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Development of artificial 
intelligence prognostic model 
for surgically resected non‑small 
cell lung cancer
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There are great expectations for artificial intelligence (AI) in medicine. We aimed to develop an AI 
prognostic model for surgically resected non-small cell lung cancer (NSCLC). This study enrolled 1049 
patients with pathological stage I–IIIA surgically resected NSCLC at Kyushu University. We set 17 
clinicopathological factors and 30 preoperative and 22 postoperative blood test results as explanatory 
variables. Disease-free survival (DFS), overall survival (OS), and cancer-specific survival (CSS) were set 
as objective variables. The eXtreme Gradient Boosting (XGBoost) was used as the machine learning 
algorithm. The median age was 69 (23–89) years, and 605 patients (57.7%) were male. The numbers 
of patients with pathological stage IA, IB, IIA, IIB, and IIIA were 553 (52.7%), 223 (21.4%), 100 (9.5%), 
55 (5.3%), and 118 (11.2%), respectively. The 5-year DFS, OS, and CSS rates were 71.0%, 82.8%, 
and 88.7%, respectively. Our AI prognostic model showed that the areas under the curve of the 
receiver operating characteristic curves of DFS, OS, and CSS at 5 years were 0.890, 0.926, and 0.960, 
respectively. The AI prognostic model using XGBoost showed good prediction accuracy and provided 
accurate predictive probability of postoperative prognosis of NSCLC.

Lung cancer is one of the major causes of cancer-related death worldwide1, 2. Non-small cell lung cancer (NSCLC) 
is the most common type of lung cancer3, and surgical resection is one of the standard therapies along with 
chemotherapy and radiotherapy for NSCLC4. Tumor stage according to TNM classification is most commonly 
used to predict patient prognosis after surgery for NSCLC, and treatment strategy including postoperative 
adjuvant chemotherapy is determined based on the stage4–6. However, there are considerable differences in the 
prognosis of patients, even within the same stage. Therefore, better prognostic tools are required to more accu-
rately determine patient prognosis and select the appropriate treatment strategy.

A number of studies have reported that various immune-nutrition indices calculated from blood test results, 
such as controlling nutritional status7, 8, geriatric nutritional risk index9, 10, prognostic nutritional index11, Glas-
gow prognostic score12, C-reactive protein (CRP)/albumin ratio13, 14, neutrophil/lymphocyte ratio15, platelet/
lymphocyte ratio15, and monocyte/lymphocyte ratio15, 16, are prognostic factors for postoperative prognosis in 
NSCLC. However, most of these studies examined only a single factor or at most five factors, and there is still no 
consensus on the prognostic value of blood test results in NSCLC.

Artificial intelligence (AI) has shown great promise for important applications in medicine. In lung cancer 
research, several studies showed that AI is useful for the diagnosis17–22 and prediction of the therapeutic efficacy 
of chemotherapy23. In this study, we developed an AI prognostic model for NSCLC using machine learning to 
comprehensively analyze perioperative data including preoperative and postoperative blood test results.
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Results
Patient characteristics.  A total of 1,049 patients with pathological stage (p-Stage) I–IIIA NSCLC were 
enrolled. The clinicopathological characteristics of patients are shown in Supplementary Table 1. The median 
patient age at surgery was 69 (23–89) years, and 605 patients (57.7%) were male. The median body mass index 
and pack year index (PYI) were 22.4 (14.0–34.3) kg/m2 and 20 (0–300), respectively. In terms of surgical proce-
dure, 144 (13.7%), 109 (10.4%), 752 (71.7%), 24 (2.3%), and 20 (1.9%) patients underwent wedge resection, seg-
mentectomy, lobectomy, bilobectomy, and pneumonectomy, respectively. The numbers of patients with p-Stage 
IA, IB, IIA, IIB, and IIIA NSCLC were 553 (52.7%), 223 (21.4%), 100 (9.5%), 55 (5.3%), and 118 (11.2%), respec-
tively. Regarding histological type, 151 (14.4%), 574 (54.7%), 55 (5.2%), 31 (3.0%), 189 (18.0%), 16 (81.5%), 
6 (0.6%), 23 (2.2%), and 4 (0.4%) patients were diagnosed with adenocarcinoma in  situ/minimally invasive 
adenocarcinoma/lepidic predominant adenocarcinoma, acinar/papillary predominant adenocarcinoma, micro-
papillary/solid predominant adenocarcinoma, squamous cell carcinoma, adenosquamous carcinoma, carcinoid, 
large cell neuroendocrine carcinoma, and pleomorphic carcinoma, respectively.

The median follow-up period was 5.06 (0.02–17.39) years, and the number of disease-free survival (DFS), 
overall survival (OS), and cancer-specific survival (CSS) events were 305, 214, and 123, respectively. The sur-
vival curves of DFS (Fig. 1A), OS (Fig. 1B), and CSS (Fig. 1C) in the overall patient group were plotted by the 
Kaplan–Meier method. The 5-year DFS, OS, and CSS rates were 71.0%, 82.8%, and 88.7%, respectively. We also 
used the Kaplan–Meier method to plot survival curves of DFS (Fig. 1D), OS (Fig. 1E), and CSS (Fig. 1F) in 
patients according to p-Stage. In patients with p-Stage IA, IB, IIA, IIB, and IIIA NSCLC, the 5-year DFS rates 
were 87.1%, 68.0%, 44.0%, 50.7%, and 29.5%, respectively (log-rank test; IA versus IB, p < 0.0001; IB versus IIA, 
p < 0.0001; IIA versus IIB, p = 0.3238; IIB versus IIIA, p = 0.0167); the 5-year OS rates were 93.5%, 81.7%, 68.6%, 
57.2%, and 54.4%, respectively (log-rank test; IA versus IB, p < 0.0001; IB versus IIA, p = 0.0173; IIA versus IIB, 
p = 0.4074; IIB versus IIIA, p = 0.5831); and the 5-year CSS rates were 96.5%, 88.3%, 77.1%, 70.6%, and 64.5%, 
respectively (log-rank test; IA versus IB, p < 0.0001; IB versus IIA, p = 0.0815; IIA versus IIB, p = 0.7656; IIB versus 
IIIA, p = 0.2409).

The results of univariable analyses of representative factors for DFS, OS, and CSS are shown in Supplementary 
Table 3, 4 and 5.

Development of AI prognostic model.  We set 17 clinicopathological factors, 30 preoperative blood test 
results, and 22 postoperative blood test results as explanatory variables. We then developed a prognostic model 
for predicting DFS, OS, and CSS using the eXtreme Gradient Boosting (XGBoost). To evaluate the discrimina-
tion of our AI prognostic model, time-dependent receiver operating characteristic (ROC) curves and area under 
curves (AUCs) for predicting DFS, OS, and CSS were calculated (Fig. 2). The AUCs of the AI prognostic model 

Figure 1.   Survival curves plotted by the Kaplan–Meier method. The survival curves for disease-free survival 
(A), overall survival (B), and cancer-specific survival (C) in all patients. The survival curves of disease-free 
survival (D), overall survival (E), and cancer-specific survival (F) of patients according to pathological stage. The 
95% confidence intervals are shown via shading.
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were better than that of p-Stage alone at all time points. These results indicate that the AI model greatly improved 
the prognostic accuracy compared with p-Stage alone by comprehensively analyzing a large number of variables.

Identification of important explanatory variables for AI prognostic model.  We next analyzed the 
importance of each explanatory variable to DFS, OS, and CSS using the SHapley Additive exPlanation (SHAP) 
analysis to clarify which explanatory variables our AI prognostic model considered important in predicting 
prognosis (Fig. 3). Each SHAP figure shows the SHAP comprehensive plot 24–26. In the SHAP comprehensive 
plot, explanatory variables that highly contributed to the prediction of survival in our AI prognostic model 
are arranged from the top. The rows correspond to explanatory variables, and each point in a row represents 
one patient. Red indicates a higher value of relevant variables, whereas blue indicates a lower value. Black dots 
indicate missing values. The horizontal axis represents the SHAP value, and the farther the dot is on the right, 

Figure 2.   Time-dependent AUCs and ROC curves of the AI prognostic model. The transition in AUC over 
time and ROC curves at each point for disease-free survival (A), overall survival (B), and cancer-specific 
survival (C). AUC; area under curve, ROC; receiver operating characteristic, AI; artificial intelligence.
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the higher the risk. The SHAP analysis showed that established prognostic factors such as tumor malignancy 
(p-Stage, pathological N status, histological type, pleural invasion, lymphatic invasion, standard uptake value 
(SUV)-max, carcinoembryonic antigen [CEA], and cytokeratin-19 fragments [CYFRA]), pulmonary function, 
and smoking history were still the top variables affecting the prognosis of NSCLC. In terms of blood test results, 
preoperative prothrombin time-international normalized ratio and postoperative CRP were identified as vari-
ables of high importance for DFS, OS, and CSS; postoperative total-protein, postoperative aspartate aminotrans-
ferase, postoperative creatinine, postoperative monocyte, preoperative lymphocyte, postoperative lymphocyte, 
and postoperative lactate dehydrogenase were identified as important variables in at least two among DFS, OS, 
and CSS.

Calculation of predicted probability of survival based on AI prognostic model.  To further evalu-
ate the usefulness of the AI prognostic model, we calculated the predicted probability of outcome events at 
5 years after surgery for each individual NSCLC patient based on our AI prognostic model. Patients were divided 
into 10 groups according to the predicted probability, and the calibration plots were generated for comparison 
of the observed probability (Fig.  4). The calibration plots showed a good match between the predicted and 
observed probability. Moreover, the survival curve created based on this predicted probability could stratify 
patients on prognosis (Fig. 4). The clinicopathological characteristics in the groups classified by the predicted 
probability for DFS, OS, and CSS are shown in Supplementary Table 6, 7 and 8.

Discussion
We developed an AI prognostic model for surgically resected p-Stage I–IIIA NSCLC using machine learning to 
comprehensively analyze perioperative data. Our AI prognostic model showed good prediction accuracy, and the 
AUCs of the ROC curves in 5-year DFS, OS, and CSS were 0.890, 0.926, and 0.960, respectively. Furthermore, the 
predicted probability of outcome events at 5 years after surgery calculated by our AI prognostic model predicted 
the postoperative prognosis with high accuracy.

The application of AI has recently attracted much attention in the field of lung cancer, and several studies have 
used AI to predict the prognosis of lung cancer. Hosny et al. analyzed computed tomography (CT) images by 
deep learning in 1,194 patients with NSCLC to predict 2-year OS in radiotherapy and surgery groups; the results 
showed a prediction accuracy of AUC of 0.70 (95% confidence interval [CI], 0.63–0.78) in the radiotherapy group 

Figure 3.   SHAP comprehensive plots. SHAP comprehensive plot with the top 20 explanatory variables that 
our AI prognostic model considered important for predicting prognosis of disease-free survival (A), overall 
survival (B), and cancer-specific survival (C). SHAP; SHapley Additive exPlanation, p-Stage; pathological stage, 
SUV; standard uptake value, ly; lymphatic invasion, p-N; pathological N, CEA; carcinoembryonic antigen, 
%FEV1.0; % forced expiratory volume in 1 s, CYFRA; cytokeratin-19 fragments, TP; total protein, FEV1.0%; 
forced expiratory volume in 1 s/ forced vital capacity ratio, PT-INR; prothrombin time-international normalized 
ratio, CRP; CRP; C-reactive protein, pl; pleural invasion, AST; aspartate aminotransferase, UA; urine acid, Cre; 
creatinine, LDH; lactate dehydrogenase, Mono; monocyte, ALT; alanine aminotransferase, BUN; blood urea 
nitrogen, T-Chol; total-cholesterol, PYI; pack year index, %FVC; % forced vital capacity, PLT; platelet, Lymph; 
lymphocyte, γ-GTP; γ-glutamyl transpeptidase.
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Figure 4.   Calibration plots and survival curves based on the predicted probability of outcome events at 5 years 
from AI prognostic model. Calibration plots based on the predicted probability of outcome events at 5 years 
after surgery calculated by AI prognostic model for disease-free survival (A), overall survival (C), and cancer-
specific survival (E). The survival curves for disease-free survival (B), overall survival (D), and cancer-specific 
survival (F) according to the predicted probability of outcome events at 5 years calculated by AI prognostic 
model. The 95% confidence intervals are shown via shading. AI; artificial intelligence.
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and AUC of 0.71 (95% CI, 0.60–0.82) in the surgery group27. Lu et al. analyzed CT images of 1,313 lung adenocar-
cinoma patients by machine learning and calculated intensity-skewness, which quantified the density distribution 
of tumor. The authors created ROC curves with DFS as the objective variable, and the results showed a prediction 
accuracy of AUC of 0.820–0.86328. She et al. used the Surveillance Epidemiology and End Results database and 
analyzed 1182 stage I–III NSCLC patients by 127 explanatory variables, including sex, age, marital status, tumor 
characteristics (location, size, histologic grade, histologic type, and TNM stage), and treatment details (surgical 
type). The prediction accuracy of the model for CSS was C-index of 0.739 (95% CI, 0.713–0.764)29. Kim et al. 
constructed a model for predicting DFS by analyzing CT images of 908 surgically resected lung adenocarcinoma 
patients using deep learning, and the prediction accuracy showed a C-index range of 0.71–0.7830. In most of the 
previous reports, CT images were analyzed by AI. We did not analyze CT images; instead, we used perioperative 
blood test results for analysis, which was not analyzed in previous studies. Although there were a few differences 
in the analysis methods, the prediction accuracy for 5-year DFS, OS, and CSS was AUC of 0.890, 0.926, and 0.960, 
respectively, which were not inferior to those of previous studies. On the basis of findings, we speculate that 
the use of a large amount of blood test results for predicting prognosis might have led to an accurate prognosis, 
reflecting not only the status of lung cancer, but also the nutritional status, immune status, and coexistence of 
other diseases such as renal disease, liver disease, and diabetes.

The prognosis of our cohort was relatively good, and the 5-year DFS, OS, and CSS were 71.0%, 82.8%, and 
88.7%, respectively. The survival by p-Stage of our study cohort is almost the same as that of the Japanese large 
data cohort (18,973 patients), and these results are consistent with the general data on lung cancer in Japan4. 
Additionally, Kaplan–Meier survival curves showed that the survival of patients with p-Stages IIA and IIB was 
not well stratified in OS and CSS and reversed in DFS; we speculate this may be because of the limited number 
of patients with p-Stage IIA and IIB in our cohort.

In this study, XGBoost was selected as the algorithm for AI prognostic model. The advantages of using 
XGBoost compared with other AI tools are as follows. XGBoost has the advantage that missing values can be 
used directly as information31. This is not practical in the linear regression model, because it is necessary to delete 
the missing cases entirely or to fill in the missing values by assignment, but XGBoost is free from this problem. 
Moreover, a further advantage of decision tree models such as XGBoost is that interactions and nonlinearities 
can be automatically captured31. Furthermore, in SHAP analysis, only a decision tree-based model such as 
XGBoost can calculate accurate SHAP values32. Other methods (e.g., support vector machines, neural networks) 
are calculated by approximation, so accurate SHAP values are difficult. Therefore, we considered XGBoost to be 
suitable for constructing prognostic and predictive models such as in the present study.

A previous study of machine learning using blood test results attempted to diagnose lung cancer early by 
analyzing routine clinical and laboratory data of 6,505 patients in the NSCLC group and 189,597 patients in the 
control group using machine learning22. The results showed a good prediction accuracy of AUC of 0.86 and a 
diagnostic odds ratio of 12.3, suggesting that the analysis of blood test results might be highly valuable in lung 
cancer diagnosis and treatment22.

One of the features of the current study is that the data, including blood test results, for construction of the AI 
model was extracted from the electronic health record (EHR) system. The EHR system is used in many hospitals 
and has accumulated a huge amount of clinical data; these findings are expected to be applied to AI research in 
the future33, 34. Our research group previously developed a machine learning model for predicting the incidence 
of stroke-associated pneumonia by analyzing EHR systems35. Future research combining EHR systems and AI 
will provide many benefits in lung cancer treatment.

In addition to confirming the accuracy of prognosis prediction by machine learning, we evaluated the impor-
tance of each explanatory variable to the prognosis of NSCLC using SHAP values. When looking at each vari-
able, established prognostic factors such as tumor malignancy (p-Stage, pathological N status, histological type, 
pleural invasion, lymphatic invasion, SUV-max, CEA, and CYFRA), pulmonary function, and smoking history 
were still the top factors affecting the prognosis of NSCLC; therefore, the validity of the evaluation by SHAP 
values is high. In AI-based research, “which variables” and “how much they contribute” are often black boxes 
that are difficult to understand. In our current study, SHAP analysis clarified “which variables” and “how much 
they contribute” to the AI prognostic model in predicting prognosis, which indicate that SHAP values may be 
very useful in the analysis of lung cancer in the future.

Histological type was revealed as an important factor of prognosis in our AI prognostic model. As shown in 
Supplementary Table 3, 4 and 5, the prognoses of adenocarcinoma in situ/minimally invasive adenocarcinoma/
lepidic predominant adenocarcinoma and carcinoid were better than those of other histological types. In contrast, 
the prognoses of adenosquamous carcinoma, large cell neuroendocrine carcinoma, and pleomorphic carcinoma 
were worse than those of other histological types. Furthermore, the prognosis of micropapillary/solid predomi-
nant adenocarcinoma was as poor as that of squamous cell carcinoma and worse than that of acinar/papillary 
predominant adenocarcinoma. These results are consistent with previous findings of prognostic stratification 
by histological type and predominant adenocarcinoma36, 37. Our study showed that a more detailed analysis of 
histological type could improve the prognostic accuracy.

In terms of blood test results, tumor markers such as CEA and CYFRA still made significant contributions 
to prognosis. Factors used in immune-nutrition indices such as total cholesterol, CRP, neutrophil, lymphocyte, 
and monocyte also made a considerable contribution, and the results of this study supported previous reports 
that showed that the immune status of the host affects prognosis in NSCLC7–16. In addition, coagulation-related 
factors such as platelet, prothrombin time-international normalized ratio also made significant contributions. 
Cancer induces a hypercoagulable condition38, and considering the reports showing that coagulation-related 
factors are prognostic factors for NSCLC39, it is possible that coagulation-related factors reflect the activity of 
NSCLC. Additionally, factors reflecting renal and liver function, such as urea nitrogen, creatinine, and aspartate 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15683  | https://doi.org/10.1038/s41598-023-42964-8

www.nature.com/scientificreports/

aminotransferase also contributed considerably to the prognosis of NSCLC. These factors might reflect poor 
patient heathy and influence survival.

We further calculated the predicted probability of outcome events at 5 years after surgery for each individual 
NSCLC patient on the basis of our AI prognostic model. The predicted probability was strongly associated with 
the observed probability and useful for predicting the prognosis of surgically resected NSCLC. Moreover, since 
the calculation of the predicted probability can be applied to other cohorts in addition to the cohort used in our 
study, we would like to further explore the feasibility of the AI prognostic model by performing external valida-
tion using cohorts from other institutions or temporal validation using a prospective cohort of cases. If we could 
further develop our AI prognostic model, we expect to be able to accurately predict the prognosis of individual 
patients with surgically resected NSCLC, which would be useful in determining treatment strategies, such as 
the selection of indications for postoperative adjuvant chemotherapy and differentiation of testing frequency 
according to prognosis.

This study has several limitations. This was a retrospective study with a single cohort from one institution 
and did not have validation cohorts. A prospective study of multiple cohorts at multiple institutions should be 
performed in the future to validate the usefulness of our AI prognostic model. The TNM classification 8th edition 
could not be used and the TNM classification 7th edition was used instead. The reason is that it was impossible 
to remeasure the diameter of the pathological invasive area of past cases. At our institution, the diameter of 
pathological invasive area has been evaluated since 2013; however, it was not possible to remeasure the diameter 
of pathological invasive area of cases before 2013. To conduct a large-scale analysis by including cases from 2003, 
we thus had to use the TNM classification 7th edition. We would like to conduct AI analysis research using the 
TNM 8th edition in the future. While our AI prognostic model was based on clinical information, pathological 
features, and blood test results, the AI prognostic model can be improved by adding more data such as informa-
tion on underlying diseases, CT images, and pathological findings images. The information of driver oncogenes 
and PD-L1 expression is important for determining the prognosis of and treatment strategy for lung cancer 
patients; however, this information was unknown in many patients in our cohort, and therefore we could not 
include these factors in the analysis. In the XGBoost model, the formula itself is difficult to verify because the 
formula cannot be made explicit as in the old linear model. However, bootstrap validation was performed to 
verify the prediction accuracy, and the accuracy has been verified.

In conclusion, we developed an AI prognostic model for surgically resected NSCLC by comprehensively 
analyzing perioperative data using machine learning with XGBoost. The AI prognostic model using XGBoost 
showed good prediction accuracy and provided high accurate predictive probability of postoperative prognosis.

Methods
Study population.  This retrospective observational study followed Declaration of Helsinki, and it was 
reviewed and approved by Kyushu University Institutional Review Board for Clinical Research on March 31st, 
2021 (IRB No.2020-812), and a waiver of informed consent was obtained.

A total of 1,114 patients with p-Stage I–IIIA NSCLC underwent surgery between January 2003 and December 
2016 at the Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Japan. 
Among these patients, 46, 9, and 10 patients were excluded because of preoperative treatment, incomplete resec-
tion, and second primary lung cancer, respectively. Finally, 1,049 patients were included for analysis.

Dataset.  We retrospectively obtained clinical information and follow-up data of patients by extracting data 
from the EHR system. The clinicopathological characteristics included age at surgery, sex, body mass index, 
smoking history (PYI), % forced vital capacity (%FVC), % forced expiratory volume in 1 s (%FEV1.0), FEV1.0% 
(FEV1.0/FVC ratio), SUV-max, surgical procedure, p-Stage, pathological T status, pathological N status, histo-
logical type, pleural invasion, vascular invasion, lymphatic invasion, and adjuvant chemotherapy. The PYI was 
calculated using the following formula: PYI = (cigarettes per day) x (smoking years)/20. The predictive FVC and 
predictive FEV1.0 were first calculated using formulae following the Clinical Pulmonary Functions Commit-
tee of the Japanese Respiratory Society; next, %FVC and %FEV1.0 were calculated by the following formulae: 
%FVC = observed FVC/predictive FVC and %FEV1 = observed FEV1.0/predictive FEV1.0, respectively.

We used blood test results used in routine practice and excluded data with a missing rate of more than 30% 
to make our selection. The preoperative blood test results, including total protein, albumin, total bilirubin, direct 
bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, γ-glutamyl transpepti-
dase, lactate dehydrogenase, urea nitrogen, creatinine, urine acid, sodium, potassium, chlorine, calcium, total-
cholesterol, triglyceride, glucose, CRP, white blood cell, neutrophil, lymphocyte, monocyte, hemoglobin, platelet, 
prothrombin time-international normalized ratio, and activated partial thromboplastin time, were averaged over 
the one-month period before surgery. The blood tests were performed at various times, such as at the time of 
initial diagnosis and during preoperative hospitalization. Therefore, we decided to include data from a period 
of one month before surgery and to use mean values to minimize the effect of the timing of the tests. The preop-
erative levels of CEA and CYFRA were averaged over the three-month period before surgery. CEA and CYFRA 
were examined at the time of initial diagnosis in most cases; however, there were several cases in which CEA and 
CYFRA were examined more than one month before surgery because of preoperative examinations or patient 
convenience. Therefore, we decided to collect data on CEA and CYFRA for the 3-month period before surgery.

With regard to postoperative blood tests, considering that the postoperative hospitalization period is often 
1–2 weeks, we decided to collect data for 2 weeks after surgery. The postoperative blood test results, including 
total protein, albumin, total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phos-
phatase, γ-glutamyl transpeptidase, lactate dehydrogenase, urea nitrogen, creatinine, urine acid, sodium, potas-
sium, chlorine, calcium, CRP, white blood cell, neutrophil, lymphocyte, monocyte, hemoglobin, and platelet 
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were averaged over the two-week period after surgery. To reduce the effect of variation in the postoperative 
blood test dates, the mean values were used. A summary of the blood test results of NSCLC patients is shown 
in Supplementary Table 2.

DFS was defined as the time between surgery and the date of recurrence or death from any cause. OS was 
defined as the time between surgery and the date of death from any cause. CSS was defined as the time between 
surgery and the date of death caused by NSCLC. Patients without an event were censored at the time of last 
follow-up.

AI prognostic model.  The study design is summarized in Fig. 5. We set 17 clinicopathological factors, 30 
preoperative blood test results, and 22 postoperative blood test results as explanatory variables. The DFS, OS, 
and CSS after surgery were set as objective variables. The XGBoost was used as the machine learning algorithm. 
The importance of each variable was analyzed using SHAP.

The XGBoost is a type of decision tree ensemble model that has desirable features such as capturing interac-
tions and nonlinearities and handling missing values as they are31. We assumed non-linearity in predictors, such 
as blood test results, and clinical outcomes; therefore, XGBoost, which can automatically and accurately capture 
non-linearity, was chosen as the machine learning algorithm. To predict the risk for each patient, negative partial 
log-likelihood for Cox proportional hazards regression was used as the objective function of XGBoost. XGBoost 
can use missing values directly as information, and thus missing values were also analyzed as they are. To perform 
internal validation of our AI prognostic model, we performed bootstrap validations 20 times.

The SHAP is the most powerful technique for interpreting predictive models, and the Shapley value represents 
the contribution weight of each variable to the prediction model24–26, 40. The importance of objective variables is 
calculated, and the extraction of characteristic factors and their effects are expressed by a SHAP comprehensive 
plot. To evaluate the discriminative performance of the AI prognostic model, we created time-dependent ROC 
curves and AUCs for DFS, OS, and CSS41. The time-dependent ROC curves and AUCs of p-Stage were also cre-
ated and compared with those of the AI prognostic model. As a calibration performance of outcome events at 
5 years, the predicted probability was calculated based on the AI prognostic model and the calibration plot was 
created. The Kaplan–Meier curves were grouped based on the calibration plots and evaluated in each group.

Statistical analysis.  The Kaplan–Meier method with the log-rank test was used for plotting survival curves. 
The Cox proportional hazards model was used for univariable analysis, and the median value was set as the cut-
off value of continuous variable. p < 0.05 indicated statistical significance. Statistical analyses were performed 
using JMP pro 14.0 software (SAS Institute) and R statistical software (http://​www.R-​proje​ct.​org).

Figure 5.   The study design.

http://www.R-project.org
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Data availability
The data used to support the findings of our study are available from the corresponding author upon reasonable 
request.

Received: 10 November 2022; Accepted: 17 September 2023

References
	 1.	 Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and 

disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA 
Oncol. 5(12), 1749–1768. https://​doi.​org/​10.​1001/​jamao​ncol.​2019.​2996 (2019).

	 2.	 Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108. https://​doi.​org/​10.​3322/​caac.​21262 (2015).
	 3.	 Travis, W. D. et al. The 2015 world health organization classification of lung tumors: Impact of genetic, clinical and radiologic 

advances since the 2004 classification. J. Thorac. Oncol. 10(9), 1243–1260. https://​doi.​org/​10.​1097/​JTO.​00000​00000​000630 (2015).
	 4.	 Okami, J. et al. Demographics, safety and quality, and prognostic information in both the seventh and eighth editions of the TNM 

classification in 18,973 surgical cases of the Japanese joint committee of lung cancer registry database in 2010. J. Thorac. Oncol. 
14(2), 212–222. https://​doi.​org/​10.​1016/j.​jtho.​2018.​10.​002 (2019).

	 5.	 Goldstraw, P. et al. The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming 
(eighth) edition of the TNM Classification for lung cancer. J. Thorac. Oncol. 11(1), 39–51. https://​doi.​org/​10.​1016/j.​jtho.​2015.​09.​
009 (2016).

	 6.	 Goldstraw, P. et al. The IASLC lung cancer staging project: Proposals for the revision of the TNM stage groupings in the forthcom-
ing (seventh) edition of the TNM classification of malignant tumours. J. Thorac. Oncol. 2(8), 706–714. https://​doi.​org/​10.​1097/​
JTO.​0b013​e3181​2f3c1a (2007).

	 7.	 Toyokawa, G. et al. Prognostic impact of controlling nutritional status score in resected lung squamous cell carcinoma. J. Thorac. 
Dis. 9(9), 2942–2951. https://​doi.​org/​10.​21037/​jtd.​2017.​07.​108 (2017).

	 8.	 Shoji, F. et al. The preoperative controlling nutritional status score predicts survival after curative surgery in patients with patho-
logical stage i non-small cell lung cancer. Anticancer Res. 37(2), 741–748. https://​doi.​org/​10.​21873/​antic​anres.​11372 (2017).

	 9.	 Shoji, F. et al. Preoperative geriatric nutritional risk index: A predictive and prognostic factor in patients with pathological stage 
I non-small cell lung cancer. Surg. Oncol. 26(4), 483–488. https://​doi.​org/​10.​1016/j.​suronc.​2017.​09.​006 (2017).

	10.	 Shoji, F. et al. Prognostic significance of immune-nutritional parameters for surgically resected elderly lung cancer patients: A 
smulticentre retrospective study. Interact. Cardiovasc. Thorac Surg. 26(3), 389–394. https://​doi.​org/​10.​1093/​icvts/​ivx337 (2018).

	11.	 Okada, S. et al. Clinical significance of prognostic nutritional index after surgical treatment in lung cancer. Ann. Thorac. Surg. 
104(1), 296–302. https://​doi.​org/​10.​1016/j.​athor​acsur.​2017.​01.​085 (2017).

	12.	 Yotsukura, M. et al. Value of the glasgow prognostic score as a prognostic factor in resectable non-small cell lung cancer. J. Thorac. 
Oncol. 11(8), 1311–1318. https://​doi.​org/​10.​1016/j.​jtho.​2016.​04.​029 (2016).

	13.	 Matsubara, T. et al. Identification of the best prognostic marker among immunonutritional parameters using serum c-reactive 
protein and albumin in non-small cell lung cancer. Ann. Surg. Oncol. 28(6), 3046–3054. https://​doi.​org/​10.​1245/​s10434-​020-​09230-
x (2021).

	14.	 Zhang, F. et al. The C-reactive protein/albumin ratio predicts long-term outcomes of patients with operable non-small cell lung 
cancer. Oncotarget 8(5), 8835–8842. https://​doi.​org/​10.​18632/​oncot​arget.​13053 (2017).

	15.	 Shoji, F., Kozuma, Y., Toyokawa, G., Yamazaki, K. & Takeo, S. Complete blood cell count-derived inflammatory biomarkers in 
early-stage non-small-cell lung cancer. Ann. Thorac. Cardiovasc. Surg. 26(5), 248–255. https://​doi.​org/​10.​5761/​atcs.​oa.​19-​00315 
(2020).

	16.	 Yuan, C. et al. Elevated pretreatment neutrophil/white blood cell ratio and monocyte/lymphocyte ratio predict poor survival in 
patients with curatively resected non-small cell lung cancer: Results from a large cohort. Thorac. Cancer 8(4), 350–358. https://​
doi.​org/​10.​1111/​1759-​7714.​12454 (2017).

	17.	 Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. 
Nat. Med. 25(6), 954–961. https://​doi.​org/​10.​1038/​s41591-​019-​0447-x (2019).

	18.	 Lu, M. T., Raghu, V. K., Mayrhofer, T., Aerts, H. J. W. L. & Hoffmann, U. Deep learning using chest radiographs to identify high-
risk smokers for lung cancer screening computed tomography: Development and validation of a prediction model. Ann. Intern. 
Med. 173(9), 704–713. https://​doi.​org/​10.​7326/​M20-​1868 (2020).

	19.	 Shin, H. et al. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano 
14(5), 5435–5444. https://​doi.​org/​10.​1021/​acsna​no.​9b091​19 (2020).

	20.	 Kanavati, F. et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 10(1), 1–11. https://​
doi.​org/​10.​1038/​s41598-​020-​66333-x (2020).

	21.	 Kanavati, F. et al. A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Sci. 
Rep. 11(1), 1–14. https://​doi.​org/​10.​1038/​s41598-​021-​87644-7 (2021).

	22.	 Gould, M. K., Huang, B. Z., Tammemagi, M. C., Kinar, Y. & Shiff, R. Machine learning for early lung cancer identification using 
routine clinical and laboratory data. Am. J. Respir. Crit. Care Med. 204(4), 445–453. https://​doi.​org/​10.​1164/​rccm.​202007-​2791OC 
(2021).

	23.	 Trebeschi, S. et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 30(6), 
998–1004. https://​doi.​org/​10.​1093/​annonc/​mdz108 (2019).

	24.	 Lundberg, S. M., Erion, G. G., & Lee, S. I. Consistent individualized feature attribution for tree ensembles. Prepint at http://​arxiv.​
org/​abs/​1802.​03888 (2018).

	25.	 Nohara, Y., Matsumoto, K., Soejima, H., Nakashima, N. Explanation of machine learning models using improved shapley additive 
explanation. Proc. of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 
BCB ’19. Association for Computing Machinery, (New York, NY, USA, 2019).

	26.	 Inoguchi, T., Nohara, Y., Nojiri, C. & Nakashima, N. Association of serum bilirubin levels with risk of cancer development and 
total death. Sci. Rep. 11(1), 1–12. https://​doi.​org/​10.​1038/​s41598-​021-​92442-2 (2021).

	27.	 Hosny, A. et al. Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med. 15(11), 
1–25. https://​doi.​org/​10.​1371/​journ​al.​pmed.​10027​11 (2018).

	28.	 Lu, L. et al. Correction to: A quantitative imaging biomarker for predicting disease-free-survival-associated histologic subgroups 
in lung adenocarcinoma. Eur. Radiol. 30(12), 6969. https://​doi.​org/​10.​1007/​s00330-​020-​07036-9 (2020).

	29.	 She, Y. et al. Development and validation of a deep learning model for non-small cell lung cancer survival. JAMA Netw. Open. 
3(6), 1–12. https://​doi.​org/​10.​1001/​jaman​etwor​kopen.​2020.​5842 (2020).

	30.	 Kim, H., Mo Goo, J., Hee Lee, K., Kim, Y. T. & Park, C. M. Preoperative ct-based deep learning model for predicting disease-free 
survival in patients with lung adenocarcinomas. Radiology 296(1), 216–224. https://​doi.​org/​10.​1148/​radiol.​20201​92764 (2020).

	31.	 Chen, T., Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int Conf Knowl Discov Data Min. 13–17-Aug, 
785–794 (2016). 

https://doi.org/10.1001/jamaoncol.2019.2996
https://doi.org/10.3322/caac.21262
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.1016/j.jtho.2018.10.002
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1016/j.jtho.2015.09.009
https://doi.org/10.1097/JTO.0b013e31812f3c1a
https://doi.org/10.1097/JTO.0b013e31812f3c1a
https://doi.org/10.21037/jtd.2017.07.108
https://doi.org/10.21873/anticanres.11372
https://doi.org/10.1016/j.suronc.2017.09.006
https://doi.org/10.1093/icvts/ivx337
https://doi.org/10.1016/j.athoracsur.2017.01.085
https://doi.org/10.1016/j.jtho.2016.04.029
https://doi.org/10.1245/s10434-020-09230-x
https://doi.org/10.1245/s10434-020-09230-x
https://doi.org/10.18632/oncotarget.13053
https://doi.org/10.5761/atcs.oa.19-00315
https://doi.org/10.1111/1759-7714.12454
https://doi.org/10.1111/1759-7714.12454
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.7326/M20-1868
https://doi.org/10.1021/acsnano.9b09119
https://doi.org/10.1038/s41598-020-66333-x
https://doi.org/10.1038/s41598-020-66333-x
https://doi.org/10.1038/s41598-021-87644-7
https://doi.org/10.1164/rccm.202007-2791OC
https://doi.org/10.1093/annonc/mdz108
http://arxiv.org/abs/1802.03888
http://arxiv.org/abs/1802.03888
https://doi.org/10.1038/s41598-021-92442-2
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1007/s00330-020-07036-9
https://doi.org/10.1001/jamanetworkopen.2020.5842
https://doi.org/10.1148/radiol.2020192764


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15683  | https://doi.org/10.1038/s41598-023-42964-8

www.nature.com/scientificreports/

	32.	 Vaid, A. et al. Machine learning to predict mortality and critical events in a cohort of patients with COVID-19 in New York City: 
Model development and validation. J. Med. Internet Res. 22(11), 1–19. https://​doi.​org/​10.​2196/​24018 (2020).

	33.	 Shickel, B., Tighe, P. J., Bihorac, A. & Rashidi, P. Deep EHR: A survey of recent advances in deep learning techniques for electronic 
health record (EHR) analysis. IEEE J. Biomed. Heal. Inform. 22(5), 1589–1604. https://​doi.​org/​10.​1109/​JBHI.​2017.​27670​63 (2018).

	34.	 Lee, C, Schaar M Vander. Temporal phenotyping using deep predictive clustering of disease progression. Proc. 37th International 
Conferene on Machine Learning ICML 2020. Part F16814:5723–5733 (2020).

	35.	 Matsumoto, K. et al. Impact of a learning health system on acute care and medical complications after intracerebral hemorrhage. 
Learn. Heal. Syst. 5(2), 1–9. https://​doi.​org/​10.​1002/​lrh2.​10223 (2021).

	36.	 Moreira, A. L. et al. A grading system for invasive pulmonary adenocarcinoma: A proposal from the international association 
for the study of lung cancer pathology committee. J. Thorac. Oncol. 15(10), 1599–1610. https://​doi.​org/​10.​1016/j.​jtho.​2020.​06.​001 
(2020).

	37.	 Yun, J. K. et al. Clinical impact of histologic type on survival and recurrence in patients with surgically resected stage II and III 
non-small cell lung cancer. Lung Cancer 2023(176), 24–30. https://​doi.​org/​10.​1016/j.​lungc​an.​2022.​12.​008 (2022).

	38.	 Falanga, A., Marchetti, M. & Vignoli, A. Coagulation and cancer: Biological and clinical aspects. J. Thromb. Haemost. 11(2), 
223–233. https://​doi.​org/​10.​1111/​jth.​12075 (2013).

	39.	 Tas, F. et al. Clinical and prognostic significance of coagulation assays in lung cancer. Respir. Med. 107(3), 451–457. https://​doi.​
org/​10.​1016/j.​rmed.​2012.​11.​007 (2013).

	40.	 Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4766–4775 
(2017).

	41.	 Heagerty, P. J., Lumley, T. & Pepe, M. S. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 
56(2), 337–344. https://​doi.​org/​10.​1111/j.​0006-​341X.​2000.​00337.x (2000).

Acknowledgements
We thank Takashi Kinoshita for his invaluable help with data collection and analysis. We thank Gabrielle White 
Wolf, PhD, from Edanz (https://​jp.​edanz.​com/​ac) for editing a draft of this manuscript.

Author contributions
Conceptualization; F.K., T.T., T.Y. Data curation; F.K., T.T., Y.O., Y.O., S.W., N.H., T.T. Formal analysis; F.K., T.T., 
T.Y., K.M. Funding acquisition; T.T., T.T., T.Y. Investigation; F.K., T.T., Y.O., Y.O., S.W., N.H., T.T., T.Y. Methodol-
ogy; F.K., T.T., T.Y., K.M. Project administration; F.K., T.T., T.Y., K.M., T.T. Resources; F.K., T.T., Y.O., Y.O., S.W., 
N.H., T.T. Software; T.Y., K.M., N.N. Supervision; T.T., N.N., M.M. Validation; F.K., T.T., T.Y., K.M., T.T., N.N., 
M.M. Visualization; F.K., T.T., T.Y., K.M. Roles/Writing—original draft; F.K., T.T., T.Y., K.M. Writing—review & 
editing: F.F.K., T.T., T.Y., K.M., N.N., M.M.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​42964-8.

Correspondence and requests for materials should be addressed to T.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.2196/24018
https://doi.org/10.1109/JBHI.2017.2767063
https://doi.org/10.1002/lrh2.10223
https://doi.org/10.1016/j.jtho.2020.06.001
https://doi.org/10.1016/j.lungcan.2022.12.008
https://doi.org/10.1111/jth.12075
https://doi.org/10.1016/j.rmed.2012.11.007
https://doi.org/10.1016/j.rmed.2012.11.007
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://jp.edanz.com/ac
https://doi.org/10.1038/s41598-023-42964-8
https://doi.org/10.1038/s41598-023-42964-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Development of artificial intelligence prognostic model for surgically resected non-small cell lung cancer
	Results
	Patient characteristics. 
	Development of AI prognostic model. 
	Identification of important explanatory variables for AI prognostic model. 
	Calculation of predicted probability of survival based on AI prognostic model. 

	Discussion
	Methods
	Study population. 
	Dataset. 
	AI prognostic model. 
	Statistical analysis. 

	References
	Acknowledgements


