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Database peptide search is the primary computational technique for identifying peptides from the 
mass spectrometry (MS) data. Graphical Processing Units (GPU) computing is now ubiquitous in the 
current-generation of high-performance computing (HPC) systems, yet its application in the database 
peptide search domain remains limited. Part of the reason is the use of sub-optimal algorithms in the 
existing GPU-accelerated methods resulting in significantly inefficient hardware utilization. In this 
paper, we design and implement a new-age CPU-GPU HPC framework, called GiCOPS, for efficient and 
complete GPU-acceleration of the modern database peptide search algorithms on supercomputers. 
Our experimentation shows that the GiCOPS exhibits between 1.2 to 5 × speed improvement over 
its CPU-only predecessor, HiCOPS, and over 10× improvement over several existing GPU-based 
database search algorithms for sufficiently large experiment sizes. We further assess and optimize the 
performance of our framework using the Roofline Model and report near-optimal results for several 
metrics including computations per second, occupancy rate, memory workload, branch efficiency and 
shared memory performance. Finally, the CPU-GPU methods and optimizations proposed in our work 
for complex integer- and memory-bounded algorithmic pipelines can also be extended to accelerate 
the existing and future peptide identification algorithms. GiCOPS is now integrated with our umbrella 
HPC framework HiCOPS and is available at: https://​github.​com/​pcdsl​ab/​gicops.

Identification of peptides from the mass-spectrometry (MS) data is a critical step in computational proteomics1–4. 
Database peptide search is the most commonly employed computational technique to deduce peptide sequences 
from the large volumes of experimentally generated MS spectra data5–8. In database search, the experimental 
spectra are searched against a database of indexed theoretically simulated spectra, to identify the most similar 
and confident match(es)3. The similarity between a pair of experimental and theoretical spectrum is computed 
using one or a combination of distance metrics such as cross-correlation (xcorr) score1,9, hyperscore4,7, and 
Z-score10. More recently, open-search-based scoring techniques have been used to identify known and unknown 
post-translational modifications (PTMs) at the expense of exponential increase space and time requirements4. 
We have introduced both algorithmic11, and high-performance computing solutions4 to drastically reduce the 
run times for these experiments from days into hours and minutes.

Graphics Processing Units (GPUs) have emerged as the primary and ubiquitous hardware accelerator in the 
current-generation of (top-500) supercomputers12,13. As the high-performance computing (HPC) paradigm 
continues to shift towards heterogeneous computing, GPU based algorithms are increasingly developed to speed 
up the complex algorithms across several scientific domains14–17. However, the existing GPU-based database 
search algorithms and software including Tempest18, Tide-for-PTM-search19, GPUScorer20, ProteinByGPU21, 
GPU based SDP22, and MIC-Tandem23 are designed to accelerate only the spectral scoring computations and 
do not leverage or accelerate the advanced reductive (pre-screening) algorithms such as fragment-ion indexing 
and matching7,24 and sequence-tagging6,25. This results in excessive on-the-fly trivial computations, resulting in 
the existing methods to exhibit sub-optimal performance, especially for open-search where the precursor-mass 
filters are wide26 (Supplementary Sections 1 and 2).
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The need for efficient GPU-accelerated database peptide search algorithms stems from the computational 
demands of large-scale proteomics pipelines4, the post-Moore technological shift towards heterogeneous 
computing12, and the increasing imbalance between the MS-data generation and database search speeds.

In this paper, we design and implement GPU-accelerated algorithms and software for scalable accelera-
tion of the database peptide search on CPU-GPU architectures. We integrate our developed techniques with 
the HiCOPS’s high-performance computing (HPC) software framework to also accelerate the database search 
across the distributed-memory supercomputing nodes. Our new framework, called GiCOPS (GPU-accelerated 
HiCOPS), provides orders-of-magnitude speed improvement over its CPU-only predecessor i.e., HiCOPS, as 
well as several existing GPU-based database peptide search algorithms for open-search application. The proposed 
GiCOPS algorithms leverage reduction trees, lock-free computational strategies, shared memory computations, 
and iterative performance tuning optimizations to scalably accelerate the complex integer- and memory-intensive 
computations of the fragment-ion index-based4,7,24 database peptide search on GPU.

Our extensive experiments show that GiCOPS outperforms the existing GPU-based database search algo-
rithms by more than 10× in both closed- and open-search modes. Our experimentation also shows that the 
GiCOPS provides a speed improvement of 1.2 to 5 × as compared to its CPU-only predecessor (HiCOPS) while 
providing identical peptide identifications. Finally, our comprehensive performance analysis and optimization 
using NVIDIA Nsight Compute (NCU) profiler and the Instruction Roofline Model27 show achieved performance 
of 143.6 warp giga instructions per second (GIPS) (48% theoretical peak) and 64.65 warp GIPS (21.5% theoretical 
peak) for open- and closed- database search respectively on NVIDIA RTX A6000 GPU.

Results
Methods overview
GiCOPS accelerates the core computational algorithms in the database peptide search workflow, and implements 
optimizations and CPU-GPU pipelines to efficiently utilize all available compute and memory resources. The 
database peptide search workflow consists of four main steps: (1) database construction, (2) experimental MS 
data pre-processing, (3) database peptide search and (4) post-processing. In the first step (database construc-
tion), the peptide sequence database is offloaded to the GPU where the theoretical spectra are generated, indexed 
and communicated back to the CPU. In the second step (data pre-processing), the experimental MS data are 
streamed to the GPU where it is cleaned, pre-processed, and communicated back to the CPU. In the third step 
(database peptide search), the entire database index is communicated to the GPU’s RAM and the experimen-
tal MS data are streamed in batches. GPU searches each batch against the in-memory database index. In the 
fourth step (post-processing), the results are used to compute expected values and confidence scores, which are 
finally communicated to the CPU. At each step, a priority-queue based work stealing pipeline is implemented 
to simultaneously offload the ready compute work at both the CPU and GPU depending on their priority and 
availability (Supplementary Fig. 1). The underlying algorithms are redesigned to efficiently exploit the GPU 
architectures and are expressed in terms of building block kernels, each optimized using multi-level reductions, 
lock-free synchronizations, register-exchange based thread communications, and shared memory computations 
for maximum throughput. Finally, to accelerate across distributed-memory supercomputers, GiCOPS employs 
the HiCOPS’s4 four Bulk Synchronous Parallel (BSP) superstep28 design where all parallel nodes asynchronously 
execute each superstep while synchronizing between supersteps. Since all nodes execute the same code, the rest of 
the paper will discuss the GiCOPS methods and results for a single-node CPU-GPU machine. GiCOPS requires 
the minimum number of GPUs ( Gmin ) to be ≥ D/Mg ; where D is the database size and Mg is the GPU DRAM.

The total wall time ( TG ) for executing the four GiCOPS steps is the sum of individual steps (j) and each step’s 
time ( Tj ) is the maximum time required by the (simultaneously operating) CPU-side to complete its compu-
tational work ( Tj,c ) or the GPU-side to complete its scheduled computational work and data communication 
(round trip time) ( Tj,g ), given in Eq. (1):

Experimental setup
We used five custom experimental MS datasets (denoted Ei ) of increasing size for our experimentation. These 
datasets were constructed by unionizing/appending several Pride Archive (PXDxxxxx) datasets. The details of 
the five datasets are as follows: E1 : PXD009072, E2 : PXD020590, E3 : PXD009072 ∪ PXD010023 ∪ PXD012463 ∪ 
PXD013074 ∪ PXD013332 ∪ PXD014802 ∪ PXD015391, E4 : PXD015890, and E5 : PXD009072 ∪ PXD020590 ∪ 
PXD013332 ∪ PXD015890. The search experiments were conducted against increasing size theoretical databases 
constructed by incrementally adding combinations of commonly occurring post-translational modifications 
(PTMs) to the UniProt Homo sapiens (UP000005640) proteome sequence database. The database was fully 
digested in-silico using Trypsin with the Digestor tool29 using the following settings: allowed missed cleavages: 2, 
peptide lengths: 6 to 46, and peptide masses: 500 to 5000Da. The theoretical spectra were simulated by generating 
b- and y-ions for up to +3 charge, and no isotope error and decoys. Cysteine carbamidomethylation was set as 
fixed modification for all experiments whereas up to 5 PTMs per peptide were chosen from the combinations 
of methionine oxidation, arginine and glutamine deamidation, serine, threonine and tyrosine phosphorylation. 
The closed-search criterion in our experiments was set to δM ≈ ± 1 Da instead of a few ppms to cover the dif-
ferences in monoisotopic or average masses, and rounding off errors across tools. The open-search criteria was 
set between ±100 to 500 Da across experiments. The fragment-ion mass tolerance ( δF ) was set to ±0.01 Da for 
all tools (where applicable) and experiments. All experimental MS datasets Ei were converted to the MS2 format 

(1)TG =

4∑

j=1

max(Tj,c ,Tj,g )
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using the MSConvert tool30. The experimental MS data pre-processing settings were set to minimal across tools 
for nearly identical algorithmic work (fairness), and were set as follows: precursor masses: 500 to 5000Da, precur-
sor charges: +1 to +4, minimum shared fragment-ions for candidacy: 4, minimum candidate hits for statistical 
scoring: 4, de-noising: pick only top 100 or 150 peaks by intensity, no data reconstruction, no mass calibrations, 
no precursor peak removal, and no n-term methionine clipping.

Runtime environment All experiments were run on the Dragon scientific computing cluster at the Florida 
International University (FIU). The cluster is equipped with 6 compute nodes each powered by 2 × Intel Xeon 
Gold 5215 (2 × 10 cores), 2 × NVIDIA RTX A6000 GPU (84 SMs, 48GB DRAM), 2 NUMA nodes × 128GB 
DRAM, 3TB SSD local storage. The compute nodes are interconnected with each other and the storage nodes 
(18TB) via a 10Gbps Ethernet interconnect in star topology.

Correctness analysis
We measured the correctness of GiCOPS’s algorithms by comparing the results, i.e., peptide identifications, 
hyperscores and expected-scores, computed by GiCOPS against its CPU-only HPC framework, HiCOPS, for 
single- and multi-node runs. The experiments were performed by searching all experimental MS-datasets against 
various database combinations in open and closed search modes. Figure 1a and b show a comparison of scores 
(100 samples out of 208K) computed by GiCOPS and HiCOPS when searching the experimental MS dataset E1 
against the Homo sapiens database with methionine oxidation as PTM in both search modes. The results from 
either mode were combined by concatenating them and removing the duplicate results.

Figure 1a and b depict that both HiCOPS and GiCOPS compute identical and consistent scores and peptide 
identifications of the experimental spectra regardless of the number of parallel nodes. We also observed a small 
number ( ≥0.05%) of discrepancies in the GiCOPS’s computed scores across runs. Upon investigation, we found 
that this stems from the reduction loops (when multiple reduced candidate peptides have equal scores) and 
floating-point precision errors (when database candidate peptides lie just at the δM boundaries). We mitigated 
the first problem by modifying the reduction loops to pick the peptides with the smaller index. We mitigated the 
second problem by slightly increasing the δM boundaries for GiCOPS experiments and did not convert floating 
point computations to integers like in HiCOPS to avoid a 50% performance loss in database indexing step for 
our GPUs (see Performance Evaluation section). Finally, we compared the peptide identification results between 
GiCOPS and MSFragger7 (a database search engine that employs a similar, but proprietary, fragment-ion based 
algorithm) and the obtained correlation between the two tools was identical to the correlation discussed for 
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Figure 1.   Correctness analysis. (a,b) Comparison of 100 samples out of 208K data points of the GiCOPS- 
(y-axis) and HiCOPS-computed (x-axis) hyperscores (a) and expected scores (or e-values) (b) is shown. The 
results show near 100% consistency between the computed results across all 208K data points, but were sampled 
to 100 for plotting feasibility.
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HiCOPS and MSFragger in Ref.4. This is as expected because GiCOPS is only the GPU-accelerated version of 
the HiCOPS’ algorithmic kernels.

Speed comparison against HiCOPS
We measured the speed improvement provided by GiCOPS against its CPU-only version, HiCOPS, by searching 
all five datasets ( Ei ) against increasing size theoretical databases constructed by adding common PTMs in the 
Homo sapiens database in both open- (at δM 500 Da) and closed-search (at δM = 1 Da) modes. Our experimental 
results in Fig. 2a to c show that GiCOPS’s speedup (shown as go and gc for open and closed search respectively, 
labeled in green) over HiCOPS (shown as ho and hc for open and closed search respectively, labeled in green) 
varies between 3 to 5 × in the open-search setting and between 1.2 to 2 × in closed-search setting respectively. 
The results also show that the achieved speedups are proportional to the computational workload, i.e., data-
base size, dataset size, and search setting, across experiments. In particular, the computational workload of an 
experiment is quadratically proportional to the search mode (open or closed) setting as it controls the database 
lookup constraints for each given experimental spectrum. In other words, it controls the total number of pairwise 
comparisons to be computed between the experimental spectra in the dataset and the theoretical spectra in the 
database, for a given experiment. In contrast, the computational workload varies linearly with the database and 
experimental dataset sizes. Note that the computational workload also varies with several other factors such as 
the properties and nature of the data. e.g., origin species of data, signal-to-noise ratio. This is in-line with our 
performance analysis discussion in the Performance analysis section (see Eq. (5)).

The search mode also directly affects the computation-to-communication ratio of the database search step on 
an experiment which makes up a significant fraction of GiCOPS’s overall speedup. Figure 2d plots the computa-
tion-to-communication ratios of the database search superstep of the experiments in Fig. 2b. Comparing the two 
figures, we can see that the computation-to-communication ratio drops from ∼ 85 % kernel time (or 5.66 = 85/15 
ratio) in the open-search mode to ∼ 50 % kernel time (or 1 = 50/50 ratio) in closed-search mode impacting the 
corresponding speedups. For instance, Fig. 2b and d show that the experiment searching the dataset E2 exhibits 
speedups of 4.85 and 2.33 corresponding to the percentage (database search) kernel times of 89% and 56.5% in 
the open- and closed-search modes respectively. The same trend is observed for all experiments in Fig. 2a and  c 
as well. Therefore, we can infer that the experiments with similar computation-to-communication ratios also 
roughly exhibit similar speedups unless data sizes are highly dissimilar.

The effect of the computation-to-communication ratio to the achieved speedup is also particularly evident 
in the speedup results for the first two GiCOPS’s supersteps in Fig. 2e and f respectively. Here we observe, on 
average, computation to communication ratios of 21 (95.45% kernel time) and 0.003 (0.29% kernel time) for 
the database construction and experimental data pre-processing steps respectively resulting in corresponding 
speedups. Note that the I/O constitutes more than 90% of the total time in the data preprocessing step for most 
experiments. However, as noted in Methods section, experimental datasets only require preprocessing only 
once and is skipped in subsequent experimental runs. Further, since the database construction consistently 
depicts large speedups and only depends on the database size, it does have a significant positive impact on the 
overall speedup of small-scale experiments. i.e., closed-search experiments, experiments with small dataset 
sizes such as E1 This impact can be particularly seen for E1 in closed-search mode in Fig. 2c. We also measured 
the performance of GiCOPS against HiCOPS on distributed-memory architecture by searching the dataset E1 
against larger database sizes, on our distributed-memory HPC cluster. The experimental results in Fig. 2g and h 
depict a similar trend in the GiCOPS’s speedup for either search modes relative to the computational workload 
per node (Amdahl’s Law).

Speed comparison against existing GPU methods
We attempted to measure GiCOPS against several existing GPU-based database peptide search software for speed 
comparison. These tools included Tempest, Tide-for-PTM-search, GPUScorer, ProteinByGPU, MIC-Tandem, 
and PaSER. We could only perform experiments using Tide-for-PTM-search, referred to as GPU-Tide in the 
rest of the text, as the other software tools were either outdated, unavailable, incompatible, proprietary, or faulty 
(Supplementary Section 3). Therefore, we compared GiCOPS to the GPU-Tide across three experiments in both 
closed- (at δM = 1 Da) and open-search modes (at δM = 100 Da). The δM was reduced to 100 Da from 500 Da 
in other experiments, due to GPU-Tide software limitations.

In the first set of experiments, we searched all our datasets: E1 to E5 , except E3 (for which, GPU-Tide crashed) 
against the Homo sapiens database using only methionine oxidation as PTM (size: 3.89 million) in both modes. 
In the second experiment, we also added the arginine and glutamine deamidation as PTMs to the database (size: 
10.3 million) and searched all above datasets in both modes. The obtained wall time results in Fig. 3a and b depict 
that GiCOPS outperforms GPU-Tide by more than 10× ( > 50× for larger experiments) in the first experiment 
set in both open- (Fig 3a) and closed-search (Fig 3b) modes. Similar results are seen for the second experiment 
set in Figures 3c (open) and 3d (closed). To explain the speedup results, we also ran the same experiments using 
HiCOPS and MSFragger and the results in Fig. 3a to  d show that both the CPU-only tools also outperform the 
GPU-Tide by > 10× . This is primarily because the GPU-Tide only relies on speeding up the spectral dot product 
(hyperscore) computations and does not leverage (or accelerate) any database filtration techniques (reductive 
optimizations) commonly employed in modern CPU-based open-search search algorithms4,6,7,24 leading to this 
performance gap. Other existing GPU-based database search algorithms also do not leverage any filtration 
techniques as discussed in Supplementary Section 2. Notice that the GiCOPS achieves slightly less speedups 
over HiCOPS in these experiments as compared to results in Fig. 2 due to the reduced δM setting. Finally, the 
execution times for GPU-Tide span several hours to multiple days even for our relatively small experiments, 
making it unfeasible to run larger experiments with it.
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Performance evaluation
We analyzed the GiCOPS’s GPU throughput using the Instruction Roofline Model27. The Instruction Roofline 
Model is an intuitive visual method to understand and evaluate the performance and bottlenecks of integer-
operation-intensive kernels relative to the theoretical maximum performance27. Since more than 85% of the 
GiCOPS’s runtime consists of the database search step for most real-world experiments, we focus our perfor-
mance analysis and optimizations to that kernel only. For our performance analysis, we first computed the GPU’s 
theoretical maximum throughputs - i.e. the roofs in the model - were computed using the Empirical Roofline 
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Figure 2.   Speed Comparison with HiCOPS. (a) to (c) GiCOPS provides on average, a 3-5× and 1.2-2× 
speedup over HiCOPS in open (blue; go and ho ) and closed (reds; gc and hc ) search modes respectively across 
experiments (labeled in green). (d) The percentage database search kernel time for the experiments in figure 
(b) drops from 70-90% (dark colored bars) in open-search to 45-55% (light colored bars) in closed-search 
significantly depreciating its speedup. (e,f) GiCOPS exhibits 3-6× speedup and no speedup compared to 
HiCOPS for the database construction and experimental MS data pre-processing steps respectively due to their 
corresponding computation-to-communication ratios. (g,h) Similar overall speedup results are seen for multi-
node GiCOPS and HiCOPS runs for both search modes.
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Toolkit31. We then ran a GiCOPS experiment searching a batch of 10000 experimental MS spectra against the 
Homo sapiens database incorporating methionine oxidation, arginine and glutamine deamidation, and serine, 
threonine and tyrosine phosphorylation as PTMs in open- and closed-search modes using the NVIDIA Nsight 
Compute (NCU). The collected metrics, along with the ERT parameters were then used to build the Instruction 
Roofline Model for the both search modes using the methods explained in27.

The Instruction Roofline Model shown in Fig. 4a depicts that the GiCOPS’s database search kernel in open 
(shown as squares) and closed-search (shown as diamonds) achieves a throughput - in warp Giga Instruc-
tions per Second (warp GIPS)27 - of 143.608 warp GIPS and 64.642 warp GIPS respectively. This achieved 
throughput corresponds to 48% and 21.5% of theoretical integer instruction peak on NVIDIA RTX A6000 as 
almost all computational instructions in GiCOPS are integer-based. The integer instruction peak performance 
is computed by scaling the GPU’ theoretical peak instruction throughput (604.8 warp GIPS) by the ratio of 
number of INT cores per warp to the warp size (=16/32 for NVIDIA RTX A6000 (Ampere architecture)) result-
ing in 0.5× 604.8 = 302.4 warp GIPS. Also, note that the LDST instructions make up a significant fraction of 
GiCOPS’s instruction mix which further affects its maximum theoretical achievable throughput. Figure 4a also 
shows that the effect of thread predication (branching) negligible as the achieved performance (squares and 
diamonds) lie right on the dotted black lines that correspond to the thread-predication-free respective through-
puts of 145.67 warp GIPS (open-search) and 65.83 warp GIPS (closed-search). Finally, the Fig. 4a shows the 
DRAM (global memory) access pattern between stride-1 and stride-8 walls (vertical orange lines) indicating 
the expected intense usage of a 12-byte data structure to compute peptide similarity scores. Figure 4b depicts a 
virtually bank-conflict-free shared-memory performance of GiCOPS’s database search for both open- (square) 
and closed-search (diamond) modes.

Discussion
In this paper, we presented GiCOPS framework which is a GPU-accelerated technique applied to traditional 
scientific computing database peptide search algorithms and the corresponding MS data flows. In stark contrast 
to several existing (SIMD-based) methods, the GiCOPS framework is designed for high-level SIMT-architectures, 
i.e. the implemented CUDA-based kernels can be directly deployed (with some fine-tuning) on most NVIDIA 
GPU, as well as ported/translated for AMD and Intel GPUs using HIP/ROCm, and SYCL32. We expect wide 
usage and experimentation and have made the GiCOPS code base publicly available for domain scientists and 
researchers to use. Our extensive experimentation using real-worl experimental datasets and databases reveals 
that GiCOPS exhibits speedups between 1.2 to 2 × in closed-search and 3 to 5 × in open-search mode, as compared 
to its CPU-parallel version (HiCOPS). GiCOPS also exhibits >10× speedup ( > 50× for larger experiments) as 
compared to the existing GPU-based methods in either search mode. The speed benefits provided by GiCOPS 
are especially significant for the compute-intensive (open-search) experiments.
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Figure 3.   Speed Comparison with GPU-Tide. (a,b) First experiment set: The execution time results (in log10 
scale) depict that all MSFragger, HiCOPS, and GiCOPS outperform GPU-Tide by ≥ 10× (achieved speedups 
over GPU-Tide written on top of bars) in both open (a) and closed (b) search modes. This speedup increases to 
≥ 50× for larger experiments. (c,d) Second experiment set: Similar results are seen in both open (c) and closed 
(d) search modes. Note that the open-search setting in these two experiment sets was set to δM = 100 Da instead 
of δM = 500 Da in other experiments due to δM limit of 100 Da in GPU-Tide.
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Our proposed framework show that GPU based methods for database search-algorithms can significantly 
improve the overall performance of the workflows - improving both the throughput and execution times for 
pipelines that require executing large data sets e.g. meta-proteomics. While significant speedup results were 
obtained, the peptide identification accuracy achieved by GiCOPS depends on the underlying algorithmic pipe-
lines being executed - and new algorithms that can improve the peptide deduction accuracy are not within the 
scope of this paper. Recent advances in the machine and deep learning based algorithms for the database peptide 
search have led to more accurate and confident peptide identifications (e.g. yHydra33). These complex models 
require massive amounts of computational resources and with the existing software infrastructure, require several 
hours and weeks to train, test and deploy33,34 these methods. Our future efforts of expanding and integrating the 
presented infrastructure into a ML/DL based HPC-accelerated database peptide search software will increase the 
speed at which models can be trained and tested - leading to better peptide deduction engines in the long run. 
We are confident that our proposed framework will help bridge the gap between the computational demands 
of current and future algorithms and machine-learning models and the available software infrastructure will 
meet these demands using our framework on clusters, and supercomputing machines. Our current and future 
research efforts will help accelerate and advance the scientific investigations in this application domain - and 
will act as a the fourth pillar for scientific investigation in the field of MS based omics including proteomics, 
and meta-proteomics.

Methods
Notations and symbols
For the rest of the manuscript, we will denote the size of the indexed theoretical spectra database as (D), a set 
of experimental MS data as ( Q = q1, q2, · · · ) containing (q) spectra, with average length of ( η ) split across (b) 
batches, the CPU/GPU thread ids as (tid), GPU thread block size as ( ψ ), the CPU-GPU communication latency 
as ( ω ) and bandwidth as ( π ). Note that the indexed theoretical spectra database will be referred to simply as the 
database in the rest of the paper.

CPU‑GPU pipeline
GiCOPS’s CPU-GPU pipeline consists of a global work queue wq, a priority queue pq and an oversubscribed 
scheduling thread ts . In each GiCOPS’s step, the computational workload is divided across smaller chunks or files 
(either database or experimental data) which need to be processed by either CPU or GPU. Based on the compu-
tational algorithm and the amount of data, the priorities of CPU and GPU can be adjusted to favor one resource 
over the other as needed. The scheduling thread ts operates as a producer-consumer router and schedules each 
work unit in wq to CPU or GPU. The routing is done by moving the work units from the global queue to CPU 
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Figure 4.   Instruction roofline model. (a) GiCOPS’s database search kernel exhibits a throughput of 143.6 and 
64.6 warp GIPS in open- (squares) and closed- (diamonds) search modes respectively on NVIDIA RTX A6000 
GPU. The achieved performances correspond to 48% and 21.5% of the theoretical integer-instruction peak as 
well as >99% corresponding thread-predication peaks (dotted black lines). All GPU peak throughputs were 
measured using the ERT toolkit31. (b) The shared memory performance of GiCOPS is near-ideal with negligible 
number of bank conflicts affecting the performance.
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or GPU’s local queues and thread signaling via C++ condition variables. When all compute resources are busy, 
the ts simply remains in the sleep state. A schematic of the CPU-GPU pipeline is shown in Supplementary Fig. 1 
and the scheduling algorithm is illustrated in Supplementary Algorithm 1. Notice that this scheduling thread ts 
is different than the thread manager in HiCOPS which manages the speed of producer and consumer threads 
and is also employed in GiCOPS with additional functionality for GPU.

Step 1: Database construction
In this step, GiCOPS constructs a database of indexed theoretical MS spectra data from one or more peptide 
sequence database(s) using the CFIR-Index11 data structure (Fig. 5a). At the CPU side, the peptide sequences 
and their PTM variants are generated and grouped by length. The peptide groups are communicated to the GPU 
where an instance of the CFIR-Index is computed for each group11. The peptide index is first computed using a 
two-fold parallel algorithm that computes the peptide precursor masses of each sequence and then Radix sorts 
them using their computed masses as keys. Here, each thread block of size l processes a peptide sequence of 
length l + 1 and each thread processes an amino acid character. Then, another two-fold parallel kernel is then 
launched to generate and index the theoretical MS spectra data. Here each thread block is of size s × l where s 
is the number of ion-series to be generated. Typically, only b- and y-ions are generated so the s is 2. Inside each 
block, the first tid < sl/2 threads compute the forward ion-series (a, b, c) and operate on the amino acid character 
at tid mod l , whereas the last tid ≥ sl/2 threads compute the reverse ion-series (x, y, z) and operate on the amino 
acid character at l − (tid mod l) . The threads write the computed amino acid masses at the index tid of a shared 
memory array (S). A multi-level (warp- and block-level) reduction algorithm is used to compute the prefix sum 
of S. Then, each thread tid > l removes the sum of previous ion-series to get the current ion-series’s prefix sum 
by computing S[tid] ← S[tid] − S[l ∗ (tid/l)] . The generated data are then scaled for ion-charges and written 
to the global memory. Once all theoretical MS spectra data are generated, the CFIR-Index’s fragment-ion index 
is computed using stable sort-by-key, and lowerbound kernels35. The GPU algorithm for fragment-ion construc-
tion is illustrated in Fig. 5a and Supplementary Algorithm 2. Finally, the constructed CFIR-Index instance is 
communicated to the CPU memory.

Figure 5.   GiCOPS Steps 1 and 2. (a) Database Indexing: The CPU communicates the (small) peptide 
sequence database to the GPU where the theoretical MS-spectra data are generated and indexed using the 
CFIR-Index data structure. The CFIR-Index is then communicated back to the CPU. (b) Experimental 
MS-Data Preprocessing: The experimental MS data are streamed to the GPU side where they are (in current 
implementation) denoised using the Sorted Tag Array coupled peak picking algorithm. The preprocessed data 
are streamed back to the CPU.
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Remark  Since database indexing is a compute-intensive step, it can be entirely executed on the GPU-side as 
well with little to no aid from the CPU side in the CPU-GPU pipeline without significantly affecting the overall 
performance.

Step 2: Experimental MS data preprocessing
In this step, GiCOPS pre-processes (i.e., normalize, clean, and filter) the experimental MS data and writes it back 
to the disk (Fig. 5b). At the CPU side, the experimental spectra are read in batches Q and streamed to the GPU. 
At the GPU side, the spectra in each batch are pre-processed and communicated back to the CPU side for index-
ing and writing back to the storage. For pre-processing, an algorithm like MSFragger and HiCOPS is employed 
where the top-K (k = 100-150 usually) data points are normalized and extracted from each spectrum. The spectra 
are first sorted using a Sorted Tag Approach36 and then the last or first-K data points depending on the sort-type 
are normalized and extracted. In the Sorted Tag Approach, all spectra arrays qi in a batch are concatenated to a 
global array Q = q1, q2, .., qq . The global array Q is then sorted and then rearranged to the sorted versions of the 
spectra arrays qi,sorted . To preserve the position information during the global sort, a tag-array (T) is initialized 
as T[j] = qi where qi is the spectrum id of the j-th data point in Q. For each wrangling operation on one or more 
dimensions of Q, the wrangling position information is stored in I which is then used to gather the remaining 
dimensions of Q as well as the T. Once all operations are done, Thrust’s stable-sort-by-key kernel35 is employed 
using T as key to gather the processed versions of spectra Q = q1,sorted , q2,sorted , .., qq,sorted in the correct order. 
Once sorted, another GPU kernel is launched where each sorted qi,sorted is processed by a thread block of size K 
where each thread normalizes and extracts the q− tid-th data point in qi,sorted . The extracted data are written 
to a DRAM array Q′ along with the metadata (including new spectrum lengths) and communicated back to the 
CPU. The GPU algorithm for experimental MS data pre-processing is illustrated in Fig. 5b and the Supplementary 
Algorithm 3. An example of the Sorted Tag Approach is shown in Supplementary Fig. 2.

Remark  Similar to HiCOPS, this step is only executed only once per experimental MS data set. Once an experi-
mental MS dataset is pre-processed and indexed by GiCOPS, this step is skipped for all subsequent runs unless 
required due to a change in the setting. e.g., base intensities, normalization, number of data points, or the dataset 
index is outdated. Also, since the current experimental data pre-processing is primarily a communication-
intensive step, it can be executed entirely at the CPU-side without significantly affecting the overall performance.

Step 3: Database peptide search
This is the core computational step in the entire GiCOPS pipeline contributing over 90% of the total algorithmic 
workload in most real world experiments. In this step, GiCOPS searches the pre-processed experimental MS 
spectra data against the database using the fragment-ion search method also employed in Refs.4,7,24 (Fig. 6). 
Before the search, the CPU communicates all instance of the CFIR-Index to the GPU’s main memory. During 
the search, the CPU reads the batches of the pre-processed experimental MS data ( q ∈ Q ) from the storage or 
file system and streams them to the GPU. At the GPU side, these batches Q are searched against the indexed 
database (CFIR-Index) D and the results (top database matches h and null distribution of scores N) are com-
municated back to the CPU. The search kernel is launched in sub-batches of � thread blocks depending on the 
GPU’s DRAM (default: � = 512 ). Each thread blocks searches a spectrum q against the D using ψ threads (128 
(closed-search) ≥ ψ ≥ 512 (open-search)) depending on the search mode. During the search, the peptide and 
fragment-ion mass filters are first computed (lower- and upper-bounds) using ψ-ary reduction trees and stored 
in shared-memory arrays Flower and Fupper . The fragment-ion search is then computed in data parallel fashion 
for each ion i ∈ q ∈ Q between Flower[i] and Fupper[i] and updated to a scorecard memory in DRAM. The mas-
sively GPU-parallel fragment-ion search is prone to race conditions, for which a two-step algorithm is employed 
(explained in Section 4.8.1) to alleviate the race conditions at a �(log(ψ)) cost. Once all fragment-ions have been 
processed, the scorecard is data-parallel processed to compute the hyperscores h[q] and atomically build the 
null distributions N[q]. The number of candidate peptide-to-spectrum matches (database hits) processed and 
the maximum hyperscore hmax[q] are computed in local per-thread variables during data-parallel execution and 
gathered at the end using optimized thread-shuffle based warp-wise block reductions (see Section 4.8.3). The 
GPU database peptide search kernel along with relevant reduction blocks are illustrated in Fig. 6 and Supple-
mentary Algorithm 4. The final results (h[q] and N[q] ; ∀q ∈ Q ) are communicated back to the CPU where they 
are encoded and written to the file system for distributed system-wide gathering, assembly and postprocessing4.

Remark  The database search step poses a complex mixed (compute- and memory-intensive) workload and 
constitutes a large fraction of the total execution time, it is imperative to focus the optimization and fine-tuning 
efforts to this kernel to yield the maximum performance. For that, we used the Nvidia Nsight Compute (NCU) 
tool to iteratively profile and analyze the performance hotspots, and implemented optimizations to minimize 
them (discussed in later sections).

Step 4: Result postprocessing
In this step, the database peptide search results are processed to compute the confidence scores (expected values 
ev) of the peptide identifications (Fig. 6—confidence score computations). The CPU-GPU pipeline for this step 
depends on whether the GiCOPS is running on a single-node or (distributed) multi-node machine. In case of 
distributed memory case, all local results from the database search step for all experimental spectra batches Q 
are partitioned across the parallel nodes where they are de-serialized and assembled using signal shift and add 
operations at the CPU side as explained in HiCOPS4. The assembled batches of global results are communicated 
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to the GPU DRAM. However, in the single-node case, the results are not communicated to the CPU at the end of 
database search step and the postprocessing step is fused into the database peptide search step. In either case, at 
the GPU side, the post-processing kernel is launched where each thread blocks computes the confidence scores 
for one experimental spectrum using its computed hyperscores h[q] and the null distributions N[q] from the 
database peptide search step. The GPU block size ( ψ ) is set to the maximum length null distribution histogram 
in the batch, computed as ψ ← max(hmax[q]) . The GPU kernel implements vectorized versions of the Linear 
Tail Fit37 and Gumbel-Fit4 algorithms to compute expected values, built using thread-shuffle based block-wise 
reductions (see Section 4.8.1). The GPU kernel for the result postprocessing is illustrated in Supplementary 
Algorithm 5. The final results and confidence score are communicated to the CPU where they are either written 
to the file system or communicated to other nodes depending on the computing architecture (single or multiple-
node computing) as explained in HiCOPS4.

Remark  The result post-processing step, although highly optimized due its compute-bound and GPU-friendly 
computational nature, contributes less than 1% of the total computational work in the database peptide search 
pipeline and thus, does not affect the overall performance yield.

Performance analysis
The GPU-performance of the GiCOPS can be modeled by analyzing the performance of its individual steps 
as given in Eq. (1). In most real-world experiments, our experimental MS data will already be pre-processed 
meaning we can prune the experimental MS data pre-processing step (step 2) from our analysis. Further, we 
can prune the data post-processing step (step 4) from our analysis as it contributes to less than 1% of the total 
computations and does not affect the overall performance. Using this, we re-write Eq. (1) as:

To analyze only the GPU-performance of GiCOPS, we assume that the CPU-GPU pipeline in GiCOPS only 
schedules the work units on the GPU resulting in:

TG = max(T1,c ,T1,g )+max(T3,c ,T3,g )

Figure 6.   GiCOPS Steps 3 and 4. Database Peptide Search: The CFIR-Index and the pre-processed 
experimental MS data are communicated to the GPU in at once and stream fashion respectively. The GPU 
computes database filters Flower and Fupper for each batch and using that computes the (map-reduce) fragment-
ion match coupled hyperscore based database peptide search of Ref.4. Result Postprocessing: For single node 
case, the computed scores and their distributions from the last step are directly used to compute confidence 
scores which, along with peptide identifications are communicated back to the CPU. In multi-node case, the 
scores are first assembled globally as explained in Ref.4 before computing confidence scores.
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For simplicity, we can drop the ( g ) subscript from the above equation resulting in:

In the above equation T1 corresponds to the time to communicate the peptide sequences to the GPU, construct the 
CFIR-Index and communicate the database index back to the CPU, whereas T3 includes the time to communicate 
the database and experimental data batches to the GPU, compute the database search including computing mass 
tolerance filters, fragment-ion search and hyperscores, and finally communicate the results back to the CPU. 
Using the asymptotic time complexities of each algorithmic operation, and scaling factors ki,j where i denotes 
the step number and kj incorporates the number of parallel GPU cores, clock speeds, occupancy factor and the 
number of parallel thread blocks for the j-th algorithmic operation, we can write T1 and T3 as:

and

In Eq. (2), a is the number of fragment-ion bins in the CFIR-Index whereas in Eq. (3), α is the average fragment-
ion bin size in CFIR-Index, σ is the average number of fragment-ion matches per experimental spectrum frag-
ment, µ is the average number of candidate database peptides to be scored for an experimental spectrum, and υ 
is the average number of collisions in atomic construction of null distributions. Combining all above equations, 
we have:

Let us split the Eq. 4 into computational ( TP ) and overhead ( TO ) to analyze the effect of different parameters on 
both parts and the overall performance.

and

From Eqs. 5 and 6, it can be seen that increasing either the database size (D) or the experimental dataset size 
Q = qη the TP dominates over TO and vice versa for smaller database and dataset sizes. However, the most 
impactful factors in the overall GiCOPS’s GPU-performance are the peptide ( δM ) and fragment-ion ( δF ) mass 
tolerances impacting the σ and µ in equation 5. Since both these factors appear in quadratic terms of TP , they 
can significantly boost or diminish the computational workload in TP even for large D and Q. For instance, for 
large D and Q but small δM and δF , the TP would significantly drop to only database indexing factors ( k1,j ) and 
the TO may dominate the overall performance.

Remark  GiCOPS provides a significant GPU-acceleration (up to 5 × ) for database search kernel in open-search 
application even for small to medium sized database and dataset sizes. In closed-search the communication 
overheads result in a performance drop even for large database and dataset sizes. In either search mode, the 
GPU-accelerated database indexing step is unimpacted and provides a reasonable speedup over CPU-only code.

Optimizations
The following sections discuss the algorithms and optimization techniques employed to efficiently alleviate the 
race conditions and boost the achieved performance in GiCOPS.

Race conditions in fragment‑ion matching
The fragment-ion matching kernel filters the number of database candidates for a given experimental spectrum by 
computing the number and nature of shared fragment-ions between the experimental spectrum and the theoreti-
cal spectra in the database. The matches are recorded using a scorecard data structure updating (fetch, update, 
write) which in a parallel algorithm design results in race conditions. Profiling the code reveals that fragment-ion 
matching constitutes more than 50% of the total computational workload (both CPU and GPU) in the database 
peptide search step making it the most important kernel to be optimized. In our CPU-only parallel design, race 
conditions are alleviated by modifying the granularity of parallelism which is not applicable for GPUs.

Therefore, in GiCOPS, we implement a two-step method to eliminate these possible race conditions at the 
cost of �(log(ψ)) operations, for the ψ threads to make a parallel update to the scorecard. The first step involves 
stabilizing the sort operations during the CFIR-Index construction in the database indexing step. Stable sort 
operations ensure that the indexed fragment-ions within a δF originating from the same peptide id are placed 
at adjacent locations. This also ensures that the GPU threads that may participate in a race condition when 

TG = T1,g + T3,g

TG = T1 + T3

(2)T1 = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k1,4(ω + D/π)

(3)
T3 = k3,1(bω + (Q + D)/π)+ k3,2(qη log(α))+ k3,3(qησ log(ψ))

+ k3,4(qµ log(ψ))+ k3,5(qυ/ψ)+ k3,6(bω + 2048q/π)

(4)
TG = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k1,4(ω + D/π)

+ k3,1(bω + (Q + D)/π)+ k3,2(qη log(α))+ k3,3(qησ log(ψ))

+ k3,4(qµ log(ψ))+ k3,6(bω + 2048q/π)

(5)
TP = k1,1(D)+ k1,2(D logD)+ k1,3(a log(a))+ k3,2(qη log(α))

+ k3,3(qησ log(ψ))+ k3,4(qµ log(ψ))

(6)TO = k1,4(ω + D/π)+ k3,1(bω + (Q + D)/π)+ k3,5(qυ/ψ)+ k3,6(bω + 2048q/π)
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updating fragment-ion match scores are also located adjacent to each other. We exploit this locality information 
to eliminate the race conditions by applying a block-wise reduction in log(ψ) clock cycles using the algorithm 
illustrated in Supplementary Section 4, before writing the reduced fragment-ion scores.

Performance tuning
We employed the Nvidia Nsight Compute (NCU) to iteratively collect and analyze several performance metrics 
for the database search kernel, and fine tune its performance by adjusting the thread grid size, reducing the 
shared memory and register usage, eliminating bank conflicts, reducing the required thread barriers, padding 
certain data structures, and interleaving compute and memory operations where possible. The overall result of 
performance tuning was a 25% boost to the overall throughput (incorporated in the reported results), speed of 
light performance (12.1% compute and 80.06% memory), occupancy factor (80% theoretical max), active blocks 
(79.6% theoretical max), and the shared memory bank conflicts ( < 0.1% transactions).

Optimized reductions
Database peptide search algorithms frequently execute memory lookup kernels including max, min, argmax, 
argmin, blocksum, lowerbound, upperbound. Therefore, it is important to optimize these and other reduction 
operations in GiCOPS. To do this, we implement these kernels in GiCOPS using reduction trees that leverage 
CUDA’s warp shuffle intrinsics for optimized and constant space reductions. The reductions are performed in 
a two-step reduction where each warp is first reduced using warp shuffles. Then, the reduced values from each 
warp are collected in a shared memory array of ≤ 32 elements. These elements are collected by the zeroth warp 
and reduced again to compute the final value. Furthermore, several kernels such as max and argmax can and are 
fused together and computed in the same reduction kernel when possible. Furthermore, the search operations 
are implemented as vectorized k-ary search tree where k is the thread block size. A generic block-wise reduction 
algorithm using warp shuffles is illustrated in Supplementary Algorithm 6.

Compile‑time computations
The fragment-ion based database search algorithm in GiCOPS, computes the hyperscore similarity metric38 
between millions of pairs (many-to-many) of theoretical and experimental MS spectra. Consider a pair of 
spectra ν and ξ , the number of shared b- and y-ions between them is nb and ny respectively with corresponding 
intensities ib,j and iy,j , then the hyperscore similarity between them is given in equation 7. Notice that the first 
two terms in equation 7 compute log of factorial of nb and ny which can be pre-computed for 0 ≥ n ≥ 120 at 
compile time to avoid repetitive O(n!) on-the-fly computations. To do this, we precompute a data structure at 
compile-time (Supplementary Fig. 4) and employ a dynamic programming algorithm computing and memoiz-
ing: log(n!) = log(n)+ log((n− 1)!) . The dynamic programming array is communicated to the GPU’s constant 
memory at initialization stage. Also, note that this algorithm also avoids 64 bit overflow when computing n! for 
n ≥ 21.

Data availability
All datasets used in this study are publicly available from the Pride Archive via: https://​www.​ebi.​ac.​uk/​pride/​archi​
ve/​proje​cts/<AN> where <AN> is the accession number for each dataset mentioned in the text. For example, the 
dataset with the accesssion number: PXD015384, can be accessed via the link: https://​www.​ebi.​ac.​uk/​pride/​archi​
ve/​proje​cts/​PXD01​5384. The Homo sapiens proteome sequence database used in this study is publicly available 
from UniProt via: https://​www.​unipr​ot.​org/​prote​omes/​UP000​005640.

Code availability
The GiCOPS software has been implemented as a part of the HiCOPS software framework using object-ori-
ented C++17, MPI, CUDA, OpenMP, Python, Bash and CMake. The GPU performance was instrumented with 
NVIDIA Nsight Compute (NCU). GiCOPS is under active development at the Parallel Computing and Data 
Science Laboratory (PCDS Lab) at the Florida International University. The source code is available at https://​
github.​com/​pcdsl​ab/​gicops. The Instruction Roofline metrics were collected and analyzed using an in-house 
software based on NCU and39, and is available at https://​github.​com/​pcdsl​ab/​Instr​uction_​roofl​ine_​scrip​ts.
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