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GS‑DeepNet: mastering tokamak 
plasma equilibria with deep neural 
networks and the Grad–Shafranov 
equation
Semin Joung 1,5*, Y.‑C. Ghim 1*, Jaewook Kim 2, Sehyun Kwak 3, Daeho Kwon 4, C. Sung 1, 
D. Kim 1, Hyun‑Seok Kim 2, J. G. Bak 2 & S. W. Yoon 2

The force‑balanced state of magnetically confined plasmas heated up to 100 million degrees Celsius 
must be sustained long enough to achieve a burning‑plasma state, such as in the case of ITER, a 
fusion reactor that promises a net energy gain. This force balance between the Lorentz force and the 
pressure gradient force, known as a plasma equilibrium, can be theoretically portrayed together with 
Maxwell’s equations as plasmas are collections of charged particles. Nevertheless, identifying the 
plasma equilibrium in real time is challenging owing to its free‑boundary and ill‑posed conditions, 
which conventionally involves iterative numerical approach with a certain degree of subjective 
human decisions such as including or excluding certain magnetic measurements to achieve numerical 
convergence on the solution as well as to avoid unphysical solutions. Here, we introduce GS‑DeepNet, 
which learns plasma equilibria through solely unsupervised learning, without using traditional 
numerical algorithms. GS‑DeepNet includes two neural networks and teaches itself. One neural 
network generates a possible candidate of an equilibrium following Maxwell’s equations and is taught 
by the other network satisfying the force balance under the equilibrium. Measurements constrain both 
networks. Our GS‑DeepNet achieves reliable equilibria with uncertainties in contrast with existing 
methods, leading to possible better control of fusion‑grade plasmas.

The ultimate goal of scientific and engineering research in the field of nuclear fusion is to build a power plant 
producing sustainable and clean electricity through fusion reactions from a confined plasma heated up to ~ 100 
million degrees  Celsius1,2. A tokamak is a torus-shape vacuum vessel within which the plasma is confined by 
magnetic fields directed along the long (toroidal) and short (poloidal) ways around the torus. Maintaining such 
a high-temperature plasma for a long period of time (e.g., longer than 400  s3) requires the plasma pressure 
gradient and the Lorentz force to be balanced throughout the plasma  volume4 during operation of a tokamak. 
This means that knowing internal spatial structures of the plasma pressure and the magnetic fields in real-time 
is beneficial for operating tokamak plasmas.

Direct in situ measurements of the plasma structures are often difficult to make owing to the harsh environ-
ment; e.g., environments with high temperature and radiation. Although optics systems that directly measure 
internal information such as the electron temperature and  density5 and magnetic pitch  angle6 exist, these meas-
urements are spatially localized and require a magnetic field structure to be mapped onto the whole plasma 
volume. Hence, a suite of magnetic  diagnostics7, fundamental measurement devices installed behind the plasma-
facing components far from the plasma, is used to obtain the magnetic field structures indirectly by solving the 
Grad–Shafranov (GS)  equation8,9. The GS equation constrained with the measured magnetic fields describes a 
force balanced plasma state conforming to Maxwell’s equations with a toroidal axisymmetry assumption, and 
finding a solution to the GS equation under such constraints is thus regarded as reconstructing the magnetohy-
drodynamic (MHD) equilibrium of a toroidal plasma.

The GS equation, resembling the Hicks  equation10 that describes an axisymmetric inviscid fluid, is a two-
dimensional (poloidal cross-section), nonlinear, elliptic partial differential equation. Owing to the nonlinearity 
of the GS equation, reconstructing the MHD equilibrium consistent with the GS equation traditionally requires 
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an iterative numerical approach as it is both an inverse and a free-boundary problem. Only external measure-
ments of the magnetic fields are typically available, and we do not have a priori knowledge of where the boundary 
separates the vacuum region from the plasma region. These difficulties hinder the real-time application of the 
GS equation. Of course, a simple solution for real-time application is to sacrifice the accuracy of the solution as 
in Ref.11. However, even if accuracy is eschewed, human expert choices are made in reaching numerical conver-
gence. Traditional numerical algorithms of the reconstruction, chiefly  EFIT12, often require subjective decisions 
in the manual selection of magnetic measurements. The neglected data do not participate in reconstructing a 
plasma equilibrium because they tend to obstruct the search for a converging numerical solution.

Attempts have been made to parallelize the traditional numerical algorithms using graphical processing units 
(GPUs)13,14 or a supervised deep neural  network15, which fulfill the real-time demand but still require human 
intervention because they are based on the EFIT algorithm. In contrast, reconstruction methods using Bayesian 
 inference16–18 have been introduced to eliminate (or at least explicitly articulate) manual selections, but they are 
unlikely to be used for real-time purposes owing to their heavy computations. We note that reconstructing more 
detailed plasma equilibria in real time using internal information is an active research  area19,20.

Recent scientific computing has been supported by deep  learning21, and therefore various approaches have 
been proposed for neural networks to learn physics-based differential equations, such as in solving the many-elec-
tron Schrödinger  equation22,23, the Navier–Stokes  equation24 and an atmospheric model for climate  modeling25. 
Other examples include interpolating partial differential  equations26–28 and regularizing neural networks with 
the Kohn − Sham  equations29. These previous works require actual  solutions27,28, prior knowledge on some of 
the unknown  parameters24–26, or approximated solution  states22,23,29 of the target governing equations. Similarly, 
attempts have been made to find a solution to the GS equation using neural  networks26,30, and they work with 
given internal profiles since they are GS equation solvers, i.e., not an equilibrium reconstruction algorithm. 
Additionally, there is a  method31 of using neural networks to solve a Stefan  problem32, which is a free-boundary 
problem and describes a phase-change between liquid and solid states. However, the method assumes that the 
boundary of the phase-change between the states is already known.

We propose an algorithm, Grad–Shafranov Deep Neural Networks (GS-DeepNet), which learns plasma 
equilibria without using existing traditional numerical algorithms that reconstruct the equilibria (i.e., find the 
solution to the GS equation). First and foremost, GS-DeepNet is trained through self-teaching unsupervised 
learning, without any guess of the solutions. The only known information is the GS equation and the externally 
measured magnetic fields, acting as the boundary condition of the differential equation, with no manual selec-
tions. Second, GS-DeepNet uses typical fully-connected neural networks known to be capable of retaining 
real-time application. Finally, GS-DeepNet uses an auxiliary module that detects plasma boundary information 
solely from network outputs. To reach these outcomes, we develop neural networks that are capable of solving a 
nonlinear elliptic partial differential equation under free-boundary and inverse conditions, namely the GS equa-
tion. GS-DeepNet is trained, validated and tested in the Korea Superconducting Tokamak Advanced Research 
(KSTAR)  environment33.

Results
Architecture of GS‑DeepNet
Our novel unsupervised learning algorithm GS-DeepNet, comprising two deep neural networks NN1

� and NN2
θ  

(Fig. 1c) with parameters � and θ , respectively, finds a solution of the GS equation, which is

where �∗ ≡ R ∂
∂R

1
R

∂
∂R + ∂2

∂Z2 is defined as a two-dimensional, elliptic partial differential operator in the tokamak 
machine coordinates (R,φ,Z) with the toroidal axisymmetry  assumption8,9; i.e., ∂

∂φ
= 0 . The first line of Eq. (1) is 

a consequence of ∇ · �B = 0 and ∇ × �B = µ0�J  in an axisymmetric toroidal geometry, where �B and �J  are respec-
tively the magnetic field and current density from Maxwell’s equations. It states that the elliptic differential opera-
tor acting on the poloidal flux function ψ is proportional to the product of the major radius R and the toroidal 
plasma current density Jφ with the permeability µ0 as the constant of proportionality. The second line of Eq. (1) 
can be derived using the force-balanced MHD momentum equation, �J × �B = ∇p , where p is the plasma pres-
sure. The poloidal current function f = RBφ with toroidal magnetic field Bφ is a quantity related to the poloidal 
plasma current. Formally, p and f  are functions of only ψ . Thus, the task of GS-DeepNet is to find ψ(R,Z) in the 
two-dimensional poloidal plane (Fig. 1b) with two free functions p(ψ) and f (ψ) while satisfying the boundary 
conditions set by a given magnetic measurement state that we call a feature. Note that finding ψ(R,Z) together 
with p(ψ) and f (ψ) is what is known as the reconstruction of the MHD equilibrium of a toroidal plasma.

With a single spatial point (R,Z) and a set of magnetic measurements  −→MD =
(

�BMD
R , �BMD

Z , �ψMD
FL

)

 as inputs, 
NN1

� is trained to output a single-valued flux function, ψ = NN1
�

(

R,Z,
−→
MD

)

 . The vector notation ( �BMD
R(Z) or 

�ψMD
FL  ) means a collection of measurements made at different spatial locations in a single time slice (i.e., a feature), 

namely 31 measurements of BMD
R  , 31 of BMD

Z  and 45 of ψMD
FL  , resulting in a total of 107 magnetic measurements. 

Here, BMD
R  and BMD

Z  are respectively the R - and Z-components of the poloidal magnetic field, measured using a 
magnetic pick-up probe (blue dots in Fig. 1a,b). ψMD

FL  is the poloidal magnetic flux measured using a magnetic 
flux loop (red open circles in Fig. 1a or red dots in Fig. 1b). These magnetic pick-up probes and flux loops 
installed at the tokamak boundary constitute a suite of magnetic diagnostics and impose the boundary conditions 
in real time on GS-DeepNet. The magnetic pick-up probes measure the normal ( BMD

n  ) and tangential ( BMD
t  ) 

components of the poloidal magnetic fields with respect to the vacuum vessel wall where the probes are installed, 
and BMD

R  and BMD
Z  are thus calculated using a simple coordinate conversion (see Fig. S1). We specified 41× 41 

(1)�∗ψ = −µ0RJφ = −µ0R
2 dp(ψ)

dψ
− f (ψ)

df (ψ)

dψ
,
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grid points (black dots in Fig. 1b) on the (R,Z) plane (i.e., on a poloidal plane), where NN1
� is trained to output 

the values of ψ . The GS equation constrains only the derivative of ψ , and we must therefore supply proper bound-
ary conditions as discussed in Supplementary Note S1. For this reason, we let NN1

� also accept the (R,Z) positions 

Figure 1.  Self-teaching unsupervised learning scheme of GS-DeepNet. (a) Leftmost: locations and sensor 
numbers of the KSTAR magnetic diagnostics. There are 42 magnetic pick-up probes each measuring BR and 
BZ (blue) and 45 flux loops measuring ψFL (red). The plots of the �BMD

R
 , �BMD

Z
 and �ψMD

FL
 signals show examples of 

measurements made using 31 pick-up probes and 45 flux loops on the poloidal cross-section (R,Z) space as a 
function of time, which we refer to as the feature. Colors represent magnitude of the measurements. (b) Black 
dots: 41× 41 grid points where GS-DeepNet finds a solution. Blue and red dots: positions of the pick-up probes 
and flux loops as in (a). Black line: example of the plasma boundary dividing the plasma region (inside the 
line) from a vacuum area. This boundary is known as the last closed flux surface. (c) Schematic representation 
of GS-DeepNet. The network NN1 (Maxwell Net) takes a spatial position and a feature of the magnetic data 
as its input and outputs a poloidal flux function that is used to calculate BR , BZ and �∗ψ with the automatic 
differential operator Diff A . After determining a plasma boundary using the auxiliary module with the output of 
the Maxwell Net, the network NN2 (Force-Balance Net) takes a poloidal flux function as its input and outputs a 
pair 

(

p′, ff ′) . (d,e) Example of the three-dimensional configurations of the reconstructed �∗ψ (d) and ψ (e) from 
GS-DeepNet. KSTAR poloidal field coils (gray), the vacuum vessel wall (light orange) and the plasma facing 
components (light blue) are also shown as well as the magnetic diagnostics (blue and red dots).
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of the magnetic diagnostics as an input and be trained to provide values of ψ at the tokamak boundary. Thus, 
the solution space is the 41× 41 grid points and the positions of the magnetic diagnostics. Using the automatic 
differential  operator34 ( Diff A in Fig. 1c) and the flux function ψ , BR(= −1/R · ∂ψ/∂Z) , BZ(= 1/R · ∂ψ/∂R) and 
�∗ψ are calculated and used to train the network with the measured boundary conditions. We refer to NN1

� 
together with Diff A as the Maxwell Net.

The output  of  NN1
� ,  ψ  ,  i s  fed into  NN2

θ  ,  which outputs  two f ree  funct ions : 
(

dp/dψ , fdf /dψ
)

≡
(

p′, ff ′) = NN2
θ (ψ) . The input of NN2

θ  is ψ , and the two free functions are thus guaranteed 
to be functions of only ψ . Tokamak plasmas have a well-defined plasma boundary known as the last closed flux 
surface (LCFS, thick black line in Fig. 1b); consequently, outside the LCFS, the toroidal plasma current density 
Jφ is set to be zero based on a common assumption, resulting in  �∗ψout = 0 from Eq. (1), where ψout(in) is the 
flux function ψ outside (inside) the LCFS. Thus, finding 

(

p′, ff ′) consistent with Eq. (1) is relevant only inside 
the LCFS. Unfortunately, the LCFS cannot be identified until ψ ’s in the solution space are known, which is the 
reason why solving the GS equation is a free-boundary problem. We note that there is a recent work to predict 
the future LCFSs in real-time with deep  learning35, and it requires a free-boundary problem solver, e.g., EFIT, to 
identify where the boundary locations are. GS-DeepNet first infers the LCFS on the basis of (BR,BZ ,ψ) in the 
solution space from NN1

� using an auxiliary module for the boundary detection (Fig. 1c) (see “Methods”). NN2
θ  

then outputs 
(

p′, ff ′) using the normalized input ψ if it is inside the LCFS. Note that ψ is normalized to be zero 
at the magnetic axis and 1 at the LCFS according to the boundary detection module. The output 

(

p′, ff ′) is used 
to calculate −µ0R

2p′ − ff ′ , which must be equal to �∗ψin according to the second line of Eq. (1), which is the 
reason why we refer to NN2

θ  as the Force-Balance Net. As mentioned earlier, p(ψ) and f (ψ) are free functions, 
and they thus have large numbers of degrees of freedom. To constrain these free functions (i.e., to train the NN2

θ  
network) such that they convey physical meanings, as they should, we use the fact that µ0R

2p′ + ff ′ = µ0RJφ 
from Eq. (1). More specifically, −µ0R

2p′ − ff ′ , which dictates what the current source Jφ has to be inside the 
LCFS, must be constrained with the given magnetic data −→MD , (i.e., a feature) via a response matrix R calculated 
using the Biot–Savart law (see “Methods”) and the measured total plasma current Iplasma

m  , which is a quantity 
routinely measured using a Rogowski coil in real  time7.

In summarizing how the unsupervised GS-DeepNet works, the Maxwell Net NN1
� with the input of (R,Z,−→MD) 

generates ψ , whose normalized value is the input to the Force-Balance Net NN2
θ  generating 

(

p′, ff ′) . Because �∗ψ 
(from the Maxwell Net) must be equal to −µ0R

2 · p′ − ff ′ (from the Force-Balance Net), GS-DeepNet trains 
itself until the Maxwell Net and Force-Balance Net are consistent with each other while matching the measured 
magnetic signals −→MD at the tokamak boundary using the automatic differential operator for the Maxwell Net and 
the response matrix R for the Force-Balance Net. Of course, we impose that there is no plasma current outside 
the LCFS, where the LCFS is determined by the plasma boundary detection module; thus, the Maxwell Net is also 
trained to give ψout such that �∗ψout = 0 . This constraint brings an ill-posed condition in our problem, which 
is explained in detail in Methods. To resolve such an issue, we train the Force-Balance Net using the concept of 
transfer  learning36 and the singular value decomposition (SVD) technique (see “Methods”) in addition to a usual 
gradient descent algorithm which makes our algorithm novel.

Both the Maxwell Net and Force-Balance Net have multiple fully-connected  layers21 with  dropout37 and swish 
nonlinear activation  functions38. The Maxwell Net has three hidden layers with 100 neurons and a bias for each 
layer, whereas the Force-Balance Net has two hidden layers with 60 and 6 nodes for the first and second layers, 
respectively, without any bias nodes. We used a dropout scheme with a rate of 0.05 and 0.10 for the Maxwell Net 
and Force-Balance Net, respectively, during the training process. The same dropout rates are also used for both 
networks during the test (prediction) phase to obtain the model  uncertainty39. A detailed description on how we 
train GS-DeepNet such as collecting dataset and defining loss functions is provided in “Methods”.

As an example, two-dimensional configurations of �∗ψ and ψ from GS-DeepNet are shown in Fig. 1d and e, 
respectively, with some relevant tokamak structures of KSTAR 33 for this work. Tokamak plasmas are toroidally 
axisymmetric as assumed in the GS equation, and �∗ψ and ψ on a two-dimensional poloidal (R,Z) plane thus 
suffice for us to reconstruct an axisymmetry two-dimensional structure of the MHD equilibrium of a tokamak 
plasma.

Statistical analysis of GS‑DeepNet training: how well GS‑DeepNet teaches itself to solve the 
GS equation
GS-DeepNet is constrained only by the GS equation given as Eq. (1), which is formulated as the loss functions 
l1 and  l2 (see “Methods”) as in Eqs. (6) and (7) for the Maxwell Net NN1

� and Force-Balance Net NN2
θ  , respec-

tively, and by the measured magnetic signals as the boundary conditions. Therefore, we first evaluate the training 
performance; i.e., we evaluate how well GS-DeepNet has learned to solve the GS equation with the boundary 
conditions. This is important because GS-DeepNet does not rely on existing traditional numerical algorithms 
that solve the GS equation. Figure 2 summarizes the statistical results of the training performance.

Figure 2a–c shows the performance of the Maxwell Net in outputting values of ψ and their corresponding 
(BR,BZ ,ψ)|MD calculated by the automatic differential  operator34 according to the boundary conditions, which 
are magnetic measurements −→MD =

(

�BMD
R , �BMD

Z , �ψMD
FL

)

 . Taking a single feature as an example, the left panels in 
Fig. 2a–c compare the GS-DeepNet results (cyan line: average; cyan dashed line: 1 − σ uncertainty) and magnetic 
measurements (red dots) for BR (Fig. 2a), BZ (Fig. 2b) and ψFL (Fig. 2c). Note that the 1 − σ uncertainty of the 
network is obtained using the Monte Carlo (MC) dropout  method39. The right panels in Fig. 2a–c show histo-
grams (color coded), generated using all training data sets, comparing GS-DeepNet results (abscissa) and meas-
urements (ordinate) with the y = x red dashed line. We also provide values of the coefficient of determination 
R2 for BR , BZ and ψFL , all of which are close to unity, indicating that the Maxwell Net has been trained well to be 
consistent with the measured boundary conditions.
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We mention that KSTAR has 42 magnetic pick-up probes for measuring both BR and BZ at the toroidal loca-
tion that we are considering and 45 flux loops for measuring ψFL , as shown by the probe and loop indices on 
the horizontal axes of Fig. 2a–c. Among them, we used 31 magnetic pick-up probes because the others were 
impaired and simply output null values; thus, there are 31 red dots, instead of 42, in Fig. 2a and b. For the sig-
nals from the 45 flux loops, we devised an algorithm using a separate neural network that examines whether 
the measurements of �ψMD

FL  are consistent with the measurements made by the magnetic pick-up probes and, if 
necessary, corrects the flux-loop measurements in real  time40; thus, we are able to use 45 measurements for ψFL 
as in Fig. 2c. Note that such real-time corrections are necessary because a number of the magnetic measurements 
are sometimes impaired as the pick-up probes and flux loops are susceptible to  damage41,42. One advantage of 
our GS-DeepNet over traditional numerical algorithms solving the GS equation is that GS-DeepNet allows us 
to use every magnetic measurement except those that are fully out of order. On the other hand, traditional ones 
require human selection of the measurements, which introduces human subjectivity, even among seemingly 
good measurements to guarantee numerical convergence, i.e., minimizing a chi-square  estimation12, and to 
avoid obtaining unphysical plasma equilibria. Moreover, if there are flawed magnetic pick-up probes among the 
31 selected probes, GS-DeepNet can incorporate an existing real-time imputation  scheme41 based on Bayesian 
 inference43 and a Gaussian  process44.

To examine the training performance of the Force-Balance Net, we first compare an algebraic combination 
of the output, namely −µ0R

2p′ − ff ′ , with �∗ψ obtained from the Maxwell Net. As dictated by the GS equation 
given in Eq. (1), GS-DeepNet must satisfy �∗ψ = −µ0R

2p′ − ff ′ if it is well trained. Figure 2d is a histogram 
(color coded) generated using whole training data sets, which compares results from the Force-Balance Net 

Figure 2.  Statistical evaluation of GS-DeepNet training. (a–c) Left: profiles of (a) BR , (b) BZ and (c) ψ from 
the Maxwell Net (cyan) and their corresponding measurements (red) as a function of the sensor number. Cyan 
dashed lines represent 1 − σ uncertainties of the network estimated from the MC dropout. Right: training 
statistics of the Maxwell Net, where the abscissa is the network’s output and the ordinate is the measurement 
for (a) BR , (b) BZ and (c) ψ . The blue gradient indicates the number of occurrences and the red dashed lines are 
the y = x lines. The coefficients of determination R2 are also given. (d) Training statistics of the Maxwell Net 
(abscissa) and the Force-Balance Net (ordinate). The blue gradient indicates the number of occurrences and the 
red dashed line is the y = x line. The coefficient of determination R2 is also given. (e) Comparisons between BR , 
BZ and ψ (cyan crosses) calculated using the response matrix R together with the output of the Force-Balance 
Net and the measurements (red circles) and (f) their relative errors indicated by the blue bars. In (e,f), shadings 
indicate different types of measurement; i.e., BR (yellow), BZ (white) and ψ (gray).
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(ordinate) and the Maxwell Net (abscissa) with the y = x red dashed line. We see that the coefficient of deter-
mination R2 is close to unity, indicating that GS-DeepNet has taught itself well to solve the GS equation.

Being free functions, p′(ψ) and ff ′(ψ) must not only obey the GS equation as demonstrated in Fig. 2d but 
also comply with the magnetic measurements. Otherwise, these two free functions would have too much free-
dom to be applicable for tokamak operations. Figure 2e–f shows how these free functions are consistent with the 
magnetic measurements by comparing the Force-Balance Net results R�J  with the given magnetic data −→MD , with 
the background colors of yellow, white and gray indicating BR , BZ and ψ , respectively. Here, R is the response 
matrix, and �J  is the current source containing toroidal current densities of plasma, and currents flowing through 
the external coils and the vacuum vessel (see “Methods”).

Physical parameters learned by GS‑DeepNet
We confirm that with high degrees of precision GS-DeepNet learns the GS equation by itself with the measure-
ment constraints as the boundary conditions, and therefore we present the physical parameters that GS-DeepNet 
obtains—the poloidal flux function ψ , plasma pressure p and poloidal current function f—to demonstrate the 
real-time applicability of GS-DeepNet to tokamak operations.

Tokamak plasmas are generally categorized as limited and diverted  plasmas45. These two types of plasma 
have fundamentally different magnetic topologies in that a limited plasma has its boundary touching a solid 
wall (Fig. 3a,b, top row), whereas a diverted plasma has one (or more) magnetic X-point(s) (i.e., null point(s) of 
poloidal magnetic fields) and only the legs extend to the divertors (Fig. 3a,b, bottom row). As shown in Fig. 3a,b, 
these two types of tokamak plasma are well reconstructed by GS-DeepNet in accordance with the measure-
ments. Here, with example features randomly selected from KSTAR discharges, Fig. 3a shows the poloidal flux 
function ψ , which is the most important quantity with which to control the plasmas, and their corresponding 
�∗ψ , which dictates the toroidal current density, is shown in Fig. 3b. Because there are absolutely no means 
by which to determine an equilibrium in tokamaks directly, Fig. 3a compares the contours of constant ψ from 
an existing numerical algorithm EFIT (gray dashed lines) with those from GS-DeepNet (colored lines). Not 
only do the contours match well but also the plasma boundary (red dashed line) coincides with that from EFIT 
(black dashed line). We cannot argue whether or not the contours of ψ from EFIT is true representation of the 
plasma equilibrium because EFIT solves the ill-posed GS equation. Nevertheless, EFIT is a reasonable target 
for comparison because it has been widely used in the field of nuclear fusion. Figure 3a,b also shows the model 
uncertainties obtained using the MC dropout  method39.

For a complete statistical comparison, we estimated and compared histograms of several plasma parameters 
widely used in plasma control, namely the major radius R0 ( R at the magnetic axis of an equilibrium), elongation 
κ (the ratio of vertical to horizontal sizes of a plasma), minor radius a (the half distance between the innermost 
and outermost R positions of a plasma) and triangularity δ (a shaping parameter) (see Fig. S5g in Supplementary 
Note S2). Histograms for EFIT and GS-DeepNet are shown in Fig. 3c together with the differences between them 
calculated as ǫrel,x = 100×

(

xEFIT − xNN
)

/xEFIT , where xEFIT and xNN take one of the plasma parameters from 
EFIT and GS-DeepNet, respectively. Although the estimations are similar between the two, noticeable differences 
can be seen in that the only EFIT results have the bimodal histograms for R0 and κ . Whether such results are real 
phenomena or not cannot be identified at this point since we find that there exist at least 5 to 10 mm uncertainties 
in EFIT for R0 and the boundary estimations, which are associated with selecting slightly (about 10%) different 
combinations of working magnetic pick-up coils (similar to the human subjectivity discussed earlier) as well as 
a finite spatial resolution the EFIT has, i.e., radial resolution of approximately 10 mm. We note that GS-DeepNet 
gets a position of ( R,Z ) as its input, meaning that GS-DeepNet can have a higher spatial resolution around the 
magnetic axis, X-point(s) and the boundary.

While one may argue that the availability of a real-time map of ψ(R,Z) from the Maxwell Net of GS-DeepNet 
suffices for the purpose of tokamak operation, we further examine a radial profile of the plasma pressure because 
it is a part of the Force-Balance Net that is essential for training GS-DeepNet. Comparing the plasma pressure 
from GS-DeepNet with a measurement is not trivial as tokamak plasmas consist of electrons, main ions (usually 
isotopes of hydrogen), fast ions and trace amounts of impurity ions, such as carbon and nitrogen ions. In most 
cases, we can ignore the pressure contributions from the impurity ions because their densities are much lower 
than the density of the main ions. Thus, denoting the density and temperature by n and T with a subscript e, i and 
F for the electron, main ion and fast ion, respectively, we have the total pressure p = nekBTe + nikBTi + nFkBTF 
with the Boltzmann constant kB . During tokamak operation, plasmas can be heated by their own currents with 
finite electrical  resistivity46 and by injecting external electromagnetic  waves47 resonating with either electrons 
or ions. There is also a neutral beam  injection48 that heats the plasmas, which is a main source of fast ions in 
present tokamaks. Unfortunately, there is no method of measuring a radial pressure profile of fast ions in KSTAR; 
therefore, we need to select plasmas that have no fast ions (i.e., no neutral beam injections) to make the pressure 
comparisons with the measurements. This means that we cannot measure the pressure of main ions either because 
the temperature of main ions is inferred by the Charge Exchange Spectroscopy  system49, which requires a neutral 
beam injection. Thus, the only available pressure measurement is that for the electrons using the Thomson scat-
tering  system5,50, which provides ne and Te , separately. Therefore, as has been done for other  tokamaks51–53, we 
simply set the measured total plasma pressure to be p = 2nekBTe for ohmic discharges.

Figure 3d shows a radial profile of the measured pressure as p = 2nekBTe (black dots) from the KSTAR 
Thomson scattering  system50 for an ohmic discharge, The red line denoted as pGP is obtained by performing a 
non-parametric Gaussian process  regression44 on the measurements. The pressure profile from GS-DeepNet, 
denoted as pNN , is shown as the blue line. A comparison reveals that the pressure profile from GS-DeepNet agrees 
well with the measurements within their uncertainties. Note that uncertainties in pGP are obtained through the 
Gaussian process regression with the measurement uncertainties whereas those in pNN are estimated via the 
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MC dropout  method39 without relying on the measurement uncertainties. Thus, the uncertainties in pNN such 
as smaller uncertainties in the core compared to those in the edge require careful interpretations. This will be 
addressed as a future work with the extended GS-DeepNet proposed in Supplementary Note S3.

Another output of the Force-Balance Net is ff ′ , where f = RBφ is the poloidal current function with the 
toroidal magnetic field Bφ . We examine this quantity with measured local magnetic pitch angles via the motional 
Stark effect (MSE) diagnostic  system6. The MSE system in KSTAR 54 measures the pitch angle γ at 25 different 
radial positions as tanγ ∼= A1BZ/(A2Bφ + A3BR) , where the coefficients A1 , A2 and A3 are fixed by the 

Figure 3.  Equilibrium prediction using the trained GS-DeepNet. (a) First column: example of limited (top) 
and diverted (bottom) plasma equilibria ψ(R,Z) produced by the Maxwell Net (colored lines) compared with 
the equilibria from EFIT (gray dashed lines). The red and black dashed lines represent the plasma boundaries 
from the Maxwell Net and EFIT, respectively. Second column: uncertainty maps of the Maxwell Net’s ψ(R,Z) . 
The red dashed lines indicate the last closed flux surface. (b) Same as in (a) for �∗ψ from the Maxwell Net. (c) 
Histograms of the various plasma parameters ( R0 , κ , a and δ ) from GS-DeepNet (blue) and the EFIT (red) and 
their relative errors ǫrel . (d) Comparisons of the profile of plasma pressure from the Force-Balance Net (blue) 
and the measurements (black) based on p = 2nekBTe . The red line is obtained vis the Gaussian process from 
the measurements. Blue and red highlighted regions indicate the 1 − σ uncertainty from the Force-Balance Net 
and Gaussian process, respectively. (e) Left: comparison of the profile of the calculated magnetic pitch angle, 
tanγ , from the Force-Balance Net (blue) and the measurements (red). Right: histogram of the root-mean-square 
difference in tanγ between the Force-Balance Net and measurements.
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geometrical configuration of the system. Note that the MSE system requires a neutral beam injection, and because 
the pitch angle is a field quantity rather than a species quantity, we do not have to restrict ourselves only to ohmic 
discharges, which was the case for the pressure comparisons. Together with the output of the Maxwell Net, ψ , 
where we obtain BR(= −1/R · ∂ψ/∂Z) and BZ(= 1/R · ∂ψ/∂R) , tanγ can be calculated with the output of the 
Force-Balance Net. Figure 3e compares a radial profile of tanγ , where the red dots indicate the measurements 
and the blue line is the result from GS-DeepNet. The agreement is excellent, and we calculated the histogram of 
the root-mean-square error (RMSE) of tanγ as 

{

∑n
i=1

(

tanγNN
i − tanγm

i

)2
/n

}0.5
 using 50 KSTAR discharges. 

Here, the subscript i  denotes a channel index for 25 channels (i.e., n = 25 ), and the superscripts NN  and m 
indicate values from GS-DeepNet and the measurements, respectively. As a guide for the RMSE magnitude, we 
note that the RMSE is 0.024 in Fig. 3e.

Discussion
We showed that solving a two-dimensional, second-order, nonlinear, elliptic partial differential equation from 
scratch (i.e., tabula rasa) is possible with the proposed structure of an unsupervised neural network scheme. The 
differential equation that we solved, the GS equation, provides the most fundamental information with which 
to control tokamak plasmas in harnessing electricity via nuclear fusion reactions. The developed network, GS-
DeepNet, comprises the Maxwell Net and Force-Balance Net and outputs the poloidal flux function ψ , pressure 
gradient dpdψ  , and a quantity related to the poloidal current f df

dψ  in the two-dimensional poloidal plane (R,Z) 
consistent with the GS equation and the magnetic boundary conditions measured far from the solution space. 
The problem that we have solved is an ill-posed and free-boundary problem that is solved by invoking the con-
cept of transfer learning and the singular value decomposition technique for the ill-posedness aspect and by 
introducing the auxiliary boundary detection module for the free-boundary aspect. Because many (if not all) 
physical phenomena are expressed in a form of differential equations, our work can shed light on constructing a 
neural network in other engineering and science fields to solve their problems starting from scratch. For instance, 
previous work on solving complex physical systems such as those of quantum  mechanics22,23,29, fluid  dynamics24 
and high-energy  physics55 may be advanced using our proposed methodologies.

Being specific to the field of nuclear fusion, GS-DeepNet is also confirmed to be capable of generating reli-
able magnetic equilibria when its results are compared with the results obtained from a traditional numerical 
algorithm, specifically EFIT. This means that GS-DeepNet can be used together with a conventional real-time 
EFIT algorithm to support or sometimes to rebuke real-time EFIT results because one of the advantages that 
GS-DeepNet has is its flexible and adjustable spatial resolution. For instance, higher spatial resolution around the 
magnetic axis or near the magnetic X-point(s) can be achieved with GS-DeepNet since an ( R,Z ) position is a part 
of its input. Therefore, using GS-DeepNet together with a real-time EFIT, we anticipate that tokamak performance 
will be enhanced, supporting the realization of economical nuclear fusion reactors. Note that GS-DeepNet takes 
less than 1 ms to estimate full two-dimensional flux surface on 41 × 41 grids using a single GPU (RTX A4000).

As a final remark, we briefly mention how GS-DeepNet can be further extended. If we know the two free func-
tions p(ψ) and f (ψ) , then Eq. (1) is a closed system for ψ(R,Z) . There thus exist advanced numerical algorithms, 
such as a kinetic-EFIT56, that consider the inferred p(ψ) and f (ψ) based on measurements in reconstructing the 
MHD equilibrium. Radial profiles of the pressure are typically measured using a Thomson scattering  system5 
for electron density and temperature, whereas the ion temperature is inferred using a charge exchange  system49. 
The poloidal current function f (ψ) is inferred from a profile of the local magnetic pitch angle, which can be 
measured using an MSE  system6. Although there have been attempts to obtain p(ψ) and f (ψ) in real  time57, 
these profiles are not typically available during tokamak operation. Furthermore, many of the mid- to large-scale 
tokamak operations contain another type of ion, namely fast ions. In some tokamak scenarios, the contribution 
of fast ions to the pressure is not  negligible58, and profiles of the fast ions are not available in real time nowadays. 
Therefore, we do not have p(ψ) and f (ψ) in real time at the moment. Note that the kinetic-EFIT does not work 
in real time. Nevertheless, because we foresee that these profiles may become available in real time in the future, 
we propose an extended GS-DeepNet to accommodate such profiles. In training the Force-Balance Net with the 
measured p(ψ) and f (ψ) available in real time to output dpdψ  and f df

dψ  , we can add an auto-encoder as further 
elaborated in Supplementary Note S3.

Methods
Response matrix R
Let us discuss the response matrix R in more detail because it may not be trivial. The Biot–Savart law allows us 
to calculate at an arbitrary spatial position the magnetic field generated using a constant electric current at a fixed 
location. Owing to its linearity, the magnetic field generated at a certain position by plasmas can be calculated by 
modeling the total toroidal plasma current as the sum of many toroidal current filaments with small rectangular 
cross-sections18,59 in a tokamak. For instance, a toroidal plasma current Jφ at a single R − Z grid position (a black 
dot in Fig. 1b) has a well-defined rectangular cross-section set by the distance between neighboring grid points 
with a toroidal length of 2πR (see Fig. S2) and a fixed position. We thus pre-calculate the contribution of a single 
toroidal current filament Jφ generating a magnetic field at a measurement position as Rij , where the subscripts i 
and j indicate a magnetic sensor and a toroidal current filament dictating the measurement and source positions, 
respectively. We calculate a component of the magnetic field at the location of the ith magnetic sensor due to the 
total toroidal plasma current as 

∑

j RijJφ,j , where j runs from 1 to 1681 for the 41× 41 grid points.
We have a total of 107 magnetic measurements, and the contribution due to plasmas can thus be formulated 

as a 107 (rows) by 1681 (columns) matrix Rp . Because we do not know where the LCFS is in advance, we prepare 
the matrix to cover all 41× 41 grid points. Once the LCFS is inferred through the plasma boundary detection 



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15799  | https://doi.org/10.1038/s41598-023-42991-5

www.nature.com/scientificreports/

module, we reduce the size of Rp to 107 (rows) by Nin (columns), where Nin is the number of the grid points 
inside the LCFS, and we denote the reduced matrix as Rp,in . Therefore, with �Jφ ≡ {Jφ} , (i.e., a column vector of  
Nin by 1 containing the filaments of toroidal plasma current densities), Rp,in�Jφ provides a column vector with 
the magnitudes of magnetic fields at the 107 magnetic measurement positions due to the total plasma current. 
Because a tokamak has external current-carrying coils generating magnetic fields that confine hot plasmas (see 
Fig. 1d,e), we must also include such current sources that affect the magnetic fields at the measurement posi-
tions. At KSTAR 33, a tokamak at which GS-DeepNet is trained, which is validated and tested for this work, 14 
poloidal field coils and 16 bundles of two conductors are in four segments for the in-vessel coils where toroidal 
currents flow. The response matrix for these external coils, denoted as Rext , is prepared with dimensions of 107 
(rows) by 14 + 16 (columns), and the corresponding magnitudes of the currents �Jext are known because they are 
set using the controls of the tokamak. The other current source is the induced toroidal eddy currents flowing 
through the vacuum vessel that may not be  negligible60, and this source is modeled with 18 current-carrying 
segments, following a previous approach used for KSTAR 61. We thus have a 107 (rows) by 18 (columns) matrix 
RVV that contains the contribution of the eddy currents �JVV flowing through the vacuum vessel. Obviously, �JVV is 
a column vector with dimensions of 18 by 1, and the vector is  inferred62 in the unsupervised training procedure. 
The network NN2

θ  must then comply with the condition −→MD = R�J  , where the response matrix R is defined as 
[Rp,in

...Rext

...RVV ] with dimensions of 107 (rows) by Nin + (14+ 16)+ 18 (columns) and the column vector 
current source �J  is defined as 

[�Jφ , �Jext , �JVV
]

 with dimensions of Nin + (14+ 16)+ 18 by 1.
Figure S2 shows the three-dimensional structure of a toroidal current filament with a rectangular cross sec-

tion for modeling the plasma current density, external coil currents and vessel currents. Using this model, we 
estimate a matrix component of the response matrix Rij with the  equations63

and

Here, R(BR)
ij  , R(BZ )

ij  and R(ψFL)
ij  denote the components for BR , BZ and ψFL , respectively. The subscript j identi-

fies a current source (point P in Fig. S2), whereas i  indicates a magnetic sensor (point Q in Fig. S2). Thus, 
(

Rj,1,Rj,2,Zj,1,Zj,2
)

 denotes the four vertices of the rectangular cross-section for the j th current source, whereas 
(Ri ,Zi) is the spatial position of the i th magnetic sensor; i.e., a magnetic pick-up probe or flux loop. Note that 
we designate 1 ≤ i ≤ 31 , 32 ≤ i ≤ 62 and 63 ≤ i ≤ 107 for 31 values of BR , 31 values of BZ and 45 values of ψFL , 
respectively, resulting in a total of 107 values to be compared with the measured magnetic fields. We have 
1 ≤ j ≤ 412(= 1681) values for Rp , 1 ≤ j ≤ 30(= 14+ 16) values for Rext and 1 ≤ j ≤ 18 values for RVV . K(k) 
and E(k) are the complete elliptic integrals of the first and the second kinds, respectively, with the elliptic modulus 
k = 4RRi

(R+Ri)
2+(Zi−Z)2

:

How to train GS‑DeepNet
To demonstrate the performance of the proposed architecture of GS-DeepNet, we randomly collected 50 experi-
mental plasma discharges of KSTAR from 2019 campaign including a limited number of the ohmic phase and 
reasonable number of the L-mode and H-mode phases, where each discharge lasted a few tens of seconds. Supple-
mentary Note S2 describes a typical KSTAR plasma discharge. From these discharges, we have obtained magnetic 
data at every 0.1 s starting approximately from 0.8 s of the discharge time from each discharge, resulting in ∼ 104 
time slices (features) including ramp-up and flat-top phases but no ramp-down phases. With approximately 
2× 103 spatial positions ( 41× 41+ 107 positions exactly) we gathered approximately 2× 107

(

= 2× 103 × 104
)

 
datasets, of which 80%, 5% and 15% were used as training, validation and test datasets, respectively. The training 
of GS-DeepNet via  TensorFlow64 continued until it was terminated using the early stopping method (a regulariza-
tion method that preserves generalization for unseen features)65, which took approximately 1 day with one GPU 
worker and 20 CPU cores using a mini-batch scheme. The total mini-batch size was approximately 8000 , which 
is 80% of ∼ 104 features. We note that measurement noise and signals drifts in the magnetic signals −→MD were 
compensated adopting a boxcar average scheme and the Bayesian-based drift mitigation  method15, respectively. 
The boxcar average uses a time window of 1 ms as the sampling frequency of the measurements is 10 kHz, and 
the equilibrium to control the plasmas is typically updated every ~ 10 ms in KSTAR.

Training GS-DeepNet starts by initializing both NN1
� (Maxwell Net) and NN2

θ  (Force-Balance Net) with 
random parameters of �0 and θ0 , respectively, adopting the Glorot (or Xavier)  initialization66 scheme. At each 
iteration k ≥ 1 , we select a random and unseen feature t  from the total of ∼ 8000 features, resulting in a batch 

(2)R
(BR)
ij =

µ0

2π

∫ Zj,2

Zj,1

∫ Rj,2

Rj,1

dRdZ
Zi − Z

Ri

√

k

4RRi

[
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R2 + R2
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E(k)

]

,

(3)R
(BZ )
ij =

µ0

2π
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(ψFL)
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size of 412 + 107 = 1788 corresponding to the 41× 41 grid points and the 107 different locations of the magnetic 
measurements. The solution ψ t = NN1

�k−1

(

R,Z,
−→
MD

t)

 is then generated at all 1788 spatial positions, and with 
the automatic differential operator Diff A , 1788 sets of 

(

ψ ,BR,BZ ,�
∗ψ

)

t
 are prepared. After an LCFS is inferred 

using the plasma boundary detection module, 
(

p′, ff ′)
t
= NN2

θk−1

(

ψ t
in

)

 is generated at all the positions inside 
the LCFS, giving us Nin sets of 

(

p′, ff ′,−µ0R
2p′ − ff ′, �Jφ

)

t
 . As a reminder, Nin is the number of the grid points 

inside the LCFS. To train GS-DeepNet, we need �J  , which is 
[�Jφ , �Jext , �JVV

]

 ; thus, we also prepare �Jext , which can 
be simply read from the tokamak controls, and �JVV , which is determined through singular value decomposition 
(SVD) during the training of the Force-Balance Net. At every iteration with a randomly selected feature t  , we 
update the networks’ parameters � and θ using the two loss functions l1 and l2 , respectively. Following a mini-
batch training scheme, one epoch is completed when GS-DeepNet sees a total of ∼ 8000 features, corresponding 
to ∼ 8000 iterations for one epoch.

We use a stochastic gradient descent algorithm to train the parameters � and θ by means of loss functions and 
the SVD technique for θ as well as �J  . The Maxwell Net, NN1

� together with Diff A , is trained to output an absolute 
value (i.e., unnormalized value) of ψ such that it satisfies the boundary conditions as well as the force-balanced 
equilibrium. This is formulated as the loss function l1:

where the angle brackets 〈〉N denote an averaging operator with the subscript N denoting the number of elements 
for the average. (BR,BZ ,ψ)|MD denotes the calculated BR ,BZ from Diff A and ψ (output of NN1

� ) at the locations 
of the magnetic diagnostics with NMD = 107 ; thus, the first term forces the Maxwell Net to comply with the 
measured boundary conditions −→MD . The second term ensures consistency between the Maxwell Net and Force-
Balance Net inside the LCFS, where �∗ψin is the estimate from the Maxwell Net and µ0R

2p′ + ff ′ that from 
the Force-Balance Net. The third term ensures that there is no toroidal plasma current outside the LCFS; i.e., 
�∗ψout = 0 . The last term, c1‖�‖2 , is the L2 regularization (sum of squares) on the weights with the coefficient 
c1 = 10−3 , and it avoids overfitting together with the early stopping  method65.

The Force-Balance Net, NN2
θ
 , is trained to output 

(

p′, ff ′) with an input ψ from the Maxwell Net after normal-
izing ψ such that its value becomes 0 and 1 at the magnetic axis and boundary, respectively. The loss function l2  
for the Force-Balance Net is constructed as

The first term specifies the network to be consistent with the measured boundary conditions −→MD because the 
response matrix R associates the current source �J  , which is a function of the network’s output 

(

p′, ff ′) , with −→MD . 
The second term dictates that the sum of filaments of the toroidal current density inside the LCFS calculated 
by the network, which is α∗�Nin

i=1

(

Ripi
′ + ff i

′/Riµ0

)

 with the area of the rectangular cross-section α divided by 
106 ( α∗ ≡ α/106 ), must be equal to the measured total plasma current Iplasma

m  in units of megaamperes, which 
is the reason why we have a factor of 106 for α∗ . To regularize the weights connecting the last hidden layer and 
the output layer, we have the L1 regularization (sum of absolute values), c2‖θ‖1 , with the coefficient c2 = 10−2 
for p′ and 10−3 for ff ′ . In resolving the ill-posedness of our system, training the Force-Balance Net becomes 
complex as we use the concept of transfer  learning36 and the SVD technique in addition to a usual gradient 
descent algorithm, which makes our algorithm novel; thus, we provide a detailed explanation of our algorithm 
in ‘Optimizing the Force-Balance Net’ in Methods.

Optimizing the Force‑Balance Net
As mentioned in the main text, the Force-Balance Net accepts a value of ψ as the input from the Maxwell Net and 
outputs ( p′, ff ′ ). The Force-Balance Net has two fully connected hidden layers, with the first and second layers 
having 60 and 6 nodes, respectively, without any bias nodes. A neural network can sensibly reproduce any form 
of a profile, similar to the case for Gaussian processes, as long as the network has a sufficient number of degrees 
of  freedom67. We find empirically that our choice of the numbers of hidden layers and nodes has enough degrees 
of freedom to describe the experimentally measured profiles of p′ and ff ′.

Optimizing the Force-Balance Net comes down to a problem of minimizing the loss function l2 (Eq. (7)), 
whose role is to reveal the most probable representations of �J =

[�Jφ , �Jext , �JVV
]

 that explain the given magnetic 
data −→MD and the measured total plasma current Iplasma

m  with consideration of the L1 regularization, where �Jφ 
is determined by an algebraic combination of �p′ and �ff ′ . As a reminder, �Jφ is the collection of filaments of the 
toroidal plasma currents, whereas �Jext and �JVV are the currents flowing through the external magnetic field coils 
and the eddy currents flowing through the vacuum vessel, respectively. This optimization process is generally 
subject to an ill-posed condition because the number of unknown quantities to be determined (i.e., �p′ , �ff ′ and 
�JVV ) is considerably larger than the number of the given measurements (i.e., −→MD and Iplasma

m  ). Note that we have 
reasonably good information on �Jext because it is a control parameter. Consequently, optimizing the Force-
Balance Net using only a gradient descent algorithm often leads the to-be-determined current density �J  to be 
stuck in extremely unphysical solution spaces where very small plasma currents of the order of a few amperes 
throughout the plasma region are predicted while a small number of segments of eddy current on the vacuum 
vessel attempt to explain the entire set of measurements. This is likely to have at least two reasons. First, there are 
many nuisance local minima owing to the ill-posed condition. Second, constraints on the eddy current �JVV are 

(6)

l1 = �
{

(BR ,BZ ,ψ)|MD −−→
MD

}2
�
NMD

+ �
(

�∗ψin + µ0R
2p′ + ff ′)2�

Nin
+ �

(

�∗ψout

)2�
41×41−Nin

+ c1���2,

(7)l2 =
(

R�J −−→
MD

)2
+

{

α∗
Nin
∑

i=1

(

Ripi
′ +

ff i
′

Riµ0

)

− I
plasma
m

}2

+ c2�θ�1.
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very weak. Therefore, we relax the ill-posed condition by recasting the loss function l2 into a matrix multiplica-
tion form and then optimize the source current �J =

[�Jφ , �Jext , �JVV
]

 by updating the weights of direct connections 
to the output nodes using the SVD technique, while all other weights up to the last hidden layer are determined 
using a gradient descent algorithm through transfer  learning36.

Figure S3a shows the matrix form of the loss function l2 . We introduce a clever representation for the plasma 
current density �Jφ and its associated response matrix Rp,in to loosen the ill-posed condition, while �Jext and �JVV 
and their associated response matrices Rext and RVV are expressed as they are (the red part in Fig. S3a). Note 
that we borrow the idea of the matrix representation from the EFIT  algorithm12. These quantities regulate the 
first term of the loss function l2 as we wish to minimize 

(

R�J −−→
MD

)2
 . Basically, we reform the plasma contribu-

tions, namely Rp,in�Jφ and α∗�Nin
i=1

(

Ripi
′ + ff i

′/Riµ0

)

 , in terms of the network’s weight-wise form as Rp,in
¯̄h
⋆
�v�Jφ 

and �α∗ ¯̄h
⋆
�v�Jφ (see the red part in Fig. S3a), respectively, with ¯̄h

⋆
�v�Jφ = �Jφ (see Fig. S3b), where ¯̄h

⋆
 and �v�Jφ are 

explained below. Let us suppose that we want to estimate a plasma current density Jφ,i at the ith grid position 
inside the LCFS with an output of the Force-Balance Net (pi ′, ffi ′) . We know that Jφ,i = Ripi

′ + ffi
′/Riµ0 from 

Eq. (1), and pi ′ = �hi�vp′ and ff i
′ = �hi�vff ′ from the network’s structure with the node values at the last hidden layer 

�hi (dimensions of 1× 6 ) and the weights assigned to the output from the last hidden layer �vp′ (dimensions of 
6× 1 ) and �vff ′ (dimensions of 6× 1 ) for the output nodes p′ and ff ′ , respectively. We thus rewrite Jφ,i in the 
weight-wise form as Jφ,i = Ri�hi�vp′ + 1

Riµ0
�hi�vff ′ . This weight-wise representation can be extended to all grid 

positions inside the LCFS as �p′ = ¯̄h�vp′ and �ff ′ = ¯̄h�vff ′ with the matrix form of the hidden node values ¯̄h (dimen-
sions of Nin × 6 ). Let us define two constant matrices containing Ri and 1

Riµ0
 as C

p′

 and C
ff ′

 such that 
C
p′

=
[

C
p′

ij

]

= Ri and C
ff ′

=
[

C
ff ′

ij

]

= 1
Riµ0

 , whose dimensions are Nin × 6 each. We then have �Jφ = ¯̄h
⋆
�v�Jφ , where 

¯̄h
⋆
 is a concatenated (or augmented) matrix 

[

C
p′
⊙ ¯̄h

... C
ff ′

⊙ ¯̄h

]

 (dimensions of Nin × 12 ) with the Hadamard 

product (⊙) , and �v�Jφ = [�vp′ , �vff ′ ] (dimensions of 12× 1 ) (see Fig. S3b). We can thus change Rp,in�Jφ into Rp,in
¯̄h
⋆
�v�Jφ , 

which is what we have in Fig. S3a. Similarly, a predicted total plasma current α∗�Nin
i=1

(

Ripi
′ + ff i

′/Riµ0

)

 can be 
represented as �α∗ ¯̄h

⋆
�v�Jφ using a row vector �α∗ = [α∗, · · · ,α∗] with dimensions of 1× Nin , and it plays a role as 

the second term in the loss function l2 ; i.e., minimizing 
{

α∗�Nin
i=1

(

Ripi
′ + ff i

′/Riµ0

)

− I
plasma
m

}2
 . The key ration-

ale behind reformulating �Jφ in the weight-wise form is that instead of letting the measured −→MD and Iplasma
m  be 

explained by �Jφ itself, which is the main cause of the ill-posed condition because �Jφ occupies the majority of �J  , 
we design the given measurements to be described by �v�Jφ , which drastically reduces the number of unknown 
parameters and thus relaxes the ill-posed condition.

The third term in the loss function  l2 is the L1 regularization, and its purpose is to prevent the network’s 
output from being unnecessarily complex; i.e., preventing the overfitting problem. This regularization can be 
embedded in the matrix form; i.e., forcing c2I�v�Jφ to be as small as possible (see the blue part in Fig. S3a), where 
the identity matrix I  has dimensions of 12× 12 . c2 is constant, and we set it at 10−2 for �vp′ and 10−3 for �vff ′ . Indeed, 
c2 plays a crucial role in determining how flexible and complex the profiles of p′ and ff ′ can be, and we determined 
its value using numerous profiles of p′ and ff ′ obtained from KSTAR over the past few years such that the Force-
Balance Net has just enough, and not too much, flexibility to satisfy the given measurements.

We must also consider that some of the externally generated magnetic fields have finite degrees of distortion 
owing to the Incoloy  effect68. KSTAR has 14 poloidal field coils, with 10 of them being subject to the Incoloy 
effect as they are made of  Nb3Sn superconductors with the Incoloy 908 conduit, whereas the other four are made 
of NbTi superconductors and STS316LN  conduit69. Let us introduce �Jmext to denote the actual currents flowing 
through the external magnetic field coils, which are always available in real time during tokamak operation. If 
we use Rext�Jmext as a part of the calculated R�J  and compare it with −→MD , (i.e., we let �Jext = �Jmext ), we will generate 
bias errors because our Rext does not model the Incoloy effect. Instead of rectifying Rext to include such an effect, 
which is a demanding and challenging task, we relax the condition of �Jext = �Jmext and let the network determine 
�Jext that is consistent with −→MD . In other words, we allow �Jext to be the effective external currents including the 
consequence of the Incoloy effect. This is done by introducing a diagonal matrix ¯̄β , whose dimensions are 30× 30 , 
to relate �Jext to �Jmext (see the green part in Fig. S3a). Among the diagonal components βn,n , where the subscript 
n indicates one of the 30 external magnetic field coils, we set βn,n = 0.9 for the external coils susceptible to the 
Incoloy effect (i.e., the 10 poloidal field coils), whereas the others are set to be unity. �Jmext is also multiplied by 
either 0.9 or 1, accordingly. Setting βn,n less than unity essentially means that a smaller contribution to the χ2 
minimization in solving the matrix using the SVD technique is allowed as we have recast the problem to be 
overdetermined. Note that the value of 0.9 is also used in the KSTAR EFIT algorithm.

Our matrix form of the loss function l2 can also include other constraints such as the Dirichlet and/or Neu-
mann boundary conditions. As an example, the Dirichlet boundary condition can be included such that the 
Force-Balance Net’s output (p′, ff ′) must equal zero outside the plasma-facing component (see the black part in 
Fig. S3a); i.e., �hpfc�vp′ = 0 and �hpfc�vff ′ = 0 , where �hpfc (dimensions of 1× 6 ) contains the node values at the last 
hidden layer outside the plasma-facing component.

We now have a complete matrix form of the loss function l2 in Eq. (7), which resolves the ill-posed problem 
by expressing the unknown �Jφ in terms of the network’s weight-wise form  �v�Jφ and modifying the response matrix 
R to contain the node values of the last hidden layer. All the necessary constraints associated with the loss func-
tion l2 are modeled in the matrix M (see Fig. S3a). The unknown current sources �J =

[�Jφ , �Jext , �JVV
]

 have become 
�J∗ =

[

�v�Jφ , �Jext , �JVV
]

 , and with the real-time available measurements �g , we have �g = M
−→
J
∗
 (see Fig. S3a). This 
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overdetermined problem can be readily solved using the SVD technique to obtain the unique �J∗ =
[

�v�Jφ , �Jext , �JVV
]

 
whose χ2 is a minimum.

As the matrix form, we have generated only updates of the weights of connection from the last hidden layer 
to the output layer (i.e., �v�Jφ,), and we need a way to update the remaining weights from the input layer up to the 
last hidden layer. This is where we use the transfer learning scheme in the Force-Balance Net. The basic idea of 
transfer learning is that a network trained with certain data sets (e.g., images of cats) can be transferred to other 
similar data sets (e.g., images of dogs). For instance, all the weights of a network pretrained with images of cats 
are reused except the weights of connections from the last hidden layer to the output layer, and only these weights 
are retrained with images of dogs. This allows us to save computational resources during the training phase. 
Furthermore, the transfer learning scheme allows us to work with a limited volume of data. Thus, as we do not 
use measured p′ and ff ′ in training the Force-Balance Net, the transfer learning scheme is a sagacious choice for 
pretraining the network.

The detailed features of the profiles are handled by the SVD technique described above. We thus pretrain the 
network with the transfer learning scheme to weakly force a sinusoidal function with three full cycles within the 
last closed flux surface, allowing the profiles to have a certain level of non-monotonic features. In the pretraining, 
we use a normalized input domain, namely ψnorm = ψ−ψaxis

ψLCFS−ψaxis
 , where ψLCFS and ψaxis are the values of ψ at the 

last closed flux surface and the magnetic axis, respectively. The loss function  l3 for the pretraining is thus defined as

where yNN is the output of the Force-Balance Net (i.e., p′ or ff ′ ) and y = sin6πψnorm is the target function. Here, 
the subscript i indicates the normalized spatial position, and K is the total number of data points. The network 
is pretrained adopting the gradient descent algorithm with a dropout rate of 0.10 and L1 regularization.

The optimization of the Force-Balance Net can be summarized as first pretraining the network to produce 
a general non-monotonic spatial profile, fixing all the weights except those of connections from the last hid-
den layer to the output layer adopting the transfer learning scheme, and updating these weights using the SVD 
technique, where we introduce both physics constraints (i.e., the GS equation) and boundary conditions (i.e., 
real-time available measurements).

Auxiliary module for the boundary detection
The plasma boundary, known as the LCFS, separates the region inside a tokamak vacuum vessel into two regions: 
confined and non-confined regions. Basically, the confined region has well-defined closed magnetic flux surfaces 
whereas the non-confined region has open magnetic field lines that make direct contact with the walls (i.e., 
divertors or plasma-facing components), allowing plasma to be lost to the walls by flowing through these field 
lines. The main purpose of the auxiliary boundary detection module is to find where the separation of these two 
regions occurs, which means that the module’s task is to find the value of ψ at the LCFS because the constant 
contour line of ψLCFS on the (R,Z) plane separates the two regions. Here, ψLCFS is the value of ψ at the LCFS.

The boundary detection module first receives (ψ ,BR ,BZ) over all 41× 41 grid points (black dots in Fig. 1b) 
and the values of ψ at the plasma-facing components, denoted as ψPFC , from the Maxwell Net at each iteration 
within an epoch. The module then searches for the three smallest values of the poloidal magnetic fields Bp by 
calculating Bp =

√

B2R + B2Z  at all 41× 41 grid points and finds their corresponding (R,Z) positions. This is 
motivated by the fact that a magnetic X-point, which is located on the LCFS by definition, ideally has Bp = 0 . 
The magnetic axis, which is the magnetic center of the confined region, also has Bp = 0 , and we thus constrain 
a possible region of the magnetic X-point to be |Z| > 0.5 m according to our prior knowledge from many existing 
KSTAR discharges. Let us denote the values of ψ at the three positions with smallest Bp as ψ i=1,2,3

Bmin
p

 and the values 
of ψ with the constraint |Z| > 0.5 m as ψ |Z|>0.5

Bmin
p

 . We then create a set, containing candidates of ψLCFS , of absolute 

values of ψ , which is ψ candidate
LCFS =

{∣

∣

∣

∣

ψ
|Z|>0.5

Bmin
p

∣

∣

∣

∣

, |ψPFC |
}

 . Finally, we obtain ψLCFS = sgn max(ψ candidate
LCFS ) , where 

max() operator returns the maximum value of the set, and sgn is the original sign ( + or − ) of the maximum 
value. Note that if ψLCFS is determined by ψPFC , then we have a limited plasma (Fig. 3a,b, top row); otherwise, 
we have a diverted plasma (Fig. 3a,b, bottom row). We note that the LCFS must be identified routinely during 
tokamak operation as the plasma boundary is continuously evolving (Fig. S5f), and ψ i=1,2,3

Bmin
p

 must be always found 
because we do not know whether we have a limited or diverted plasma in advance.

The loss functions l1 and l2 in Eqs. (6) and (7) must be able to distinguish between inside and outside the 
LCFS. This can be performed with ψLCFS because we know that the inside means ψ < ψLCFS (note that KSTAR 
has ψ < 0 in the confined region, see Fig. 3a). This is clear when the training of GS-DeepNet is finished and 
provides well-behaved flux surfaces. However, during the training phase, especially the early stage, we are most 
likely to have randomly scattered (R,Z) locations that satisfy ψ < ψLCFS . Thus, to facilitate the training phase, 
we introduce another constraint to be inside the LCFS; i.e., the Z position must be within Zmin and Zmax , where 
Zmin(max) is the minimum (maximum) value of Z at the three positions with smallest Bp that are used to determine 
ψ

i=1,2,3

Bmin
p

.
We note that the described procedure on finding a plasma boundary is specific to KSTAR plasmas. If one 

expects more complicated plasma boundaries, e.g., snowflake shaped boundaries, then the boundary detection 
algorithm must be modified accordingly. As the boundary shapes may differ for different tokamaks, we have 

(8)l3 =
1

K

K
∑

i=1

(

yNNi − yi
)2
,
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developed the boundary detection algorithm as an auxiliary module so that modifications on the main part of 
GS-DeepNet for its application to other tokamaks can be minimal.

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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