers, padding
certain data structures, and interleaving compute and memory operations where possible. The overall result of
performance tuning was a 25% boost to the overall throughput (incorporated in the reported results), speed of
light performance (12.1% compute and 80.06% memory), occupancy factor (80% theoretical max), active blocks
(79.6% theoretical max), and the shared memory bank conflicts ( < 0.1% transactions).

Optimized reductions
Database peptide search algorithms frequently execute memory lookup kernels including max, min, argmax,
argmin, blocksum, lowerbound, upperbound. Therefore, it is important to optimize these and other reduction
operations in GiCOPS. To do this, we implement these kernels in GiCOPS using reduction trees that leverage
CUDA’s warp shuffle intrinsics for optimized and constant space reductions. The reductions are performed in
a two-step reduction where each warp is first reduced using warp shuffles. Then, the reduced values from each
warp are collected in a shared memory array of ≤ 32 elements. These elements are collected by the zeroth warp
and reduced again to compute the final value. Furthermore, several kernels such as max and argmax can and are
fused together and computed in the same reduction kernel when possible. Furthermore, the search operations
are implemented as vectorized k-ary search tree where k is the thread block size. A generic block-wise reduction
algorithm using warp shuffles is illustrated in Supplementary Algorithm 6.

Compile‑time computations
The fragment-ion based database search algorithm in GiCOPS, computes the hyperscore similarity metric38
between millions of pairs (many-to-many) of theoretical and experimental MS spectra. Consider a pair of
spectra ν and ξ , the number of shared b- and y-ions between them is nb and ny respectively with corresponding
intensities ib,j and iy,j , then the hyperscore similarity between them is given in equation 7. Notice that the first
two terms in equation 7 compute log of factorial of nb and ny which can be pre-computed for 0 ≥ n ≥ 120 at
compile time to avoid repetitive O(n!) on-the-fly computations. To do this, we precompute a data structure at
compile-time (Supplementary Fig. 4) and employ a dynamic programming algorithm computing and memoiz-
ing: log(n!) = log(n)+ log((n− 1)!) . The dynamic programming array is communicated to the GPU’s constant
memory at initialization stage. Also, note that this algorithm also avoids 64 bit overflow when computing n! for
n ≥ 21.

Data availability
All datasets used in this study are publicly available from the Pride Archive via: https://​www.​ebi.​ac.​uk/​pride/​archi​
ve/​proje​cts/<AN> where <AN> is the accession number for each dataset mentioned in the text. For example, the
dataset with the accesssion number: PXD015384, can be accessed via the link: https://​www.​ebi.​ac.​uk/​pride/​archi​
ve/​proje​cts/​PXD01​5384. The Homo sapiens proteome sequence database used in this study is publicly available
from UniProt via: https://​www.​unipr​ot.​org/​prote​omes/​UP000​005640.

Code availability
The GiCOPS software has been implemented as a part of the HiCOPS software framework using object-ori-
ented C++17, MPI, CUDA, OpenMP, Python, Bash and CMake. The GPU performance was instrumented with
NVIDIA Nsight Compute (NCU). GiCOPS is under active development at the Parallel Computing and Data
Science Laboratory (PCDS Lab) at the Florida International University. The source code is available at https://​
github.​com/​pcdsl​ab/​gicops. The Instruction Roofline metrics were collected and analyzed using an in-house
software based on NCU and39, and is available at https://​github.​com/​pcdsl​ab/​Instr​uction_​roofl​ine_​scrip​ts.

Received: 2 June 2023; Accepted: 18 September 2023

References
	 1.	 Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid

sequences in a protein database. J. Am. Soc. Mass Spectrom. 5(11), 976–989 (1994).
	 2.	 Craig, R. & Beavis, R. C. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid

Commun. Mass Spectrom. 17(20), 2310–2316 (2003).
	 3.	 Nesvizhskii, A. I. A survey of computational methods and error rate estimation procedures for peptide and protein identification

in shotgun proteomics. J. Proteomics 73(11), 2092–2123 (2010).
	 4.	 Haseeb, M. & Saeed, F. High performance computing framework for tera-scale database search of mass spectrometry data. Nat.

Comput. Sci. 1(8), 550–561 (2021).

(7)hyperscore(ν, ξ) = log(nb!)+ log(ny !)+ log(

nb∑

j=1

ib,j)+ log(

ny∑

k=1

iy,k)

https://www.ebi.ac.uk/pride/archive/projects/
https://www.ebi.ac.uk/pride/archive/projects/
https://www.ebi.ac.uk/pride/archive/projects/PXD015384
https://www.ebi.ac.uk/pride/archive/projects/PXD015384
https://www.uniprot.org/proteomes/UP000005640
https://github.com/pcdslab/gicops
https://github.com/pcdslab/gicops
https://github.com/pcdslab/Instruction_roofline_scripts

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

	 5.	 Nesvizhskii, A. I. et al. Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data
toward more efficient identification of post-translational modifications, sequence polymorphisms, and novel peptides. Mol. Cell.
Proteomics 5(4), 652–670 (2006).

	 6.	 Chi, H. et al. Open-pfind enables precise, comprehensive and rapid peptide identification in shotgun proteomics. bioRxiv 20,
285395 (2018).

	 7.	 Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. Msfragger: Ultrafast and comprehensive
peptide identification in mass spectrometry-based proteomics. Nat. Methods 14(5), 513 (2017).

	 8.	 Eng, J. K., Searle, B. C., Clauser, K. R. & Tabb, D. L. A face in the crowd: Recognizing peptides through database search. Mol. Cell.
Proteomics 10, R111 (2011).

	 9.	 McIlwain, S. et al. Crux: Rapid open source protein tandem mass spectrometry analysis. J. Proteome Res. 13(10), 4488–4491 (2014).
	10.	 Xu, T. P. S. K. et al. Prolucid: An improved sequest-like algorithm with enhanced sensitivity and specificity. J. Proteomics 129, 16–24

(2015).
	11.	 Haseeb, M. & Saeed, F. Efficient shared peak counting in database peptide search using compact data structure for fragment-ion

index. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (eds Haseeb, M. & Saeed, F.) 275–278
(IEEE, 2019).

	12.	 Madsen, J. R. et al. Timemory: Modular performance analysis for hpc. In International Conference on High Performance Computing
(eds Madsen, J. R. & Awan, M. G.) 434–452 (Springer, 2020).

	13.	 Stevens, R., Ramprakash, J., Messina, P., Papka, M. & Riley, K. Aurora: Argonne’s Next-Generation Exascale Supercomputer (Argonne
National Laboratory (ANL), 2019).

	14.	 Awan, M. G. et al. Adept: A domain independent sequence alignment strategy for gpu architectures. BMC Bioinform. 21(1), 1–29
(2020).

	15.	 Block, B., Virnau, P. & Preis, T. Multi-gpu accelerated multi-spin monte carlo simulations of the 2d ising model. Comput. Phys.
Commun. 181(9), 1549–1556 (2010).

	16.	 Niemeyer, K. E. & Sung, C.-J. Recent progress and challenges in exploiting graphics processors in computational fluid dynamics.
J. Supercomput. 67(2), 528–564 (2014).

	17.	 Li J, Ranka S, Sahni S. GPU matrix multiplication. Multicore Computing: Algorithms, Architectures, and Applications, 345, (2013).
	18.	 Milloy, J. A., Faherty, B. K. & Gerber, S. A. Tempest: Gpu-cpu computing for high-throughput database spectral matching. J.

Proteome Res. 11(7), 3581–3591 (2012).
	19.	 Kim, H., Han, S., Um, J.-H. & Park, K. Accelerating a cross-correlation score function to search modifications using a single gpu.

BMC Bioinform. 19(1), 1–5 (2018).
	20.	 Li Y, Xia L, Chi H, Chu X. Accelerating mass spectrometry-based protein identification using gpus. BMC Bioinform., (2014).
	21.	 Li, Y., Chi, H., Xia, L. & Chu, X. Accelerating the scoring module of mass spectrometry-based peptide identification using gpus.

BMC Bioinform. 15(1), 1–11 (2014).
	22.	 Li, Y. & Chu, X. Speeding up scoring module of mass spectrometry based protein identification by GPU. In 2012 IEEE 14th Interna-

tional Conference on High Performance Computing and Communication and 2012 IEEE 9th International Conference on Embedded
Software and Systems (eds Li, Y. & Chu, X.) 1315–1320 (IEEE, 2012).

	23.	 He, P. & Li, K. Mic-tandem: Parallel x! tandem using mic on tandem mass spectrometry based proteomics data. In 2015 15th IEEE/
ACM International Symposium on Cluster, Cloud and Grid Computing (eds He, P. & Li, K.) 717–720 (IEEE, 2015).

	24.	 Beyter, D., Lin, M. S., Yanbao, Yu., Pieper, R. & Bafna, V. Proteostorm: An ultrafast metaproteomics database search framework.
Cell Syst. 7(4), 463–467 (2018).

	25.	 Devabhaktuni, A. et al. Taggraph reveals vast protein modification landscapes from large tandem mass spectrometry datasets. Nat.
Biotechnol. 37(4), 469–79 (2019).

	26.	 Geer, L. Y. et al. Open mass spectrometry search algorithm. J. Proteome Res. 3(5), 958–964 (2004).
	27.	 Ding, N. & Williams, S. An instruction roofline model for gpus. In 2019 IEEE/ACM Performance Modeling, Benchmarking and

Simulation of High Performance Computer Systems (PMBS), pp. 7–18, (2019).
	28.	 Tiskin, A. BSP (Bulk Synchronous Parallelism) 192–199 (Springer, 2011).
	29.	 Sturm, M. et al. Openms-an open-source software framework for mass spectrometry. BMC Bioinform. 9(1), 163 (2008).
	30.	 Adusumilli, R. & Mallick, P. Data conversion with proteowizard msconvert. In Proteomics (eds Adusumilli, R. & Mallick, P.) 339–368

(Springer, 2017).
	31.	 Lo, Y. J. et al. Roofline model toolkit: A practical tool for architectural and program analysis. In International Workshop on Per-

formance Modeling, Benchmarking and Simulation of High Performance Computer Systems (eds Lo, Y. J. & Williams, S.) 129–148
(Springer, 2014).

	32.	 Haseeb, M., Ding, N., Deslippe, J. & Awan, M. Evaluating performance and portability of a core bioinformatics kernel on multiple
vendor gpus. In 2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC) (eds Haseeb, M. et
al.) 68–78 (IEEE, 2021).

	33.	 Altenburg, T., Muth, T. & Renard, B.Y. yhydra: Deep learning enables an ultra fast open search by jointly embedding ms/ms spectra
and peptides of mass spectrometry-based proteomics. bioRxiv, pp. 2021–12, (2021).

	34.	 Tariq, M. U. & Saeed, F. Specollate: Deep cross-modal similarity network for mass spectrometry data based peptide deductions.
PLoS ONE 16(10), e0259349 (2021).

	35.	 Bell, N. & Hoberock, J. Thrust: A productivity-oriented library for cuda. In GPU Computing Gems Jade Edition (eds Bell, N. &
Hoberock, J.) 359–371 (Elsevier, 2012).

	36.	 Awan, M. G. & Saeed, F. Ms-reduce: An ultrafast technique for reduction of big mass spectrometry data for high-throughput
processing. Bioinformatics 32(10), 1518–1526 (2016).

	37.	 Fenyö, D. & Beavis, R. C. A method for assessing the statistical significance of mass spectrometry-based protein identifications
using general scoring schemes. Anal. Chem. 75(4), 768–774 (2003).

	38.	 Craig, R. & Beavis, R. C. Tandem: Matching proteins with tandem mass spectra. Bioinformatics 20(9), 1466–1467 (2004).
	39.	 Ding, N., Awan, M. & Williams, S. Instruction roofline: An insightful visual performance model for gpus. Concurr. Computat.

Pract. Exp. 34(20), e6591 (2022).

Acknowledgements
This material is based upon work supported by the National Institutes of Health (NIH) grant number
R01GM134384 and the National Science Foundation (NSF) grant number OAC 2312599. Additionally Fahad
Saeed was supported by OAC 2126253. The content is solely the responsibility of the authors and does not neces-
sarily represent the official views of the National Institutes of Health (NIH) or the National Science Foundation
(NSF).

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:18713 | https://doi.org/10.1038/s41598-023-43033-w

www.nature.com/scientificreports/

Author contributions
M.H. and F.S. designed the GPU algorithms and the parallel software framework. M.H. wrote the CPU and GPU
software. M.H. and F.S. designed the experiments and executed them. M.H. and F.S. analyzed the collected data
and computed results and plots, and wrote and edited this manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​43033-w.

Correspondence and requests for materials should be addressed to F.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-43033-w
https://doi.org/10.1038/s41598-023-43033-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	GPU-acceleration of the distributed-memory database peptide search of mass spectrometry data
	Results
	Methods overview
	Experimental setup
	Correctness analysis
	Speed comparison against HiCOPS
	Speed comparison against existing GPU methods
	Performance evaluation

	Discussion
	Methods
	Notations and symbols
	CPU-GPU pipeline
	Step 1: Database construction
	Step 2: Experimental MS data preprocessing
	Step 3: Database peptide search
	Step 4: Result postprocessing
	Performance analysis
	Optimizations
	Race conditions in fragment-ion matching
	Performance tuning
	Optimized reductions
	Compile-time computations

	References
	Acknowledgements

