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Privately vertically mining 
of sequential patterns based 
on differential privacy with high 
efficiency and utility
Wenjuan Liang 1,2, Wenke Zhang 1,2, Songtao Liang 3 & Caihong Yuan 1,2*

Sequential pattern mining is one of the fundamental tools for many important data analysis tasks, 
such as web browsing behavior analysis. Based on frequent patterns, decision-makers can obtain both 
economic gains and social values. Sequential data, on the other hand, frequently contain sensitive 
information, and directly analyzing these data will raise user concerns from a privacy perspective. 
Differential privacy (DP), as the most popular privacy model, has been employed to address this 
privacy concern. Most existing DP-Solutions are designed to combine horizontal sequence pattern 
mining algorithms with differential privacy. Due to the inefficiency of horizontal algorithms, their 
DP-Solutions cannot ensure high efficiency and accuracy while offering a high privacy guarantee. 
Therefore, we proposed privVertical, a new private sequence pattern mining scheme combining the 
vertical mining algorithm with differential privacy to achieve the above objective. Unlike DP-solutions 
based on horizontal algorithms, privVertical can promote efficiency by avoiding performing costly 
database scans or costly projection database constructions. Moreover, to promote accuracy, a 
differentially private hash MapList (called privHashMap) is designed to record frequent concurrency 
items and their noisy support based on the Sparse Vector Technique. PrivHashMap is used to pre-
pruning excessive infrequent candidate sequences in private mining, and Sparse Vector Technique 
is used to promote the accuracy of PrivHashMap. After pruning these invalid candidate sequences, 
less noise is required to achieve the same level of privacy, increasing the accuracy of private mining. 
Theoretical privacy analysis proves privVertical satisfies ε-differential privacy. Experiments show that 
privVertical achieves higher accuracy and efficiency while achieving the same privacy level.

Sequential pattern mining (SPM) is one of the fundamental tools for many important data analysis tasks, such 
as web browsing behavior analysis. It is to find sequential patterns whose support is no less than a specified 
threshold1. Data analysts can make a more accurate prediction by analyzing frequent sequential patterns. Since 
sequential data often contains sensitive information, directly mining frequent patterns will raise user concerns 
from a privacy perspective. As shown in Fig. 1, given a sequence database S, and suppose the support threshold 
is 50%, we can get the frequent sequence patterns by executing the SPM algorithm. By observing the output of 
frequent sequential patterns and their frequency, the attackers can derive sensitive data of individual users based 
on background knowledge, and thus privacy leakage may occur. Therefore, it is crucial for sequence data analysis 
to understand how to protect privacy in sequence pattern mining.

Early research frequently used cryptography or k-anonymity techniques to address the privacy problem in 
SPM2–5. However, it has shown that they are vulnerable to many privacy attacks and can not provide sufficient 
protection, including background and combination attacks. Differential privacy6, as the most popular data privacy 
model, has recently been paid close attention to by researchers and industrial communities. Differential privacy 
can provide a stronger privacy guarantee than early privacy models. By perturbing the sequence pattern mining 
algorithm with random noises according to differential privacy, even if the attacker acquires all background 
knowledge except the attack target, he cannot infer the sensitive information of individual users7.

Recently, there have been several differentially private sequential pattern mining solutions8–17. Most of them 
are designed based on horizontal algorithms (e.g. Apriori18, PerfixSpan19). For example, Bonomi et al.8 proposed 
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a differentially private mining scheme based on the PerfixSpan algorithm. They first constructed a model-based 
prefix tree to mine prefixes and the candidate set of substring patterns. Then they refined the frequency of the 
substring patterns in the successive phase to reduce the perturbation noise. Xu et al.9, 10 proposed a differentially 
private SPM scheme based on Apriori-based algorithms. They perturbed their frequencies with random noise to 
satisfy differential privacy. To promote the accuracy of private mining, they proposed shrinking long sequences 
and filtering invalid candidate patterns based on a sampling database. These DP-Solutions can not provide high 
efficiency and accuracy while providing a high level of privacy. Reasons are summarized as follows: (1) Low 
efficiency: horizontal algorithms contain too many database scans or prefix-projected database construction. 
Private processing needs to be designed for each scan or construction, which reduces efficiency. (2) Low accuracy: 
Lower accuracy is caused by two factors: the first one is that more candidates generated in private mining result 
in lower accuracy because the amount of noise must be proportionate to the number of candidates. The other 
is that refined or sampling errors exist in calculating the frequency of patterns after perturbing, which lowers 
the accuracy. A practical and available mining scheme should provide a high privacy level while ensuring its 
efficiency and accuracy, and existing solutions can not achieve the above objectives at the same time.

Therefore, we attempt to design a differentially private sequence pattern mining scheme with both high effi-
ciency and utility, while providing a high level of privacy. As far as we know, there are two types of non-private 
SPM algorithms: horizontal mining algorithms18–21 and vertical mining algorithms22–26.The former works are 
characterized by performing costly database scans or projection database constructions. The latter works are 
characterized by scanning the original database to create its vertical format (called IDList) and then generating 
candidate patterns through the cross-join of IDLists. Vertical mining algorithms are more effective than hori-
zontal mining algorithms. In light of the advantages of the vertical mining algorithm, we attempt to design a 
private mining scheme based on the vertical sequential pattern mining algorithm. To make the private mining 
satisfy differential privacy constraints, we designed a random noise addition scheme combined with the vertical 
mining process. To further improve the accuracy, we designed a differentially private hash map list (called as 
privHashMap) to record frequent co-currency items based on the Sparse Vector Technique2. PrivHashMap is used 
to pre-pruning excessive invalid candidate sequences in private mining. After pruning these invalid candidate 
sequences, less noise is needed to maintain the same level of privacy, improving the accuracy.

Related works
Differentially private SPM
Sequential pattern mining provides knowledge, and at the same time, it has the risk of privacy disclosure. Several 
differentially private sequence pattern mining schemes (DP-SPM) have been proposed to address the above 
privacy concern. Bonomi et. al.8 first proposed a differentially private mining scheme based on the PerfixSpan 
algorithm. They first constructed a model-based prefix tree to mine prefixes and a candidate set of substring pat-
terns. Then they refined the frequency of the substring patterns in the successive phase to reduce the perturbation 
noise. Xu et. al.9, 10 proposed a differentially private SPM scheme based on the Apriori-based algorithm. They 
first designed a sequence shrinkage technique to reduce the length of the sequence. Then they used the statistical 
information of the sampling data set to prune invalid candidate patterns to improve the accuracy. In contrast 
to the above DP-SPM methods, the following works concentrate on differentially private SPM under different 
constraints. Cheng et. al.11 proposed a private mining scheme DP-MFSM for maximum frequent sequence min-
ing. Li et al.12 proposed a differentially private sequence pattern mining algorithm with time constraints. Le et. 
al.13 proposed a differentially private sequential pattern mining scheme considering time intervals for electronic 
medical record systems. Supposed data managers are not trusted, Le et al.15 and Afrose et al.16 employed local 
differential privacy to protect the privacy in sequential pattern mining. Wang et al.14, 17 proposed several privacy-
preserving schemes for critical or top-k patterns mining over data streams.

Non‑private SPM
Non-private SPM algorithms are divided into two categories:mining algorithms based on horizontal database 
format and mining algorithms based on vertical database format. (1) SPM algorithms based on horizontal 
database format. Apriori-based algorithms (e.g. AprioriAll18) are representative horizontal mining algorithms. 
In Apriori-based algorithms, candidate patterns are generated according to downward closure property, and 
the original dataset is scanned several times to calculate the support of candidate patterns. They are inefficient 

Figure 1.   Example of sequence pattern mining and privacy leakage.
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due to multiple database scans and large candidate patterns. Some improved algorithms19–21 are proposed to 
improve efficiency, such as PrefixSpan19. PrefixSpan explores prefix projection to reduce the efforts of candidate 
subsequence generation and also belongs to horizontal algorithms. However, efficiency is also its bottleneck due 
to multiple constructions of prefix-projected databases. (2) SPM algorithms based on vertical database format. 
Vertical mining algorithms are proposed to solve the problem of low mining efficiency caused by multiple data 
scans. Spade22 is a representative vertical mining algorithm. The efficiency of vertical algorithms can be improved 
by eliminating database scans. However, too many cross-connection operations of vertical lists also result in lower 
mining efficiency. The works23–26 proposed several improvement strategies to address this issue.

Preliminaries
Differential privacy
Definition 1  (Differential privacy)2. If the output of a randomization algorithm M on any neighboring sequence 
datasets S, S′ satisfies the following constraints:

M is said to be ε-differentially private. FS is an arbitrary subset of the output domain of M. ε is called as privacy 
budget. It is used to control the privacy level of M. A smaller ε represents a stronger privacy protection. S and S′ 
represent neighboring sequential datasets, which means that |S| − |S′| = 1.

Definition 2  (Sensitivity)2. Let �f  denote the sensitivity of the query function f, and it can be calculated as 
follows:

where �f  equals to the maximum L1 norm distance between S and S′ . The sub-index 1 represents L1 norm, which 
means the sum of the magnitudes of the vectors in space.

Definition 3  (Laplace mechanism) Let Q denote a query function sequence with dimension n, �Q denotes the 
sensitivity of Q. Let ξ =< ξ1, ξ2, . . . , ξn > be a random noise vector, ξi = Lap(�) , � = �Q/ε , and the probability 
density function is p(x/�) = 1/2� · exp(−|x|/�) . If add ξ to Q(S), that is

M is said to satisfy ε-differential privacy.

Theorem 1  (Sequential Composition)2. Let M1, · · · ,Mn be m randomized algorithms, Mi provides εi−differential 
privacy (1 ≤ i ≤ n) , and a sequence of Mi(S) provides 

∑
εi-differential privacy.

Vertical sequence pattern mining
Sequence database
Let U = {p1, p2, . . . , pl} denote the universe set of items, and pi represents a single item. Let Ix = {pi , pj , . . . , pk} ⊆ U 
denote an unordered set of distinct items. A sequence s =< I1, I2, . . . , In > is an ordered arrangement of item-
sets such that Ik ⊆ U(1 ≤ k ≤ n) . As shown in Fig. 1, the sequence database S consists of a set of sequences 
{s1, s2, . . . , sn} , and the first sequence s1 contains five itemsets < {p1, p2}, {p3}, {p6, p7}, {p7}, {p5} >.

Frequent sequence pattern
If the support of a sequence pattern patterni exceeds a certain threshold, then patterni is a frequent sequence 
pattern. A frequent pattern with length k is called a frequent k-sequence pattern.

Vertical sequence database format24

In the vertical database format, each entry represents an item and indicates the list of sequences where the item 
appears (SID) and the timestamps when it appears (TID). A structure named IDList is associated with each 
pattern. The support of a larger pattern can be quickly calculated by performing join operations with IDLists of 

(1)e−ε ≤
Pr[M(S) ∈ FS]

Pr[M(S′) ∈ FS]
≤ eε

(2)�f = maxS,S′ � f (S)− f (S′) �1

(3)M(S) = Q(S)+ < ξ1, ξ2, . . . , ξn >

Figure 2.   Vertical format of sequence database (IDLists of single items).
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smaller patterns. In the vertical mining process, IDLists of single items are created by scanning the database once. 
Then IDLists of larger patterns can subsequently be obtained by conducting join operations on IDLists of smaller 
patterns. Figure 2. shows an example of vertical database format according to the sequence database in Fig. 1. Tak-
ing the construction of IDList of p1 as an example, s1 =< {p1, p2}, {p3}, {p6, p7}, {p7}, {p5} > , TID that p1 appears 
in s1 is {1} . Therefore, the first entry of its IDList is (s1, {1}) . s2 =< {p1, p4}, {p3}, {p2}, {p1, p2, p5, p6} > , TID that 
p1 appears in s2 is {1, 4} . Therefore, the second entry of its IDList is (s2, {1, 4}) . s3 =< {p1}, {p2}, {p6}, {p5} > , TID 
that p1 appears in s3 is {1} . Therefore, the third entry of its IDList is (s3, {1}) . s4 =< {p2}, {p6, p7} > , TID that p1 
appears in s4 is none. Therefore, the fourth entry of its IDList is (s4, {}).

The basic idea of the algorithm
The sequence patterns mining algorithm must be randomized to guarantee data privacy. Our scheme is designed 
based on the vertical sequence pattern mining algorithm24 to achieve high efficiency. Differential privacy is 
employed to perturb the vertical mining algorithm. To make the mining process satisfy ε-differential privacy, a 
straight solution is designed as follows: (1) Perturb the IDLists of candidate patterns according to the Laplace 
mechanism. (2) Based on the perturbed IDLists, calculate noisy supports of candidate patterns by performing 
the cross-join operations of noisy IDLists. (3) Filter out frequent patterns based on their noisy supports and the 
minimum support threshold.

In the above process, the noise required for perturbation should be proportional to the sensitivity of the 
mining process and inversely correlated with the privacy budget. Suppose the maximum cardinality of frequent 
sequences is m, the privacy budget ε is divided equally in the iterative mining process, and thus the budget allo-
cated in each iteration is ε/m . Suppose Q = {q1, q2, . . . , qn} is the query function in the private mining, where qi 
represents the sub-query of the number of candidate i-sequences in the ith iteration. The sensitivity of qi equals 
to the maximum number of candidate i-sequences |CSi| . Therefore, add Lap(ε/m · |CSi|) noise to the IDLists 
of candidate i-sequences, the ith iteration process can satisfy ε/m-differential privacy. After m iterations, it can 
easily prove that the private mining process satisfies ε-differential privacy. However, the sensitivity of the straight 
solution is too high, which results in a large amount of noise required for privacy protection.

PrivVertical, an improved algorithm, is proposed to reduce high sensitivity. PrivVertical consists of three 
components: (1) Construction of privHashMap based on sparse vector technology. (2) Perturbation of IDLists. 
(3) Infrequent candidates pruning based on privHashMap. To satisfy ε-differential privacy, the privacy budget 
can be allocated as follows: the budget for the construction of privHashMap is ε1 = α · ε , and the budget for the 
remaining two components is ε2 = (1− α) · ε , where 0 ≤ α ≤ 1.

(1) Construction of privHashMap based on sparse vector technology
There are too many infrequent candidates generated in private mining. The existence of these patterns won’t 

affect the accuracy of non-private mining, but it will lower the accuracy of private mining. Infrequent candidates 
should be pruned as early as possible to address this issue, and PrivHashMap is proposed for this purpose. In the 
vertical mining process, when generating candidate i-patterns based on frequent (i − 1)-patterns, the generation 
style can be divided into two types: one is i-extension, and the other is s-extension. Suppose s = {I1, I2, . . . , In} is a 
sequence, Ik ⊆ U . If pj , pk ∈ Ix , for an integer x such that 1 ≤ x ≤ n and pk ≻lex pj , the item pk is said to succeed 
by i-extension. Otherwise, if pj ∈ Ix and pk ∈ Iy for some integers x and y such that 1 ≤ x < y ≤ k , the item pk is 
said to succeed by s-extension. According to the sequence database in Fig. 1, all single items and their extension 
items can be seen in Fig. 3. For example, {p2} is an i-extension item of p1 , and {p2, p3, p5, p6} are s-extension items 
of p1 . PrivHashMap records extension items and their co-occurrence frequencies of each single item. They are 
used to pre-prune infrequent candidates in the iterative mining process. After pruning infrequent candidates, 
sensitivity can be reduced, the required noise can be lower, and thus accuracy can be improved. In our implemen-
tation, if the co-occurrence frequency information is recorded in an n× n matrix, there will be a large waste of 
empty entries. The existence of these empty entries will seriously affect the candidate pattern filtering efficiency. 
So we implemented the co-occurrence frequency table as a hash table of HashSets. Each HashSet corresponds to 
an item pk and its extensive frequent co-occurrence items. Figure 3 shows an example of privHashMap.

Figure 3.   Example of privHashMap.
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PrivHashMap is constructed based on original sequence data. To avoid possible privacy leakage, its con-
struction should be perturbed by Laplace noise. In this process, the sparse vector technique (SVT)2 is employed 
to ensure accuracy while providing a high privacy level. The private construction can be implemented in two 
steps: Firstly, perturb the support threshold σ with Laplace noise Lap(2/ε1) , and get a noisy threshold σ̂ . Sec-
ondly, perturb the frequency of each candidate 2-sequence C(r2) with Laplace noise Lap(4 ·�/ε1) . Compare 
C(r2)+ Lap(4 ·�/ε1) with noisy support σ̂ . Output ’above the threshold’ if C(r2)+ Lap(4 ·�/ε1) ≥ σ̂ , other-
wise output ’below the threshold’. Here � represents the sensitivity of the private construction, and its value equals 
the number of frequent 2-sequences |FS2| . In this way, PrivHashMap is constructed with both high accuracy and 
a high level of privacy.

Theorem 3  The construction of privHashMap satisfies ε1-differential privacy.

Proof  Let A represent the query function of the frequency of co-currency items, and Ai represents the 
query function of the ith co-currency items. For any neighboring sequence datasets S,S′ , if we can prove 
Pr[A(S) ∈ O] ≤ eε · Pr[A(S′) ∈ O] , we can get algorithm 1 satisfies ε1-differential privacy. Since S and S′ are 
neighboring sequence databases, we can get that Ai(S

′)− 1 ≤ Ai(S) ≤ Ai(S
′)+ 1 . Let r = {r1, r2, . . . , rl} repre-

sent an output vector in this process, r≥σ̂ = {i : ri ≥ σ̂ } , r<σ̂ = {i : ri < σ̂ } . Let ρ represent the query function 
of the number of co-currency items, Pr[ρ(S) = �] ≤ eε1/2 · Pr[ρ(S′) = �] . Thus,

(2) Perturbation of IDList
In vertical mining, candidate k-patterns ( k > 1 ) are generated by performing the cross-join with IDLists of 

frequent (k − 1)-patterns. To satisfy differential privacy, IDLists should be perturbed by random noise for privacy 
protection. As shown in Fig. 4, the IDList of a pattern r consists of a header node and several entries. The header 
node records the number of entries and the budget allocated here. Each entry represents the list of sequences 
where r appears (SID) and the timestamps when it appears (TID). The perturbation of the IDList follows the 
following two steps: First, Perturb the true entry number with the allocated budget. Second, perform consistency 
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Figure 4.   Example of IDList Perturbation.
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adjustment of IDList according to the noisy number. In step 1, for each candidate k-sequence, the magnitude 
of noise required for the perturbation of its IDList is Lap(m ·�fk/nε2) , where m represents the maximum car-
dinality of frequent patterns, �fk represents the sensitivity, and n is the size of the sequence database. In step 2, 
consistency adjustment can be performed as follows: the perturbation of IDList can be divided into two types: 
positive perturbation and negative perturbation. From Fig. 4, we can see that dummy entries can be inserted 
into the noisyIDList when the perturbation is positive. Each dummy entry is composed of a SID value and a 
TID value. To ensure mining accuracy, the SID value of the dummy entry should be different from all existing 
SID values. In this way, the accuracy can not be affected when generating candidate patterns by performing the 
cross-join between IDLists. When the perturbation is negative, consistency adjustment can be implemented by 
deleting several entries of the IDLlist according to the noisy count.

(3) Candidates Pruning based on privHashMap
Vertical mining is an iteration process. In the kth recursive process, candidate k-sequences are generated 

by performing the cross-join of noisyIDLists of frequent (k − 1)-sequences. Meanwhile, infrequent candidate 
patterns are pruned based on privHashMap. The pruning rules are as follows: Let Ai and Aj represent any two 
frequent (k − 1)-sequence patterns, Ai = P ∪ x , Aj = P ∪ y , P is the common prefix of Ai and Aj , y is the exten-
sion item of Ai , x is the last item of Ai , a is the last item of P, r = Ai ∪ y . If y is an i-extension item or s-extension 
item of a in privHashMap, r should be retained in the candidate k-patterns set. Otherwise, r should be filtered out.

For each candidate k-pattern r retained in the candidate set, perturb its IDList. The magnitude of noise 
for perturbation is Lap(m ·�fk/nε2) . Based on the noisyIDList of candidate k-patterns and the support 
threshold, frequent k-patterns can be filtered out. The sensitivity of the queries in the kth recursive mining is 
�fk = min(Ck

l ,Tk)− |delk| . The analysis is as follows: The private vertical mining is a recursive process. Let Tk 
represent the candidate k-sequences generated in the kth recursive process, frequent k-patterns can be filtered out 
from Tk . According to differential privacy, the magnitude of noise should be proportional to the sensitivity and 
inversely proportional to the budget. Suppose the query function in the private mining is Q = {q1, q2, . . . , qm} , 
where qk represents the query of candidate k-sequences in the kth iteration process. The sensitivity of qk can 
be calculated as follows: In the kth iteration process of the straight solution, after adding or deleting any one 
sequence, the upper bound of affected candidate k-sequences is Ck

l  . Suppose the maximum cardinality of 
sequence is l, the maximum number of k-sequence patterns contained in this sequence is Ck

l  . Let Tk represent 
the candidate k-sequences generated in the kth recursive mining, the sensitivity of qk is �fk = min(Ck

l ,Tk) . 
Let delk represent the invalid candidate k-patterns pruned from Tk based on privHashMap. After pruning the 
invalid patterns, the sensitivity of qk is �fk = min(Ck

l ,Tk)− |delk| . After pruning these infrequent candidates, 
the magnitude of the noise is reduced.

(4) The overall algorithm description.
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Algorithm 1 describes the construction of privHashMap. Firstly, perturb the true support threshold with 
2/ε1(line 1), and estimate the number of frequent co-occurrence items � with ε1/4 (line 2). Next, for each item 
pi , find out s-extension items and i-extension items and calculate their co-occurrence frequency, then record 
them in PrivHashMapi and PrivHashMaps respectively (lines 3–12). Traverse PrivHashMap (line 13), for each 
r in PrivHashMapi and PrivHashMaps , perturb its true support with ε1/4 (line 14). If the noisy support is no 
less than the noisy support threshold, add retained it in PrivHashMap (lines 15–16). Otherwise, discard r. Then 
continue to traverse PrivHashMapi and PrivHashMaps until all elements in PrivHashMap have been traversed 
(lines 17–20). At last, return PrivHashMap (line 21).

Algorithm 2 describes the private vertical mining process: PrivVertical consists of three steps: the first is the 
construction of privHashMap, the second is the perturbation of IDList, and the third is generating and pruning 
candidate patterns based on the noisy FS1 . To make algorithm 2 satisfy ε-differential privacy, ε is divided into 
two parts ε1 and ε2 . ε1 is used to construct the privHashMap (Algorithm 2: line 2). The remaining budget ε2 is 
used for private vertical mining. Allocate ε2/m to each recursive process, construct noisyIDList of 1-sequences 
with ε2/m , and find out FS1 (Algorithm 2: lines 3–4). Then Recursively call the process of Enumerate & Pruning, 
generate and prune candidate patterns to get frequent k-patterns (Algorithm 2: lines 5–6).

Algorithm 3 describes the process of Enumerate & Pruning: (1) For any pattern Ai ∈ FSk , add it to FS and 
output it (Algorithm 3: lines 1–2); (2) For each pattern Aj ∈ FSk , merge Ai and Aj as r (Algorithm 3: lines 3–4) 
and add it to Tk (Algorithm 3: lines 5–7). (3) Pruning invalid patterns in Tk based on privhashmap (Algorithm 3: 
lines 8–10). (4) For each pattern r retained in the candidate set, construct its noisyIDList. (5) Calculate frequent 
k-sequence patterns FSk based on noisyIDList (Algorithm 3: line 12). (6) Let FSk as the input parameter, recur-
sively call Algorithm 3 to mine frequent (k + 1)—sequence patterns (Algorithm 3: line 13).

Complexity analysis
Algorithm 2 describes the overall scheme. It consists of Algorithm 1 and Algorithm 3. Let N represent the data-
set size (the number of sequences). Let max|s| represent the max cardinality of the sequence, and C2

max|s| is the 
number of combinations of different co-occurrence items. Thus the complexity of Algorithm 1 is O(N × C2

max|s|) . 
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Suppose the max length of frequent patterns is pmax , |FSK | denotes the number of frequent k-sequence patterns, 
and C2

|FSK |
 is the extension number when generating candidate (k+1)-patterns based on FSK . Let Tk+1 denote the 

candidate (k+1)-patterns. Thus the complexity of Algorithm 3 is O(C2
|FSK |

+ Tk+1) , and the complexity of Algo-
rithm 2 is O(N × C2

Max|s| + pmax × C2
|FSK |

+ Tk+1) . Algorithm 2 has low complexity. To reduce the complexity, 
Algorithm 2 constructs PrivHashMap to filter excessive candidate patterns. After reducing the size of candidates, 
the perturbation is also reduced. Thus the low complexity of Algorithm 2 can be ensured. Detailed running time 
evaluation can be seen in the “Efficiency evaluation” of experiments section.

Privacy and utility analysis
Privacy analysis

Theorem 4  The private vertical mining satisfies ε2-differential privacy.
Proof  Suppose the maximum cardinality of frequent patterns is m, the private vertical mining process consists of 
m recursive sub-processes. Let Q = {q1, q2, . . . , qm} represent the query function in this process, where qk repre-
sents the query function of the kth recursive process. FS represents the frequent patterns set, and FSk represents 
the frequent k-sequence patterns set. �fk represents the sensitivity of the kth recursive process. If we demonstrate 
that the following equation is true, we can get the private vertical mining satisfies ε2-differential privacy.

A detailed analysis is as follows:

In the above proof, the first inequality is inferred from the triangle inequality theorem, and the second inequality 
is inferred from the sensitivity definition ( |qk(S′)| − |qk(S)| ≤ �fk ). Evidenced by the same token, the following 
equation holds:

Therefore, the private vertical recursive mining algorithm satisfies ε2-differential privacy.

Theorem 5  PrivVertical satisfies ε-differential privacy.

Proof  PrivVertical consists of two components: one is the private construction of PrivHashMap, the other is 
the private vertical mining. According to theorem 3, the the private construction of PrivHashMap satisfies ε1
-differential privacy. According to theorem 4, the private vertical mining satisfies ε2-differential privacy. Accord-
ing to Theorem 1, PrivVertical satisfies (ε1 + ε2)-differential privacy. Since ε = ε1 + ε2 , PrivVertical satisfies ε
-differential privacy.

Utility analysis

Theorem 2  For any β > 0 , at least with the probability of 1− β , the upper-bound error between 
noisy frequency and true frequency of frequent k-patterns is γ , where γ = O(

m·�fk
nε2

ln
�fk
β
).

Proof  Suppose r is a candidate k-sequence, and its true frequency is c(r). Since the perturbed noise to the true 
frequency is Lap(m ·�fk/nε2) , the probability that the error between true frequency and noisy frequency of r 
is no less than:

2 ·
(

nε2
2m·�fk

∫ +∞
c(r)+γ

exp(− (x−c(r)nε2)
m·�fk

)dx
)
= exp(−γ nε2

m·�fk
)

In the kth recursive mining process, since the number of perturbed candidate k-patterns is �fk , the 
union upper bound of the probability less than γ  is � · exp(−γ nε2

m·�fk
) , that is β = � · exp(−γ nε2

m·�fk
) , and thus 

γ = O(
m·�fk
nε2

ln
�fk
β
).

Experimental results
We conduct experiments to evaluate the utility and efficiency of PrivVertical. All algorithms are implemented 
with Java.

(4)e−ε2 ≤
Pr[Q(S) ∈ FS]

Pr[Q(S′) ∈ FS]
≤ eε2

(5)

Pr[Q(S)∈FS]
Pr[Q(S′)∈FS] = �m

k=1

exp(−
nε2
m ·|qk (S)|−|FSk ||

�fk
)

exp(−
nε2
m ·|qk (S

′)|−|FSk ||

�fk
)

= �m
k=1

exp(−
nε2
m ·(|qk(S

′)|−|FSk ||−(|qk(S)|−|FSk ||))

�fk

≤ �m
k=1

exp(−
nε2
m ·(|qk(S

′)|−|qk(S|)

�fk
)

≤ exp(m · ε2
m )

= exp(ε2)

(6)
Pr[Q(S) ∈ FS]

Pr[Q(S′) ∈ FS]
≥ exp(−ε2)



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:17866  | https://doi.org/10.1038/s41598-023-43030-z

www.nature.com/scientificreports/

Comparison
Our experiments include the following comparison algorithms: (1) Prefix8: a representative privacy-preserving 
scheme based on perfixspan, which is implemented by perturbing the prefix tree. (2) PrivApriori: a representative 
private mining scheme based on an Apriori-based algorithm9. These two methods are representative horizontal 
mining algorithms with differential privacy. They are compared with PrivVertical, which is a vertical mining 
algorithm with differential privacy.

Metrics
We adopt the following metrics to measure utility: F-score and RE9. F-score is used to measure the utility of the 
private mining results. The definition of F-Score is as follows:

where precision = |F̂S∩FS|

|F̂S|
,recall = |F̂S∩FS|

|FS|  . F̂S is the noisy frequent sequence patterns of the private mining 
scheme, and FS is the original frequent sequence patterns of the no-private mining scheme.

RE (Relative Error) is used to measure the error between actual support and noisy support, which is defined 
as follows:

where supx denotes the true support, and sup′x denotes the noisy support.
Running time is used to measure the efficiency of algorithms.

Datasets
Real datasets used in experiments are MSNBC and Kosaarak, which record the URL categories visited by users 
in time order, and click stream data respectively. Datasets can be obtained from the SPMF websi​te. Detailed 
information can be seen in Table 1. |S| is the number of records of the dataset, |I| is the number of distinct items, 
and Max|s| and Avg|s| denote the maximal and the average record length respectively.

(7)F − score = 2×
precision× recall

precision+ recall

(8)RE = AVGx∈FS
sup

′

x − supx

supx

Table 1.   Detailed information of datasets.

Dataset |S| |I| Max|s| Avg|s|

MSNBC 989,818 17 14,975 4.7

Kosaarak10k 10,000 10094 699 8.1

Figure 5.   Effect of ε on Utility.

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Effect of ε on utility
Figure 5 shows how the parameter ε affects the accuracy of the three algorithms.

In general, privVertical performs better under the same privacy level. The main reasons are as follows: Priv-
Vertical prunes many invalid candidate patterns in private mining, the sensitivity is reduced and the noise 
required is also reduced. Although PrivApriori reduces the sensitivity by shrinking sequences and pruning invalid 
candidate patterns, there exists a sampling error in private mining. Prefix uses a prefix tree to reorganize the 
sequence database, and uses the projection technique to calculate the noisy support of a pattern. It contains the 
reorganization error, which results in low accuracy. As ε increases, the privacy level decreases, F-Score increases, 
and RE decreases. The reason is as follows: the higher the parameter ε , the lower the privacy level is. A lower 
privacy level means the required noise is lesser, improving the accuracy. Compared with MSNBC, the utility of 
Kosarak is higher. The reason may be that the candidate patterns on kosarak are sparse, the number of candidate 
patterns is relatively small, and the pruning strategy is more effective.

Effect of pruning strategy on utility
We evaluate how effective of the pruning strategy based on privHashMap on utility in this section.

The private vertical mining scheme without candidate patterns pruning is named as StraightSolution. From 
Fig. 6a, b, we can see the sensitivity reduction rate on MSNBC in the private mining achieves to 74–78%. The 
reduction rate on Kosarak achieves to 98%. From Fig. 6c, d, Compared with StraightSolution, privVertical can 
greatly improve the utility. The main reason is that the sensitivity is reduced, the noise required decreases.

Figure 6.   Effect of pruning based on privHashMap on utility.

Figure 7.   Effect of pruning based on privHashMap on efficiency.
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Efficiency evaluation
Figure 7 shows how the pruning strategy based on privHashMap affects efficiency. We can see PrivVertical per-
forms better than the StraightSloution. After pruning invalid candidate patterns, the size of candidate patterns 
set is lower. In this way, it will take less time to make the private processing for the candidate patterns, thus the 
running time is reduced. With the increase of σ , the efficiency of the two schemes is decreasing, this is because 
the candidate patterns space becomes smaller.

Conclusion
In this study, we analyzed why existing works can not afford a private sequence patterns mining scheme with 
a high level of privacy while achieving both high utility and efficiency. The first reason is the low efficiency of 
the horizontal mining style. The second reason is low utility caused by too many candidate patterns generated 
in private mining. To address the above issue, privVertical, a private vertical sequential pattern mining scheme 
is proposed for the first time. High efficiency is attained by reducing the scanning times of database in the pri-
vate mining process. It is implemented by perturbing a non-private vertical mining algorithm with differential 
privacy. The utility is enhanced by less noise required for the same level of privacy. It is implemented by two 
strategies: The first is designing the privHashMap. It is a private co-occurrence hash map list designed based 
on the Sparse Vector Technology and used to filter invalid candidate patterns in the subsequent private mining 
process. Therefore the magnitude of noise required for privacy protection can be reduced. Secondly, a noise 
addition scheme for the vertical mining algorithm is designed, which can improve the mining efficiency while 
satisfying differential privacy constraints.

By formal theoretical analysis, the upper bound of the utility of privVertical is given, and the privacy bound 
of privVertical is also proved. Compared with other state-of-art methods, experiments verified that privVertical 
has higher accuracy and efficiency under the same privacy budget. This is because the Laplace noise required for 
perturbing the support of candidate patterns is reduced greatly. In the experiments, the candidate reduction rate 
on two real datasets achieves 74–98%, which greatly improves the utility of private mining. Our experimental 
results also demonstrated how the pruning strategy based on privHashMap affects efficiency. After pruning 
invalid candidate patterns, the size of the candidate patterns set is lower. In this way, it takes less time to make 
the private processing for the candidate patterns, and thus the running time is reduced. In future work, Priv-
Vertical will be applied to other practical problems, such as product recommendation and biomedical data 
analysis. Another possible future work may also include testing the proposal using other practical datasets or 
metrics related to quality.

Data availability
The current research is available from the corresponding author upon reasonable request, and the data used 
and/or analyzed during the current study available from http://​www.​phili​ppe-​fourn​ier-​viger.​com/​spmf/​index.​
php?​link=​datas​ets.​php online.
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