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Estimation of cardiorespiratory 
fitness using heart rate and step 
count data
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Ekaterina Surkova , Evgeniya Smorodnikova  & Pavel Pravdin 

Predicting cardiorespiratory fitness levels can be useful for measuring progress in an exercise program 
as well as for stratifying cardiovascular risk in asymptomatic adults. This study proposes a model 
to predict fitness level in terms of maximal oxygen uptake using anthropometric, heart rate, and 
step count data. The model was trained on a diverse cohort of 3115 healthy subjects (1035 women 
and 2080 men) aged 42 ± 10.6 years and tested on a cohort of 779 healthy subjects (260 women and 
519 men) aged 42 ± 10.18 years. The developed model is capable of making accurate and reliable 
predictions with the average test set error of 3.946 ml/kg/min. The maximal oxygen uptake labels 
were obtained using wearable devices (Apple Watch and Garmin) during recorded workout sessions. 
Additionally, the model was validated on a sample of 10 subjects with maximal oxygen uptake 
determined directly using a treadmill protocol in a laboratory setting and showed an error of 4.982 
ml/kg/min. Unlike most other models, which use accelerometer readings as additional input data, the 
proposed model relies solely on heart rate and step counts—data readily available on the majority 
of fitness trackers. The proposed model provides a point estimation and a probabilistic prediction 
of cardiorespiratory fitness level, thus it can estimate the prediction’s uncertainty and construct 
confidence intervals.

Abbreviations
CRF  Cardiorespiratory fitness
MET  Metabolic equivalent of task
VO2 max  Maximal oxygen uptake
BMI  Body mass index
CRPS  Continuous ranked probability score
ECE  Expected calibration error
SD  Standard deviation

Cardiorespiratory fitness (CRF) is a key indicator of both athletic performance and general health. CRF charac-
terizes the functional ability of the lungs, cardiovascular system, and skeletal muscles to perform daily activities 
that require a sustained aerobic  metabolism1, and is inversely correlated with several pathologies (e.g. athero-
sclerosis, heart failure)2, 3. A widely recognized measure of an individual’s CRF is the maximal oxygen uptake 
(VO2 max). It was introduced by Hill and Lupton in a 1923  paper4 as “the oxygen intake during an exercise 
intensity at which actual oxygen intake reaches a maximum beyond which no increase in effort can raise it”. The 
methods to estimate a person’s VO2 max level can be divided in two groups: direct and indirect  methods5. Direct 
methods typically involve a graded exercise test conducted in a controlled laboratory setting with direct read-
ings of oxygen consumption and include reaching a maximal level of a person’s physical activity. Most common 
direct methods are treadmill tests where the subject runs on a treadmill with an increasing gradient or speed, or 
bicycle ergometer tests where individual pedals on a stationary bike with the resistance or pedaling rate gradually 
increasing. During these tests the measurement of oxygen consumption increases with the intensity of exercise 
until it reaches a plateau or the subject cannot maintain the required intensity, indicating the VO2 max level. 
Validity of these methods was verified in several research  studies6–9.

Indirect methods, such as Astrand treadmill  test10 or Astrand-Ryhming cycle ergometer  test11 do not require 
measurements of oxygen consumption during exercies. Instead, they use heart rate response to a standard work-
load and do not require reaching maximal  intensity12. While direct methods for VO2 max estimation are more 
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accurate, they are also costlier and require more time for setup and operation by trained technicians. On the 
other hand, indirect methods are more accessible and less time-consuming, but their accuracy can be lower as 
they use interpolation to estimate maximal oxygen uptake rather than directly measuring  it13.

Wearable devices have made it possible to track heart rate and physical exertion not only in a laboratory 
setting, but also in everyday life. The use of wearable devices as physical activity and health tracking tools has 
increased over the last five years, both among professional and non-professional  athletes14. A large number of 
wearable sensors and mobile applications analyze various physiological indicators, such as heart rate, step count, 
and distance traveled. Heart rate is frequently used to estimate cardiovascular strain during  exercise15. A lower 
heart rate at a given workload is associated with higher cardiorespiratory  fitness16. Previous research demon-
strates the feasibility of using physiological data obtained from electronic devices to predict VO2 max. Various 
features were used: speed to heart rate ratio  in17; contextualized heart rate  in18–20; heart rate response features 
collected during controlled submaximal treadmill test  in21; variability in the daily traveled distance  in22. Several 
smartwatches, such as Apple Watch and Garmin, estimate VO2 max for every sufficiently long walking or run-
ning session using proprietary algorithms that analyze heart rate, accelerometer, and GPS data collected during 
the session. The accuracy of the estimates was validated in the manufacturer’s  whitepapers23, 24.

The objective of this study is to develop a machine learning model capable of making reliable VO2 max pre-
dictions using heart rate and step count interval data collected from users in everyday life. These data sources 
have been chosen since they can be supplied by the majority of wearable devices and do not necessitate separate 
tracking of running or walking sessions. To do this, a dataset containing a history of heart rate measurements 
and step count intervals from a diverse cohort of wearable device users was collected. The dataset was split in 
train and test part to train and validate the model. Additionally, the model was validated on a small dataset of 
volunteers with VO2 max values measured directly in laboratory settings.

The paper is organized as follows. Section Data collection describes the data collection process. Section Fea-
tures discusses the process of feature engineering. Section Model describes the model construction and tuning 
process. Section Results analyzes the model accuracy for probability and point prediction, provides the analysis 
of feature importance, and analyzes how each of the features contributes to the prediction using the Shapley 
values. Section Comparison with direct VO2 max observations contains a comparison of the model prediction 
results with VO2 max data determined in a laboratory setting. Section Discussion provides an overview of the 
obtained results, model limitations, and directions for future research.

Materials and methods
Study design
In this study, VO2 max is considered as the rate relative to body mass and expressed in ml/kg/min. Two datasets 
were collected:

• Wearable devices dataset: a dataset containing history of everyday step count data and heart rate data collected 
in background by smartwatch devices (Apple Watch and Garmin) from a diverse cohort of users, together 
with VO2 max estimates made by smartwatch algorithms during intentionally tracked workout sessions.

• Direct VO2 max dataset: a dataset containing history of everyday step count data and heart rate data collected 
in background by Apple Watch devices from ten volunteers, who participated in direct VO2 max estimation 
in a laboratory setting.

The wearable devices dataset was split into a train and test set. A machine learning model was trained on users’ 
history of heart rate and step count data in the train set, then its performance was tested by comparing its pre-
dicitons with labels on the test set. Its predictions were compared with VO2 max values on the direct VO2 max 
dataset.

Data collection
Smartwatch data collection was conducted without the active participation of the research subjects. Upon down-
loading the Welltory app, users provide informed consent for their anonymized data to be used by the company 
for internal research purposes if such research can help provide users with better services or improve the app’s 
functionality. This policy is described in the company’s Terms of Use, which the app’s users actively consent to.

User data was gathered between January 2020 and October 2021 in a non-controlled setting. The data col-
lected from wrist-worn smartwatches (Apple Watch and Garmin), synchronized with the Welltory app, includes 
gender, age, height, weight, heart rate measurements, and intervals with step-count data provided by each device’s 
internal algorithms. VO2 max values estimated by the devices’ internal algorithms during outdoor walking or 
running workout sessions were also gathered. Apple Watch and Garmin devices measure heart rate ranging from 
once per several minutes in the background to once per several seconds during a separately tracked workout 
session. In order to ensure the developed model remains independent from device-specific measurement fre-
quency, the obtained heart rate stream is resampled to one measurement per minute (for the minutes contain-
ing measurements) during the preprocessing stage (see Section Preprocessing for more detail). VO2 max labels 
were obtained by gathering VO2 max estimates made by Apple Watch and Garmin devices during running and 
walking sessions, with the average taken for each study participant.

Wearable devices dataset
Data collected from 3894 subjects was split into a train(80%) and test(20%) set. Table 1 provides descriptive 
statistics of the train and test datasets.
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In the collected dataset the VO2 max labels are derived from estimates made by wearable devices during 
intentionally tracked workout sessions. Since these labels may deviate from actual VO2 max values, a smaller 
dataset containing VO2 max values obtained using direct methods in laboratory conditions was collected:

Direct VO2 max dataset
Ten healthy Apple Watch users volunteered for laboratory tests to determine their maximal oxygen uptake. Eve-
ryday heart rate and step count data, gathered from these volunteers’ Apple Watches in the month preceding the 
testing, served as the input for the developed model. The model’s predictions were then compared to maximal 
oxygen uptake obtained during the laboratory testing.

Each subject provided informed consent. The exercises were performed under a supervision of a trained 
exercise physiologist. The study was conducted in accordance with the principles of the Declaration of Helsinki 
and approved by the ethics committee of the South Ural State University. Characteristics of the participants are 
given in Table 2.

Validation dataset collection protocol
Each participant was performing a treadmill exercise while wearing a MetaMax 3B (R2) device measuring the 
oxygen consumption together with a chest strap measuring the heart rate during the exercise. The accuracy of 
the MetaMax 3B device was validated in an independent  study25. Oxygen consumption (VO2) was measured 
every 2 seconds.

Each exercise session initiated with a starting treadmill speed of 5 km/h. Following a 3-minute warm-up, the 
treadmill speed was incrementally increased by 0.1 km/h every 6 seconds until the participant’s oxygen consump-
tion plateaued or the participant could no longer sustain the required treadmill speed. The VO2 peak value was 
obtained as the highest VO2 value averaged over 40-second intervals. The selection of a 40-second window is 
based on its use in  literature6, and its effectiveness in reducing noise in VO2 measurements.

Table 1.  Wearable devices dataset characteristics.

Train set (N = 3115) Test set (N = 779)

Gender distribution:

 Female 1035 (33%) 260 (33%)

 Male 2080 (67%) 519 (67%)

Age distribution:

≤ 20 years 13 (0.4%) 3 (0.4%)

 20–30 years 351 (11.3%) 72 (9.2%)

 30–40 years 1057 (33.9%) 247 (31.7%)

 40–50 years 961 (30.9%) 269 (34.5%)

 50–60 years 556 (17.8%) 148 (19.0%)

> 60 years 177 (5.7%) 40 (5.1%)

Body mass index categories:

 Underweight (BMI < 18.5) 55 (1.8%) 5 (0.6%)

 Normal weight (18.5 ≤ BMI < 25.0) 1258 (40.4%) 321 (41.2%)

 Overweight (25.0 ≤ BMI < 30.0) 1179 (37.8%) 287 (36.8%)

 Obese (BMI ≥ 30.0) 623 (20.0%) 166 (21.3%)

Devices:

 Apple Watch 2912 (93.5%) 726 (93.2%)

 Garmin 203 (6.5%) 53 (6.8%)

 Number of observed days (mean ± SD) 287±149 288±149

 Reference VO2 max (ml/kg/min, mean ± SD) 36.16±6.66 36.18±6.76

 Number of VO2 max measurements (mean ± SD) 8.69±5.43 8.96±5.53

Table 2.  Direct VO2 max validation study participants.

Women (N = 6) Men (N = 4) All (N = 10)

Age, years (mean ± SD) 32.3 ± 4.5 35.6 ± 5.5 33.6 ± 5.2

Height, cm (mean ± SD) 165.7 ± 10.1 178.8 ± 5.1 170.9 ± 10.6

Weight, kg (mean ± SD) 61.3 ± 6.6 77.8 ± 13.8 67.9 ± 12.9

BMI, kg/m2 (mean ± SD) 22.4 ± 2.7 24.2 ± 3.3 23.2 ± 3.1

VO2 max, ml/kg/min (mean ± SD) 35.1 ± 4.5 41.4 ± 3.9 37.6 ± 5.2
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Out of 10 volunteers, 8 exhibited a plateau in their VO2 consumption. This plateau is defined by a VO2 
increase of less than 50% of the anticipated rise for the corresponding increase in work  rate26. The 2 volunteers 
who did not show this plateau pattern achieved a respiratory exchange ratio greater than 1.1, and peak heart 
rate above 95% of the age predicted maximums. As the result, their VO2 peak measurements were considered 
accurate estimates of VO2 max according to commonly used  criteria27. An example of the recorded data is 
shown in Fig. S1.

Features
History of heart rate and step count data for each user was transformed to a feature vector using the following 
procedure.

Preprocessing
The heart rate stream is given as a sequence of timestamps and heart rate values. To avoid the influence of device-
dependent heart rate reading frequency, the heart rate stream is averaged over consecutive 1-min intervals. This 
gives a sequence (ti , hri) where ti are entire minute timestamps and hri is the average of heart rate readings during 
the minute starting on ti . The step count data is given as a sequence of intervals (startj , endj , stepcountj) indicating 
the number of steps made in the interval (startj , endj) . The average cadence ci (expressed in steps per minute) is 
computed at moments ti as the number of steps made during the 1-min interval ending at ti . Finally, this gives a 
sequence ti , hri , ci of timestamps, heart rate, and cadence data. These sequences are then used to derive the input 
features for the model.

Cadence to heart rate ratio
Previous research highlighted the importance of speed to heart rate ratio as a feature for VO2 max  prediction17. 
Without explicit speed and distance data available, the cadence to heart rate ratio serves as a substitute. For a spe-
cific heart rate and cadence sequence, minutes containing activity are considered, i.e., having a cadence ci > 60 . 
Let chr denote the distribution of the ratio of cadence to heart rate during activity minutes. Let chr25, chr50, chr75 
denote three quartiles of the distribution chr. Consider the vector of quartiles

The vector xchr is one of the input features.

Daily MET‑minutes
Another feature estimates an individual’s overall physical activity. This involves the use of the metabolic equiva-
lent of task (MET), the ratio of the oxygen consumption at a specific moment to the oxygen consumption at 
rest, generally accepted to be equal to 3.5 ml/kg/min28. An estimate of MET is derived based on heart rate using 
the method developed  in29:

Here, hr represents the heart rate at a certain moment, and hrrest is the individual’s heart rate at rest on a given 
day, computed as the 10%-percentile of the heart rate recorded between noon and 9 pm of that day. For every day 
in an individual’s measurement history, the MET values computed for all minutes during that day are added up. 
Minutes not covered by heart rate readings are assumed to have a MET value of one. The computed MET-minutes 
are then divided by 1440, corresponding to MET-minutes of a day without any activity. Thus, a single number 
met is obtained for every observed day. Three quartiles of the distribution met for all observed days are computed 
and these quartiles are denoted by met25,met50,met75 . The vector consisting of these quartiles is denoted by xmet:

xmet is then utilized as a feature describing the usual level of physical activity of the individual.

Heart rate response to cadence increase
The next feature highlights how an individual’s heart rate reacts to an increase in cadence. For the cadence and 
heart rate sequence ci , hri , active moments with hri above 75 bpm and ci over 60 steps per minute are consid-
ered. The threshold of 75 bpm for heart rate is used, since it corresponds to 2.5 MET using Eq. (2) for resting 
heart rate of 60 bpm, a generally accepted lower bound for resting heart rate in  adults30. The  study31 models the 
relationship between cadence and MET using a continuous function consisting of two linear segments. Utiliz-
ing the nearly linear relationship between oxygen consumption and heart  rate29, the relationship between heart 
rate and cadence is modeled using a continuous two-segment piecewise linear function as well. Piecewise linear 
functions with the node at the cadence of 100 steps per minute are used. The node of two-segment piecewise 
linear function is fixed at cadence level of 100 steps per minute as it corresponds to MET=3 and is a breakpoint 
in MET-cadence regression  in31.

A continuous two-segment piecewise linear function is determined by three parameters: the intercept w0, 
the slope of the first linear segment w1, and the slope of the second segment w2. For robust estimates, quantile 
regression is performed by fitting the coefficients w0, w1, w2 to minimize the pinball loss (refer to Section Quan-
tile Regression for more detail) for various quantile levels (see Fig. S2 for example of fitted piecewise quantile 
functions).

(1)xchr = (chr25, chr50, chr75)

(2)MET = 6 ·
hr

hrrest
− 5

(3)xmet = (met25,met50,met75).
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To illustrate how the position and shape of the fitted quantile regression aids in predicting VO2 max, 
Fig. S3 contains the median fitted piecewise quantile curves to (cadence, heart rate) distributions for partici-
pants with low (below the 1/3 quantile in the training set, red area), medium (between 1/3 and 2/3 quantiles in 
the training set, yellow area) and high (above the 2/3 quantile in the training set, green area) values of VO2 max. 
One can see that on average people with higher values of VO2 max have lower heart rate for the same cadence. 
Also, one can see that the slope of the heartrate-over-cadence regression line is lower for people with high VO2 
max (green group) vs people with low VO2 max (red group). This is especially visible in the region with cadence 
between 60 and 100 steps per minute. In the higher cadence range, while one can still observe the lower level of 
heart rate for people with higher VO2 max, the distinction in the growth rate becomes less visible.

Quantile levels 0.1, 0.2, 0.5, 0.8, 0.9 were chosen for the heart rate on cadence regression. For each quantile 
level, three coefficients w0, w1, w2 are obtained, culminating in a total of 15 parameters from w010,w110,w210 
(coefficients of quantile regression for q = 0.1 ) to w090,w190,w290 (coefficients of quantile regression for q = 0.9 ). 
These coefficients collectively form a vector that characterizes the heart rate response to an increase in cadence:

Anthropometric features
In addition to the features derived from the heart rate and cadence sequences, gender, age, and the body mass 
index:

are joined into the vector of anthropometric features:

Finally, the feature vectors described above are concatenated into one 24-dimensional vector x that serves as an 
input of the developed model:

Model
Quantile Regression
If Y is a random variable with cumulative distribution function FY , and 0 < q < 1 , let QY (q) = F−1

Y (q) denote 
the q-th quantile of Y. The  function32

is called pinball loss. If Y is a random variable, its q-th quantile minimizes the expected pinball loss E(Lq(Y ,−))33:

Thus if X is a random vector and Y is a random variable, the conditional quantiles QY |X=x(q) minimize the 
expected pinball loss E(Lq(Y , f (X))) among all functions f mapping the range of X to the range of Y. Therefore, 
for a train set (xi , yi)ni=1 quantile regression aims to find a function f(x) that minimizes the total loss

Quantile regression was introduced  in32 for linear functions f. Later quantile regression was studied for other 
models, such as gradient boosting  machines34, random  forests35, 36, and neural  networks37.

VO2 max probability prediction
Let (X, Y) denote the joint distribution of feature vectors and VO2 max labels. The developed model provides 
estimates Q̂(x, q) of the conditional quantiles QY |X=x(q) for 0 < q < 1 using the following construction. For 
every q = 0.05, 0.1, . . . , 0.95 a gradient boosting model fq(x) that minimizes the pinball loss 

∑n
i=1 Lq(yi , fq(xi)) 

is fitted on a training set (xi , yi)ni=1.
Since the models are fitted independently, the sequence fq(x) does not necessarily guarantee to be non-

increasing with respect to q. To ensure monotonicity of estimates fq(x) and acquire a more robust estimate, 
the rearrangement operation introduced  in38 is applied. Specifically, for every x, a function fx : [0, 1] → R is 
constructed by interpolating values fq(x) for q = 0.05, . . . , 0.95 . Here, U ∼ U(0, 1) denotes the random variable 
uniformly distributed on the interval [0, 1]. Denote by f ∗x  the quantile function of the random variable f(U). The 
function f ∗x  is called the rearrangement of the function fx . Finally, the model prediction of the q-th conditional 
quantile is defined as the value of rearrangement function f ∗x  at level q:

(4)xresp = (w010,w110,w210, . . .w090,w190,w290)

(5)bmi =
weight in kg

(height in m)2

(6)xant = (age, gender, bmi)

(7)x = (xant , xchr , xmet , xresp)

(8)Lq(y, ŷ) = qmax(y − ŷ, 0)+ (1− q)max(ŷ − y, 0)

QY (q) = argmin
z

E(Lq(Y , z))

n
∑

i=1

Lq(yi , f (xi)).

(9)Q̂(x, q) = f ∗x (q)
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By38, Proposition 1 the estimates Q̂(x, q) are closer to the true conditional quantiles QY |X=x(q) than the initial 
estimates fq(x) , and Q̂(x, q) � Q̂(x, q′) when q � q′

Model training and hyperparameter tuning
To estimate the probability prediction model, the continuous ranked probability score (CRPS)39 is used. CRPS is 
defined for a probabilistic prediction with cumulative distribution function F and observed value y as

To use this metric with predicted quantiles, for every feature-label pair (x, y) the cumulative distribution function 
F is recovered as the inverse of the estimated quantile function Q̂(x,−) . or each potential set of hyperparameters, 
a 5-fold cross-validation on the training set is performed to estimate the average CRPS score. Hyperparameters 
are then tuned to maximize the cross-validated CRPS score using the tree-structured Parzen Estimator algorithm 
 implemented40. The gradient boosting models were trained using LightGBM  implementation41. The tuning gives 
the following optimal choice of the gradient boosting hyperparameters given in Table 3:

Metrics
Estimating the accuracy of probabilistic predictions requires evaluation of calibration and  sharpness42. Calibra-
tion demonstrates the differences between the quantiles predicted by the model and the true quantiles of the 
conditional distribution Fy|x , while sharpness estimates the spread of the predicted distribution.

Calibration
Given the lack of information about the distribution of the label for a specific feature (since typically there is 
only one example with the given value of the feature vector x), the calibration is estimated using the expected 
calibration  error43, defined as follows.

For a feature-label set (x1, y1), . . . (xn, yn) and 0 < q < 1 consider the probability of observing a sample below 
the predicted quantiles:

The expected calibration error is defined as the average difference between the observed probabilities and the 
quantile level:

Sharpness
Note that the expected calibration error does not tell how informative the model is, since the constant model 
predicting marginal quantiles of the label y regardless of the feature x will have the expected calibration error 
equal to zero. Therefore in addition to calibration, it is necessary to estimate the sharpness of the model’s predic-
tions, that indicates how informative the predicted distributions are.

For the model Q̂ and a set of feature vectors x1, . . . , xn the sharpness of the model prediction is estimated by 
the average interquartile range (IQR) of the predicted distributions:

Shapley values
To estimate the impact of different features on the predictions, the Shapley  values44 are used. For a component 
of a feature vector, its Shapley value shows what contribution does this component bring to the prediction. In 

(10)CRPS(F, y) = −

∫

∞

−∞

(F(z)− 1{z � y})2dz

(11)pobs(q) =
1

n

n
∑

i=1

1{yi � Q̂(xi , q)}

(12)ECE(Q̂) =

∫ 1

0
|pobs(q)− q|dq

(13)IQR(Q̂) =
1

n

n
∑

i=1

Q̂(xi , 0.75)− Q̂(xi , 0.25)

Table 3.  Optimal parameters of gradient boosting models.

Maximal tree depth 4

Number of estimators 313

Bagging fraction 0.75

Bagging frequency 13

Learning rate 0.1

Minimal number of samples in leaf 22

L1 regularization coefficient 0.142
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informal terms, a Shapley value of a component shows the difference between the prediction when the compo-
nent value is known and the prediction when the component value is unknown. In particular, if a change in a 
component does not affect the prediction, its Shapley value is zero, and the components that are more relevant 
for prediction have larger Shapley values than less relevant components.

To estimate how different features impact the model prediction, the Shapley values (implemented  in45 for 
gradient boosting models) are computed for the median prediction model f = f0.5 . Let us briefly recall the defini-
tion of the Shapley values. Suppose x is a feature vector. Enumerate its components as x = (x(1), . . . , x(m)) . Let 
m denote the set {1, 2, . . . ,m} of all input features. If S ⊆ m is a subset of features, let xS denote the subvector of 
x consisting of components in S. If x and y are two feature vectors, then (xS, ym\S) denotes the feature vector z 
defined as

If x1, . . . xn denote the feature vectors in the training set. For any feature vector x denote by fS(x) the average 
value of f on the training set where features in S were set to be equal to xS :

Thus fm(x) coincides with f(x) and f∅(x) is the average value of f on the training set.
Then the Shapley value of the i-th feature in the input vector x is defined as

It represents an impact of the i-th feature on the model at the point x. The model value f(x) decomposes as the 
average value on the training set and the sum of Shapley values at x

Results
Calibration and sharpness
Table 4 shows the calibration and sharpness of the model on the test set. For comparison purposes, the metrics 
for models trained using various subsets of features are reported.

To simplify the comparison with models giving point estimates of VO2 max, the Table 5 contains the error 
metrics of the median prediction Q̂(x, 0.5) made by the developed model trained using various subsets of features:

z(i) =

{

x(i) if i is in S

y(i) if i is not in S

(14)fS(x) =
1

n

n
∑

i=1

f (x
m\S
i , xS)

(15)φi(x) =
∑

S⊆n\{i}

|S|!(n− |S| − 1)!

n!
(fS∪{i}(x)− fS(x))

(16)f (x) =
1

n

n
∑

i=1

f (xi)+

m
∑

i=1

φi(x)

Table 4.  Calibration and sharpness of the probability prediction model on the test set. Calibration and 
sharpness on test set for models trained with various subsets of features.

Features used in model Q̂ ECE(Q̂) IQR(Q̂)

None 0.003 8.874

xant 0.026 6.279

xant , xchr 0.039 4.665

xant , xchr , xresp 0.029 4.362

xant , xchr , xresp , xmet 0.032 3.948

Table 5.  Error of median prediction y − Q̂(x, 0.5) (mean ± SD). Error of median prediction of the model 
trained using different subsets of features.

Features used Train set Test set

None − 0.137 ± 6.661 0.032 ± 6.760

xant 0.084 ± 4.880 0.424 ± 5.392

xant , xchr 0.158 ± 3.878 0.261 ± 4.487

xant , xchr , xresp 0.145 ± 3.324 0.083 ± 4.143

xant , xchr , xresp , xmet − 0.082 ± 3.052 0.013 ± 3.946
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Feature impact
Recall that feature vectors consist of the anthropometric features, cadence to heart rate ratio features, MET-
features and response features:

For every feature group xant , xchr , xmet , xresp define its Shapley value at x the sum of individual Shapley values of 
the features in that group. Thus the mean absolute Shapley value of a feature group is an indicator of its impor-
tance for the model predictions. Table 6 shows the obtained feature group importance.

The Shapley values for each individual are depicted in Fig. S4. The figure reveals the following impacts of 
main features: older age and higher BMI correlate with lower cardiorespiratory fitness. Larger cadence to heart 
ratio values chr75 and greater levels of physical activity as shown by met75 correlate with higher cardiorespiratory 
fitness. Regarding the features expressing the heart rate response to the increase in cadence, it is observed that 
elevated values of intercept ( w050 ) and the first segment slope w150 also correlate with lower cardiorespiratory 
fitness. Specifically, the plot of Shapley values for w050 demonstrates that values of w050 below the y-axis inter-
cept point of approximately 95 positively impact the prediction, while values of w050 above that point negatively 
impact the prediction. This suggests the learned association between elevated levels of heart rate during walking 
(corresponding to higher w050 ) and lower levels of VO2 max, a dependence depicted in Fig. S3. A similar conclu-
sion can be drawn about the feature w150 . At the same time, the individual impact of the second segment slope 
w250 is less pronounced as the feature w250 operates in conjunction with features w0 and w1. The influences of 
features on the sharpness of the model’s predictions are presented in Fig. S5. It illustrates that low values of the 
second segment slope w250 and the cadence to heart rate ratio feature chr75 contribute to larger uncertainty in 
the model’s predictions. A potential explanation for this behavior is that samples with low w250 and chr75 derive 
from data with few recorded moments of large cadence. In such situations, the model has less information on 
the individual’s response to intense physical activity, leading to less certainty in its predictions.

Dependence of the model’s prediction sharpness on the amount of available data
It is expected that the model’s prediction sharpness should decrease when more input data becomes available. 
To validate this conjecture, the following steps were performed for every user in the test set:

• For every month containing a reference smartwatch VO2 max label consider history of heart rate measure-
ments and step count data in the intervals of 1 week, 2 weeks, 1 month, 4 months and 8 months preceding 
the time when the label was obtained.

• For each interval compute the number of minutes of activity (i.e. minutes with cadence above 60 steps per 
minute) and then compute the model predictions based on the data from the interval. Then calculate the 
model’s prediction sharpness, defined as the predicted interquartile range, i.e. the difference between the 
upper and lower conditional quartiles predicted by the model.

Table 7 and Fig. S6 show how the model’s predicted sharpness depends on the amount of available active minutes 
in the user’s history. They show how the model’s prediction uncertainty gradually decreases with the increase 
of the available data.

x = (xant , xchr , xmet , xresp)

Table 6.  Feature group importance.

Feature group Mean absolute Shapley value

xant 2.766

xchr 1.545

xresp 1.187

xmet 0.755

Table 7.  Sharpness of the model’s predictions depending on the amount of available data.

Active minutes in user data IQR(Q̂)

Less than 10 7.39

10 to 30 6.25

30 to 60 5.63

60 to 100 5.22

100 to 200 4.92

200 to 500 4.54

500 to 1000 4.25

more than 1000 3.97
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Model accuracy comparison for Apple Watch and Garmin devices
To compare how the developed model perfoms on data obtained from different devices, calibration and sharp-
ness metrics for test samples were computed separately for data collected using Apple Watch devices and Garmin 
devices. The Table 8 shows expected calibration error and interquartile range for the test set samples collected 
from Apple Watch and Garmin devices.

Thus the model shows similar calibration and sharpness metrics on data samples collected using different 
devices.

Comparison with direct VO2 max observations
Model prediction
For each participant, Table 9 contains maximal oxygen uptake values determined using the treadmill test, and 
the quartiles predicted by the model using their heart rate and step count history.

The calibration and sharpness of the model prediction as well as error of the median prediction on the labora-
tory dataset are given in Table 10.

Discussion
The development of a simple, inexpensive, and effective method to assess CRF has been recognized by the Ameri-
can College of Sports Medicine as a matter of paramount  importance46. Such a method will make it possible to 
identify and mitigate the negative health effects of low CRF caused by a lack of physical activity. The maximal 
oxygen uptake (VO2 max) is a common measure of CRF. It is an important indicator of the body’s ability to 
tolerate aerobic exercise and a good predictor of  endurance47. Moreover, VO2 max allows the assessment of train-
ing progress and cardiovascular risk stratification in asymptomatic adults, as low VO2 max increases the risk 
of all-cause mortality, including cardiovascular  events48. The limitations of previously used laboratory maximal 
and submaximal exercise protocols for VO2 max assessment include their high cost, as well as the impossibil-
ity of large-sample testing and batch analysis. Besides, such exercise tests increase the risk of adverse events 

Table 8.  Calibration and sharpness on the test set. Mean expected calibration error and interquartile range 
computed separately for test samples collected using Apple Watch devices and Garmin devices.

Source ECE(Q̂) IQR(Q̂)

Apple Watch (N=726) 0.037930 3.904

Garmin (N=53) 0.037934 3.994

Table 9.  Comparison with VO2 max determined in laboratory tests. VO2 max values found in laboratory 
treadmill tests, and three quartiles predicted by the model.

Subject Gender Age bmi VO2 max q25 q50 q75

1 f 27 27.30 35.17 32.65 36.39 38.42

2 f 28 24.22 34.95 37.53 38.66 39.56

3 m 30 24.25 35.36 37.02 40.65 43.46

4 m 30 22.38 44.69 35.76 37.13 42.09

5 f 31 22.89 39.12 31.97 34.67 35.88

6 f 32 21.12 40.11 35.84 37.94 41.65

7 f 41 18.63 26.20 33.89 34.88 36.13

8 m 36 29.59 44.92 36.68 38.46 40.40

9 f 32 20.28 35.32 34.43 35.54 37.91

10 m 44 20.69 40.48 35.40 36.78 40.41

Table 10.  Metrics for model prediction on the laboratory dataset participants.

Features used ECE(Q̂) IQR(Q̂) Median error (mean ± SD)

None 0.100 8.201 1.191 ± 5.231

xant 0.058 6.590 0.622 ± 5.551

xant , xchr 0.084 4.940 0.324 ± 5.148

xant , xchr , xresp 0.111 4.779 0.897 ± 5.039

xant , xchr , xresp , xmet 0.084 4.705 0.349 ± 4.982
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in asymptomatic individuals with unknown underlying cardiovascular and respiratory  conditions49. Wearable 
devices allow us to investigate the relationship between physical activity, heart rate and VO2 max in a free-living 
environment. Furthermore, advances in signal processing and machine learning provide new opportunities for 
accurate VO2 max prediction based on physiological data acquired in free-living. In the present paper, a model 
for predicting VO2 max based on heart rate and step count was developed and tested. Previously, Altini et al. 
demonstrated the feasibility of using physiological data obtained from electronic devices to predict VO2 max 
during  running17,  walking19 and daily  activities20. Algorithms developed in these works rely on accelerometer 
data used for heart rate contextualization. Current algorithms used in  smartwatches23, 24 rely on accelerometer 
and distance measurements during separately tracked outdoor walking and running sessions.

Existing publicly available  algorithms17, 18, 20–22 utilize linear regression and were validated using laboratory 
protocols on 48, 46, 32, 41, and 50 participants, respectively. Having a larger cohort of 3894 participants allows 
for the training of a more expressive model than linear regression. Moreover, this model doesn’t just offer a point 
prediction of VO2 max as in the previously published algorithms but also provides an estimate of the VO2 max 
probability distribution. This feature enables the estimation of prediction uncertainty for every participant and 
the construction of confidence intervals for VO2 max.

The goal of this study is to investigate whether it’s possible to use limited data - specifically, heart rate meas-
urements and step-count intervals gathered in free-living conditions - to achieve comparable accuracy in esti-
mating VO2 max. Given that data from uncontrolled environments can vary in quality and completeness, the 
developed model doesn’t merely predict the VO2 max level but also calculates the uncertainty of this prediction, 
allowing for the construction of confidence intervals. This is achieved by using quantile regression to predict 
the conditional distribution of VO2 max. Quantile regression was selected for its computational efficiency and 
the interpretability of its results, as the predicted conditional quantiles can be directly used to build confidence 
intervals for the prediction. Moreover, quantile regression comes with an established methodology for its evalu-
ation in terms of calibration and sharpness metrics. It’s important to note that there are alternative approaches to 
quantify prediction uncertainty. For instance, bootstrapping of point prediction models is another method (see 
e.g.50, 51). It would be interesting to inverstigate whether bootstrapping-based uncertainty estimation methods 
can be effective for VO2 max prediction task.

Gradient boosting trees are chosen as the backbone of the developed model for its computation efficiency, 
robustness, and interpretability (e.g. a well-developed implementation of Shapley values for tree-based models) 
and its ability to process features of various nature, such as anthropometric data and abstract features character-
izing heart rate response to cadence increase. Another option could be artificial neural networks. They were used 
by a number of methods developed in literature  (see52) for analysis of the laboratory collected data. Potentially, 
they are able to learn relevant features from raw data. However, they could be more susceptible to noise and 
could require more data for training to prevent overfitting. It is interesting to see if they can be used to get a 
better-performing model on free-living data.

The model was trained on a dataset with labels given by wearable devices’ estimates of VO2 max. The accuracy 
of these estimates was assessed by device manufacturers and was reported as 4.7 ml/kg/min for Apple  Watch23, 
Table 2 and 3.5 ml/kg/min for  Garmin24. The developed model shows agreement with those labels with error 
S.D. of 3.9 ml/kg/min, on the test part of the dataset, see Table 5). To compare the model predictions with actual 
VO2 max data, a sample of VO2 max data determined using a treadmill protocol in a laboratory setting was 
collected. Additionally, the history of everyday heart rate and step count was collected for participants of the 
laboratory tests. This allowed to compare the model predictions based on the history of the participants’ data 
with their actual VO2 max values. On this sample, the model showed an error with mean 0.35 and S.D. of 4.98 
ml/kg/min (Table 10).

The developed model has the expected calibration error of 0.032 and sharpness of 3.948 ml/kg/min (see 
Table 4) on the test part of the wearable devices dataset, and expected calibration error of 0.084 and sharpness 
of 4.705 ml/kg/min (see Table 10) on the direct VO2 max dataset. It is shown that the model gives more precise 
predictions to users with a longer history of recorded physical activity and less certain predictions to users with 
shorter history (see Table 7). Specifically, users require over 100 active minutes in their history to achieve predic-
tions with an expected interquartile range under 5 ml/kg/min, 200 min for expected interquartile range of 4.5 
ml/kg/min, and over 1000 active minutes for predictions with an expected range under 4 ml/kg/min.

The developed model is independent from specifics of the data collection device, as it performs similarly on 
samples collected using different devices (Table 8).

The ACSM cardiorespiratory fitness  classification53, Table 4.7, uses percentiles of VO2 max level from the 
Fitness Registry and the Importance of Exercise National  Database54 to classify the cardiorespiratory fitness level 
into six categories: very poor (below the database 20% percentile), poor(20%-40%), fair(40%-60%), good(60%-
80%), excellent(80%-95%), and superior (above the 95% percentile). The average width of each group is 5.4 ml/
kg/min for men and 4.1 ml/kg/min for women, with broader categories for the younger population and nar-
rower categories for the older population. Thus the model sharpness is comparable with the average width of a 
cardiorespiratory fitness category.

Analysis of features impact shows that anthropometric characteristics (gender, age, body mass index) is the 
most influential feature, followed by cadence to heart rate ratio feature, heart rate response feature and MET 
feature (see Table 6). Impact of features on individual prediction is shown in Fig. S4. It shows negative impact of 
age and bmi on predicted VO2 max values, and positive impact of the physical activity level expressed as MET 
feature. A more detailed discussion of feature impact is given in Section Feature impact. Large impact of anthro-
pometric features might be a consequence of the fact that the model was trained on the general population, and 
its accuracy might be lower for more diverse populations with higher VO2 max variance.

The metrics reported for the large dataset with VO2 max values given by wearable device estimates measures 
the model agreement with those estimates that can deviate from the actual VO2 max data. Testing on a small 
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sample of real VO2 max data shows a comparable accuracy, however validation on a larger, more diverse dataset 
with VO2 max data would give a better understanding of the model accuracy.

Limitations
Labels in the dataset used for training have the standard deviation (6.3 ml/kg/min for men and 5.6 ml/kg/min for 
women), which is considerably smaller than the standard deviation in the commonly used reference database  of54 
(11.1 and 9.1 ml/kg/min respectively). Therefore it is expected that the trained model tends to make predictions 
closer to the average, and its uncertainty might be higher in more specific populations like athletes. The model 
was trained and validated on a healthy population, therefore it is expected that for cardiac patients or in other 
situations when the produced heart rate and step count relationship features are not meaningful, the model will 
show large uncertainty like it does in the case of missing measurement history (see Table 7).

The features used in the model are derived from the joint distribution of cadence and heart rate during the 
moments of physical activity. Therefore its predictions might be non-informative for user with a short recorded 
history of everyday activity: as mentioned in the Discussion section, the users need to have at least 200 active 
minutes in their history to obtain predictions with interquartile range of 4.5 ml/kg/min.

While the model’s prediction average interquartile range comprises approximately 10% of the average VO2 
max value for younger population. However, for the older population, this range increases to 20% of their aver-
age VO2 max. As a result, the model’s predictions can become less informative for older individuals. When the 
model’s predicted median VO2 max is used to categorize cardiorespiratory fitness based on ACSM  guidelines53, 
it should be noted that the median’s error standard deviation, estimated as 4.98 ml/kg/min on direct VO2 max 
dataset translates to a range of 10 ml/kg/min (3 MET). This can introduce uncertainty in fitness category assign-
ment. Consequently, if such categorization directs exercise prescriptions, these deviations can result in unsuitable 
recommendations regarding exercise intensity, type, and volume.

The developed model was validated on two datasets - the test part of the wearable devices dataset and the 
direct VO2 max dataset. While the large size of the wearable devices dataset allows a confident estimate of the 
model’s calibration and sharpness against the labels derived from wearable’s estimates of VO2 max, the limited 
size (N=10) of the direct VO2 max dataset makes it difficult to confidently estimate the model performance 
against the laboratory derived VO2 max estimates. The direct VO2 max dataset has further limitations. It only 
contains data from Apple Watch users and its gender ratio is 60% female and 40% male, whereas the wearable 
devices dataset has a 33% female and 67% male ratio.

Directions for future research
An important feature in the developed model describes the heart rate response to cadence increase using the 
coefficients of quantile regression of heart rate on cadence. It is important to understand whether there are 
other, more efficient and robust methods to estimate the shape of the joint distribution of cadence and heart rate 
that provides more efficient features for VO2 max prediction, as these features may allow researchers to obtain 
informative VO2 max estimates with less amount of recorded history of physical activity.

Conclusion
This article describes a model that estimates the user’s cardiorespiratory fitness level based on gender, age, body 
mass index, and a history of heart rate and step count data collected in free-living using wearable devices. The 
model estimates the probability distribution of the VO2 max level by predicting the conditional quantiles. The 
model’s accuracy is similar to the accuracy of estimates made by Apple Watch and Garmin wearable devices 
during separately tracked outdoor walking and running sessions using GPS and distance data. Probabilistic 
prediction of the model allows one to estimate the uncertainty of the prediction, and it is shown that the model’s 
uncertainty decreases when a longer input data history becomes available.

Data availability
The data that support the findings of this study are available from Welltory Inc. but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the corresponding author (A.N.) upon reasonable request and with permission 
of Welltory Inc.
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