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Dark matter halo mass functions 
and density profiles from mass 
and energy cascade
Zhijie (Jay) Xu 

Halo abundance and structure play a central role for modeling structure formation and evolution. 
Without relying on a spherical or ellipsoidal collapse model, we analytically derive the halo mass 
function and cuspy halo density (inner slope of −4/3) based on the mass and energy cascade theory 
in dark matter flow. The hierarchical halo structure formation leads to halo or particle random walk 
with a position-dependent waiting time τg . First, the inverse mass cascade from small to large scales 
leads to the halo random walk in mass space with τg ∝ m

−�

h
 , where mh is the halo mass and � is a halo 

geometry parameter with predicted value of 2/3. The corresponding Fokker-Planck solution for halo 
random walk in mass space gives rise to the halo mass function with a power-law behavior on small 
scale and exponential decay on large scale. This can be further improved by considering two different 
� for haloes below and above a critical mass scale m∗

h
 , i.e. a double-� halo mass function. Second, a 

double-γ density profile can be derived based on the particle random walk in 3D space with a position-
dependent waiting time τg ∝ �(r)−1

∝ r
−γ , where � is the gravitational potential and r is the particle 

distance to halo center. Theory predicts γ = 2/3 that leads to a cuspy density profile with an inner 
slope of −4/3, consistent with the predicted scaling laws from energy cascade. The Press-Schechter 
mass function and Einasto density profile are just special cases of proposed models. The small scale 
permanence can be identified due to the scale-independent rate of mass and energy cascade, where 
density profiles of different halo masses and redshifts converge to the −4/3 scaling law ( ρh ∝ r

−4/3 ) 
on small scales. Theory predicts the halo number density scales with halo mass as ∝ m

−1.9

h
 , while the 

halo mass density scales as ∝ m
4/9

h
 . Results were compared against the Illustris simulations. This new 

perspective provides a theory for nearly universal halo mass functions and density profiles.

Within the standard �CDM (cold dark matter) cosmology1–4, the formation of structures proceeds hierarchically 
with small structures coalescing into large structures in a “bottom-up” fashion. For systems involving long-range 
interaction, the formation of haloes of different sizes is necessary to maximize system entropy5. Therefore, highly 
localized halo structures and their evolution are major features of �CDM model6,7. As a counterpart of “eddies” 
in hydrodynamic turbulence, “haloes” are the building blocks in the flow of dark matter8–10. Halo abundance and 
internal structure play a central role for modeling structure formation and evolution. These two quantities are 
also critical to understand the small scale challenges for �CDM when comparing model with observations11–14. 
However, despite having been extensively studied over many decades, our understanding is still not entirely 
satisfactory.

First, the abundance of dark matter haloes is described by a halo mass function. The seminal Press-Schechter 
(PS) model allows one to predict the shape and evolution of mass function based on a density peak approach15. 
This model relies on a threshold value of overdensity ( δc ) that can be obtained from the nonlinear collapse of 
a spherical over-density16,17. Bond et al. provided an alternative derivation using an excursion set approach 
(EPS) that puts the theory on a firmer footing by removing the fudge factor in original PS model18, which was 
further extend to excursion set with correlated steps19–21. The PS model was further improved by Jedamzik 
with a formalism explicitly counting all cosmic materials to address the so-called “cloud-in-cloud” problem in 
density peak approach22. Lee and Shandarin adopted Zeldovich approximation and extended the PS formalism 
to a non-spherical dynamical model23. Other developments include combination of the peak and excursion set 
approaches20, a moving barrier as a better density threshold24, and more recent efforts on developing emulators 
of halo mass functions for a range of different cosmologies25.
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However, when compared to N-body simulations, both PS and EPS models overestimate the number of low-
mass haloes and underestimate the number of massive haloes. There are also significant errors at high redshifts26. 
Further improvement was achieved by computing the density threshold δc for ellipsoidal collapse27,28. In contrast 
to the spherical collapse where δc is independent of halo mass, the ellipsoidal collapse leads to a mass-dependent 
overdensity threshold δc . This modification (hereafter ST) considerably complicates the derivation but provides 
a better agreement with simulations.

Because of its simplicity, the PS-EPS-ST mass functions are still a very popular analytic model. However, the 
theoretical basis of this approach is at best heuristic. First, the derivation requires a threshold overdensity from 
a simplified (if not over simplified) collapse model (either spherical or ellipsoidal). Second, the linear density 
field is required to identify collapsed structures that is deeply in the non-linear regime. In principle, halo mass 
function should be an objective intrinsic property of self-gravitating collisionless system that is independent of 
any simplified (spherical or ellipsoidal) collapse models. In this paper, a different approach is taken to derive the 
halo mass function without resorting to any simplified models. This approach is based on the random walk of 
haloes in mass space, which is a direct result of inverse mass cascade in dark matter flow10.

Next, the structure of haloes is described by the halo density profile that can be studied both analytically and 
numerically with N-body simulations29,30. Since the seminal work of spherical collapse17, the power-law density 
profile was derived under the self-similar approximation. The secondary in-fall model suggests a power-law 
density dependent on the initial density of the region that collapsed31,32. High-resolution N-body simulations 
have shown nearly universal profile with a cuspy density shallower than isothermal profile at smaller radius and 
steeper at larger radius33,34. For the cuspy inner density from N-body simulations, there seems no consensus 
on the exact value of the asymptotic logarithmic density slope γ . Since the first prediction of γ = −1.0 in NFW 
profile33, the inner density slope of simulated haloes have different values from γ > −1.035 to γ = −1.236, and 
γ ≈ −1.337–39. In addition, there still lacks a complete understanding for the origin of nearly universal density 
profile7. In this paper, similar to the halo random walk in mass space for halo mass function, a new approach is 
presented based on the particle random walk in real space, which provides a possible theory for nearly universal 
halo structures and density profiles.

Existing halo mass functions
For comparison with our mass function model, a brief overview of existing mass functions is presented here. The 
exact definition of mass function varies widely in the literature. The two widely used mass functions are defined as

where n(mh, z) is the number density of haloes, ρ0 is the background density. Here σδ(mh) is the density fluctua-
tion when density field is smoothed at mass scale mh , which can be computed from the density power spectrum. 
When a normalized variable ν = δ2c /σ

2
δ (mh) is used, the third definition f (ν) can be introduced such that the 

multiplicity mass function f(σδ , z) = 2νf (ν) . In this definition, the PS mass function reads

The modified PS model (ST model) can be compactly written as:

where the normalization condition requires:

The best fitted parameters from simulation is A = 0.3222 , q = 0.707 , and p = 0.3 (hereafter ST1), while 
A = 0.3222 , q = 0.75 , and p = 0.3 was suggested by Sheth and Tormen40 (hereafter ST2). Both models satisfy 
the normalization condition 

∫∞
0 f (ν)dν = 1.

Many empirical mass functions were also proposed by fitting to the high-resolution simulation data. For 
example, a universal mass function by Jenkins etc. (hereafter JK) covers a wide range of different cosmologies 
and redshifts that is written as41,

where the threshold density δc = 1.6865 . Using a similar form of mass function to ST, Warren proposed (here-
after WR)42
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It should be noted that these empirical mass functions might not satisfy the normalization constraint and can 
be difficult to extrapolate beyond the range of fit.

The other widely used empirical mass function by Tinker etc. was also calibrated from numerical simulations 
with haloes identified as isolated spherical overdensity masses. The range of halo mass is between 1011 and 1015 
h−1M⊙ with redshift z ≤ 243. TK mass function reads

where best fitted parameters A = 0.186 , a = 1.47 , b = 2.57 and c = 1.19 for haloes with a critical density ratio 
�c = 200 . Table 1 summarizes different halo mass functions f(σδ , z) in Eq. (1). The double-� mass function is 
analytically derived in Section “Double-λ halo mass function”.

Mass and energy cascade between haloes
To derive the halo mass function and density profiles, we first introduce the relevant context and background. 
In CDM cosmology, haloes are continuously merging with small structures (mass accretion). This facilitates an 
inverse mass cascade in halo mass space, i.e. a continuous mass transfer from small to large mass scales (“inverse”) 
to allow hierarchical structure formation (see Fig. 1). To explain this, we first identify all haloes in entire system 
and then group them according to their mass mh . In simulation, a clear definition of halo is required to identify 
these haloes. This definition is usually related to a critical density δc from a simplified collapse model. At this 
step, we just treat haloes as existing objects without triggering a specific halo definition. In Fig. 1, halo of mass 
mh merging with a single merger of mass m results in a new halo of mass mh +m . This causes a continuous mass 
flux from small to large scales along the chain of merging, i.e. an inverse mass cascade at a rate of εm.

Next, the mass of entire halo group ( mg ) including all haloes of the same mass mh is mg = Nhmh , where Nh is 
the number of haloes in that group. Now let’s consider the most dominant and frequent merging, i.e. the merging 
with a single merger (or a single particle of mass m) in Fig. 1, where τh is the average waiting time of a given halo 
group, i.e. the average time interval between two subsequent merging events involving single mergers with any 
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Table 1.   Different Halo Mass Functions f(σδ , z).
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Figure 1.   Schematic plot of the inverse mass cascade for hierarchical structure formation. Halo of mass mh 
merges with single merger (free DM particles of mass m) to cause the mass flux into haloes on larger scales 
mh +m and the next merging along the chain. This facilitates a continuous mass cascade from small to large 
scales. A scale-independent mass flux εm is expected for haloes in the mass propagation range ( < m∗

h ). Mass 
cascaded from small scales is simply propagated in the propagation range and consumed to grow haloes with 
mass > m∗

h in the deposition range.
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one halo in the same group. Therefore, the rate of mass transfer (or cascade) from mass scale mh to scale mh +m 
during the time interval τh should be

i.e. the entire halo mass mh is transferred to a larger scale in a time interval τh . This equals the rate of change 
for total mass in all haloes greater than mh . Here Mh(a) is the total mass in all haloes, fM(mh, a) = FM/ρ0 (see 
Eq. 1) is the probability distribution of total halo mass Mh with respect to mh . The integration gives the total mass 
in all haloes greater than scale mh . The ’minus’ sign stands for the “inverse” cascade from small to large scales.

When self-gravitating collisionless system reaches a statistically steady state, this rate of mass transfer must 
be scale independent (i.e. εm is independent of mh ). If this is not the case, there would be a net accumulation 
of mass at some intermediate mass scale below m∗

h . We exclude this possibility because we require statistical 
structures of haloes to be self-similar and scale free for haloes smaller than m∗

h . This leads to the rate of mass 
cascade εm independent of mass scale mh up to a critical mass m∗

h
10. Therefore, taking the derivative of Eq. (8) 

with respect to mh leads to

where mg = Nhmh is the halo group mass, mp is mass of a single particle (mass resolution in N-body simulation).
Here the scale-independent εm requires the halo group mass mg (mh, t) ≡ mg (mh) to be independent of time, 

i.e. a “small scale permanence” where the group mass mg of different halo masses mh and different redshifts z 
should collapse on to a common scaling law (Eq. (10) and Fig. 2). Once the statistically steady state is estab-
lished, the rate of mass cascade εm becomes scale-independent. The halo group mass mg in propagation range 
becomes time independent due to scale-independent εm . Mass is simply injected at the smallest scale (scale of 
single mergers), propagated to larger scales in propagation range ( mh < m∗

h ), and consumed to grow haloes in 
deposition range ( mh > m∗

h ). Halo group mass mg (mh) is constant in time for haloes mh < m∗
h , and grows with 

time for haloes mh > m∗
h . Similarly, due to scale-independent energy cascade, the “small scale permanence” for 

halo density profile will be identified in Section “Mass scale m*h and small scale permanence” (Fig. 10).
To validate this concept, Fig. 2 presents results from large scale cosmological Illustris simulation (Illus-

tris-1-Dark)44. Illustris is a suite of large volume cosmological DM-only and hydrodynamical simulations. The 
selected Illustris-1-Dark is the DM-only simulation of 106.5Mpc3 cosmological volume with 18203 DM parti-
cles for the highest resolution. Each DM particle has a mass around 7.6× 106M⊙ . The gravitational softening 
length is around 1.4kpc. Haloes in simulation were identified by a standard friends-of-friends (FoF) algorithm 
with linking length parameter b = 0.2 and halo center placed at the minimum of the gravitational potential of 
entire halo. Simulation has cosmological parameters of a total matter density �m = 0.2726 , dark energy density 
�DE = 0.7274 at z = 0 , and a dimensionless Hubble constant h = 0.704.

Next, if we focus on a given halo in a halo group, the waiting time τg for that particular halo to merge with a 
single merger should be different and much greater than τh (the waiting time for entire group). Here τg is expected 

(8)εm = − mh
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Figure 2.   The variation of halo group mass mg with halo mass mh at different redshift z from Illustris-1-
Dark simulation. Figure demonstrates the small scale permanence of group mass mg in mass space. Once the 
statistically steady state is established ( z < 8 ), rate of inverse mass cascade εm becomes scale independent such 
that the halo group mass mg at different redshift z collapse to a time independent power-law mg ∝ m−�

h  (Eq. 10) 
at small mass scale (propagation range) with halo geometry parameter � ≈ 0.88.
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to be inversely proportional to the surface area of that halo. The larger surface area Sh , the more likely for that 
halo to merge with a single merger, and the smaller waiting time τg . Therefore, for haloes with a given mass mh , 
this waiting time τg ∝ S−1

h ∝ m−�

h  , where � is a key halo geometry parameter. Intuitively, � ≈ 2/3 for large haloes 
(i.e. Sh ∝ m

2/3
h  ). This is also equivalent to the waiting time τg ∝ �−1 , where � ∝ Gmh/rh is the gravitational 

potential and rh ∝ m
1/3
h  is the size of halo. The greater halo gravitational potential � , the larger velocity disper-

sion σ 2 from virial theorem (or halo temperature), the smaller waiting time τg , and the more frequently halo 
merging with mergers. Particle waiting time is dependent on its local potential. This will be used for deriving 
halo density profile in Section “Double-γ halo density profile”.

Depending on the number of haloes Nh in a given halo group, the two waiting times τg and τh are related to 
each other as

Again, due to scale-independent rate of mass cascade εm (not varying with mh in propagation range), Eq. (10) 
requires the number of haloes Nh ∝ m−1−�

h  for any given mass mh , or equivalently a power-law group mass 
mg = Nhmh ∝ m−�

h  at small mass scales, i.e. the small scale permanence in Fig. 2. In the same figure, we obtain 
� ≈ 0.88 for Illustris simulation and number of haloes in halo group Nh ∝ m−1.9

h  that is in good agreement with 
other work45.

To summarize, the mass cascade at statistically steady state involves two ranges, the propagation and deposi-
tion range. The propagation range for haloes with mass mh < m∗

h involves a sequence of merging with single 
mergers (the smallest structure) to simply propagate mass to larger scales. In this range, the rate of mass transfer 
εm is independent of halo mass mh and halo group mass mg is constant in time. The deposition range ( mh > m∗

h ) 
involves the consumption (deposition) of mass cascaded from scales below m∗

h to grow haloes above m∗
h (Fig. 1). 

Therefore, the inverse mass cascade can be described as: “Little halos have big halos, That feed on their mass; 
And big halos have greater halos, And so on to growth.”

In addition, haloes possess finite kinetic and potential energy. Accompanied by the mass cascade, there 
exists a simultaneous energy cascade across haloes of different masses46,47. The rate of energy cascade 
εu ∝ εm

〈

σ 2
〉

/Mh ∝ −H
〈

σ 2
〉

 , where 
〈

σ 2
〉

 is the mean kinetic energy of all particles in all haloes. The specific 
rate of energy cascade per unit mass ( εu < 0 for inverse energy cascade) can be estimated from the time variation 
of velocity dispersion u20 for all dark matter particles,

where u0 ≈ 350km/s from N-body simulation and t0 is the current age of universe9.
Therefore, similar to the mass cascade in propagation range, there exist an inverse (kinetic) energy cascade 

from small to large scales with a constant rate εu . In this range of scales, the small scale structures evolve so fast 
and do not feel the slowly evolving large scale structures directly except through constant rate εu . This descrip-
tion indicates that relevant quantities in this range of scales should be determined by and only by εu ( m2/s3 ), 
gravitational constant G ( m3/kg · s2) , and the relevant length scale r. By a simple dimensional analysis, the halo 
mass enclosed within r and corresponding halo density should follow the scaling9

i.e. the 5/3 law and −4/3 law. These results can be demonstrated and confirmed by both N-body simulations 
(Figs. 12, 13, 14, 15) and halo density profiles from random walk in Section “Double-γ halo density profile” 
(Eq. 30).

Double‑� halo mass function
To derive halo mass function, the inverse mass cascade can be transformed into a halo random walk in mass 
space that mimics the random work of particles for diffusion problem. Just similar to the particle diffusion, we 
can derive the relevant Fokker-Planck equation and corresponding solution, from which halo mass function 
can be analytically solved. This is not just mathematically convenient, but reveals some fundamental aspects of 
halo mass function as an intrinsic property of self-gravitating collisionless system.

As shown in Fig. 1, haloes are continuously migrating in mass space from one scale ( mh ) to neighboring scale 
( mh +m ) by merging with single mergers. This leads to a probability distribution to find a halo at a given mass. 
The waiting time (or jumping frequency) for a given halo to migrate from a given mass mh to neighboring mass 
mh +m is τg in Eq. (10). Different from the standard random walk with a constant waiting time, the halo waiting 
time τg is dependent on the mass of halo, i.e. a position-dependent τg (Eq. 10). For halo with a given mass mh , 
the waiting time τg ∝ m−�

h  , where � is a key halo geometry parameter we discussed.
First, the random walk of haloes in mass space describes the stochastic variation of the mass of a given halo 

due to continuous merging with single mergers of mass m. Following the Langevin equation, we can write a 
stochastic equation for halo mass mh

10

where m/τg represents the average rate of mass change. For a power-law waiting time τg ∝ m−�

h  , we find the 
position-dependent diffusivity should take the form of

(10)τh = −mh

εm
= τg

Nh
∝ N−1

h m−�

h and mg = Nhmh ∝ m−�

h .

(11)εu = −3

2

u20
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≈ −4.6× 10−7m
2

s3
,

(12)mr(r) ∝ ε2/3u G−1r5/3 and ρr(r) ∝ ε2/3u G−1r−4/3,
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Here Dp0(t) is a proportional constant for diffusivity Dp . The white Gaussian noise ς(t) satisfies the covariance 
�ς(t)ς(t ′ )� = δ(t − t

′
) with a zero mean �ς(t)� = 0 . Equation (13) describes the stochastic evolution of halo 

mass mh with a waiting time τg (mh) ∝ m−�

h .
Second, in Stratonovich interpretation48, the Langevin equation (Eq. 13) yields to a distribution function 

Ph(mh, t) satisfying the Fokker-Planck equation (resembling particle diffusion)

which describes the evolution of probability function Ph for halo mass mh in mass space. Obviously, the halo 
mass function fM(mh, t) is exactly the distribution function Ph , i.e. fM ≡ Ph.

Finally, solution to Eq. (15), i.e. the halo mass function, is a stretched Gaussian with an exponential cut-off 
for large mh and a power-law behavior for small mh,

The mean square displacement in mass space is

where m∗
h(t) is the critical mass scale and γ0 is just a proportional constant. With the exponent of 1/(1− �) ≥ 1 

in Eq. (17), it is clear that the random walk of haloes in mass space is of a super-diffusion nature. Now fM(mh, t) 
(Eq. 16) can be rewritten in terms of m∗

h

where the dimensionless constant

The time dependence of fM is absorbed into m∗
h . Intuitively, � ≈ 2/3 for large haloes in deposition range with low 

concentration, whose central structures are still dynamically adjusted due to fast mass accretion. While for small 
haloes with high concentration (propagation range), the mass accretion is slow and inner structure is stable49. 
These small haloes can be treated as fractal objects with a fractal surface dimension Dh ≤ 3 . The geometry 
parameter � = Dh/3 can be greater than 2/3 (see Fig. 2). These high concentration low mass haloes are usually 
found in denser environments50. The denser environment might lead to a rougher halo surface and higher surface 
fractal dimension Dh . Therefore, two different � (i.e. double-� ) are required for two ranges (propagation range 
with mh < m∗

h and deposition range with mh > m∗
h ) due to different halo properties and surrounding environ-

ments. The single-� halo mass function in Eq. (18) can be naturally generalized to a double-� halo mass function 
with �1 and �2 for propagation and deposition ranges, respectively. Therefore, the double-� mass function reads

By introducing variable ν = (mh/m
∗
h)

2/3 , the three parameter double-� mass function can be finally written as,

where model parameters p and q have clear physical meaning. Both are related to halo geometry parameters �1 
and �2 as,

Clearly, Eq. (21) reduces to the Press-Schechter (PS) mass function if �1 = �2 = 2/3 and η0 = 1/2 . However, the 
derivation of double-� mass function does not rely on any collapse model (spherical or ellipsoidal). The critical 
overdensity δc from collapse model is not required in this formulation. In simulation, haloes are usually defined 
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using the critical overdensity δc to compute the halo mass function. The derivation of double-� mass function of 
Eq. (21) does not depend on the exact definition of halo. Different definitions of halo in simulation might affect 
both halo mass mh and the critical mass m∗

h , but not the ratio ν = (mh/m
∗
h)

2/3 , and therefore not the double-� 
halo mass function. More importantly, �1 = �2 = 2/3 or p = q = 1 is a natural result of current theory. This 
formulation reveals that the halo mass function in the form of Eq. (21)is an  intrinsic property of self-gravitating 
collisionless dark matter system that is independent of spherical or ellipsoidal collapse models.

The halo geometry exponent � has a fundamental meaning to relate halo surface area (or effective mass accre-
tion area) to its mass. The cosmology and redshift dependence of �1 and �2 can be systematically studied by fitting 
the model to the simulation data of different cosmologies, similar to the study in25 and51.

Alternatively, similar to the scale radius rs for halo density where logarithmic density slope is -2, we may 
introduce a scale mass mhs where logarithmic slope ∂ ln(fM)/∂ ln(mh) = −1 such that mhs = (2η0q)

3/(2p)m∗
h 

from Eq. (20). With a new scaled variable ν̄ = (mh/mhs)
2/3 , mass function in Eq. (21) can be further simplified 

with p and q as the only two parameters

To validate the derived double-� mass function, we presents results from Illustris simulation (Illustris-1-Dark)44. 
Figure 3 presents the halo mass function f(σδ , z) in Eq. (1). The best fit of double-� mass function to the simu-
lation data at all z gives values of η0 = 1.162 , q = 0.365 , and p = 1.185 (Fig. 3), which leads to �1 = 0.856 
and �2 = 0.605 from Eq. (22) for the propagation and deposition ranges, respectively. This leads to a slope of 
−�1 − 1 ≈ −1.9 for halo number density n(mh, z) ∝ m−1.9

h  (Eq. 10), in very good agreement with Fig. 2 and 
other work45. Compared to predicted value of � = 2/3 for matter dominant universe, the effect of dark energy 
in Illustris simulations seems to enhance the value of �1 and decrease the value of �2 , reflecting the changes in 
environments and halo properties due to the presence of dark energy and accelerated expansion.

The PS mass function overestimate the mass in small haloes and underestimates the mass in large haloes. The 
JK mass function matches simulation for large mass haloes with large deviation for small haloes. The fitted WR 
mass function does not satisfy the normalization condition, where 

∫∞
0 fWR(ν)dν diverges. The WR mass function 

also deviates at small mass with a finite limit f(σ−1
δ , z) = −1.695 for σδ → ∞ . The ST functions matches the 

simulation better with f(σδ , z) → σ
2p−1
δ ≈ σ−0.4

δ  for large σδ . For large halo or high redshift, ST mass functions 
tend to overestimate when compared with simulation, which is also found in other studies52,53. The double-� mass 
function is better than ST function for large haloes with f(σδ , z) → σ

−pq
δ ≈ σ−0.43

δ  for σδ → ∞.
Figures 4, 5, 6, 7 present the comparison of halo mass functions FM in Eq. (1) with simulation results at 

z = 0, 4, 8, and12 , as a function of halo mass mh . Relative errors of different mass functions when compared to 
binned simulation data are also presented in the bottom plots. Similar conclusions can be obtained from these 
plots, where WR, ST, TK and double-� mass functions agree with simulation at lower redshift. Double-� mass 
function is slightly better at higher redshifts z = 8 and 12.
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(
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Figure 3.   Comparison between different halo mass functions f(σδ , z) and simulation at different redshift z. The 
PS mass function overestimate the mass in small haloes and underestimates the mass in large haloes. The fitted 
JK mass function matches simulation only in a given range with large deviation for small mass haloes. The WR 
mass function deviates at small mass with a limit f(σ−1

δ → 0, z) = −1.695 . The double-� mass function (Eq. 21) 
with best fitting parameters η0 = 1.162 , q = 0.365 , and p = 1.185 (or �1 = 0.856 and �2 = 0.605 ) matches the 
simulation and is slightly better than ST mass functions at large halo mass.
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Mass scale m*h and small scale permanence
The inverse mass cascade and halo mass function (Eq. 20) require a critical halo mass scale m∗

h that can be related 
to halo velocity dispersions from virial theorem

where σ 2
v (mh) is the velocity dispersion of all DM particles in a halo with a given mass mh , which represents the 

temperature of that halo. Here 〈〉 represents the average for all haloes in the same group with same mass mh . In 
addition, σ 2

h = VAR(Vh) is the dispersion (variance) of halo velocity Vh (the mean velocity of all particles in the 
same halo) for all haloes in the same group, where σ 2

h  represents the temperature of halo group that is relatively 
independent of halo mass mh

5,47.
Figure 8 presents an example of the variation of 〈σ 2

v 〉 and σ 2
h  with mh at z = 8 , where the critical mass 

m∗
h(z = 8) = 9× 1010M⊙ can be determined by setting �σ 2

v (m
∗
h)� = σ 2

h  in Eq. (24). We can similarly compute 
the critical mass m∗

h for other redshifts. The variation of m∗
h with the scale factor a is presented in Fig. 9. In linear 

regime, m∗
h ∝ a3 is expected, while in nonlinear regime m∗

h ∝ a3/210.
With halo mass function in Eq. (18) and the small scale permanence for mg in Eqs. (9, 10), and Fig. 2, the 

halo group mass mg = mhmp ( mp is particle mass) should satisfy

such that the total mass in all haloes Mh(a) ∝ m∗
h
1−� when statistically steady state is established in the nonlinear 

regime. With � = 2/3 for mh = m∗
h , Mh(a) ∝ a1/2 is expected. The time variation of total halo mass Mh is also 

presented in Fig. 9.
Next, similar to the small scale permanence for group mass mg in Fig. 2, we will present the small scale per-

manence for halo density profile. From the scaling laws due to energy cascade, the density scaling ρr ∝ r−4/3 is 
proposed in Eq. (12), which already hints the small scale permanence. To demonstrate this concept, the density 
profiles for haloes with a critical mass m∗

h at different redshifts are studied first. In Illustris-1-Dark simulation, 
all haloes with mass between 10±�m∗

h are identified at different redshifts z with � = 0.1 . The spherical averaged 
density profile is computed for every halo. The density profile for haloes with critical mass m∗

h is computed as 
the average density profile for all haloes with mass between 10±�m∗

h . Figure 10 presents the time evolution of 
halo density profiles for haloes with critical mass m∗

h(z) . The small scale permanence from energy cascade can 
be clearly demonstrated as the density profiles for haloes with critical mass at different redshifts all collapse onto 
the predicted density scaling (blue solid line ρh ∝ r−4/3 ) on small scales. Finally, if gravity is the only interac-
tion and dark matter is fully collisionless and cold, extending the established scaling in Fig. 10 to the smallest 
length scale and and the earliest time (or the highest z) might be able to identify dark matter particle mass, size, 
lifetime, and many other properties46.

(24)ν =
(

mh

m∗
h

)2/3

= �σ 2
v (mh)�

�σ 2
v (m

∗
h)�

= �σ 2
v (mh)�

σ 2
h (m

∗
h)

,

(25)mg (mh, t) = Mh(t)fMmp ∝ Mhm
∗
h
�−1m−�

h mp ≡ mg (mh),

108 109 1010 1011 1012
Halo mass m

h
 (M

sun
)

101

102

103

104

105

<
v
2> (km2/s2)

h
2 (km2/s2)

m
h
*

z=8

Figure 8.   The halo velocity dispersions 〈σ 2
v 〉(mh) and σ 2

h  at z = 8 from Illustris-1-Dark simulation. The two 
velocity dispersions represent the temperature of haloes and temperature of halo groups47. The large fluctuation 
at large mass scale is due to fewer massive haloes. Here �σ 2

v � ∝ m
2/3

h  while σ 2
h  is relatively independent of mh . The 

critical halo mass m∗
h(z = 8) = 9× 1010M⊙ is found by setting �σ 2

v �(m∗
h) = σ 2

h  (Eq. 24).
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Double‑γ halo density profile
The halo density profile can be analytically derived based on a similar idea as deriving halo mass function. 
Within CDM paradigm, the formation of structures starts from the gravitational collapse of small scale density 
fluctuations and proceeds hierarchically such that small structures coalesce into large structures in a “bottom-up” 
fashion. The halo structure is formed hierarchically through a series merging with smaller structures (dominantly 
with single mergers in Fig. 1).

Now let us follow the mass accretion history of a given halo in Fig. 11, where halo mass mr ≡ mr(t) (or halo 
size r ≡ r(t) , the radius enclosing mass mr ) continuously varies with time from 0 to mr (or size from 0 to r ). The 
mean waiting time of every merging with a single merger m has a simple scaling as τg ∝ m−�

r ∝ �−1 , where � is 
a halo geometry parameter (see Eq. 10) and �(r) ∝ Gmr/r is the gravitational potential at r. In 3D space, halo 
size r can be related to the position X t of merger m as r =

√
X t · X t  . Since both halo mass mr(t) and �(r) can 

be related to size r(t), the waiting time τg should also be a function of r(t), which means a varying waiting time 
dependent on the particle distance r to halo center

where γ is an exponent for r-dependence of waiting time τg , which can be related to the slope of density profile 
(see Eq. 30).

Since haloes are formed by sequential merging, every DM particle in any halo was a single merger at the 
time they joined that halo. That particle starts to continuously perform a 3D random walk with a position-
dependent waiting time τg dependent on its local potential � or r (Eq. 26) right after the merging, where �(r) is 
determined by the total enclosed mass within r. In this regard, halo random walk in mass space is consistent with 
the particle random walk in 3D space. The random walk of DM particles has a position dependent waiting time 
τg ∝ �(r)−1 ∝ r−γ , where r =

√
X t · X t  is the distance to halo center. The waiting time is also dependent on the 

local potential �(r) , or from virial theorem, the velocity dispersion σ 2 that represents the local temperature. Since 
energy cascade theory predicts the 5/3 law for mass scaling mr ∝ r5/3 for the inner region of virialized haloes 
(see Eq. 12), we have potential �(r) ∝ Gmr/r ∝ r2/3 such that γ = 2/3 from Eq. (26). A position dependent 
waiting time τg (r) is an important feature for hierarchical formation of halo structure. A longer waiting time 
τg (r) at small r means a more stable core region than the outer region.

Finally, the particle distribution resulting from this position-dependent random walk in 3D space gives rise 
to the halo density, as shown in Fig. 11. Therefore, to find the halo density profile, we need to derive the particle 
distribution function due to the random walk in 3D space with τg (r) ∝ r−γ . The 3D particle random walk can 
be described by a Langevin equation for particle position X t [similar to Eq. (13) for halo random walk in mass 
space],

Due to position-dependent waiting time τg (r) , the position-dependent diffusivity reads

(26)τg (r) ∝ �(r)−1 ∝ r(t)−γ ,

(27)
dX t

dt
=

√

2DP(X t)ξ(t).

(28)DP(X t) = D0(t)r
2γ ,
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where D0(t) is a proportional constant. The smaller r, the smaller diffusivity or longer waiting time, and the 
higher particle density. In Itô convention, the 3D Fokker-Planck equation in Cartesian coordinate can be directly 
obtained for particle distribution function Pr(X , t) ( i = 1, 2, 3 for Cartesian coordinates),

The corresponding solution of Eq. (29) in spherical coordinate is

Since the distribution function Pr(r, t) is equivalent to halo density, we find that the parameter γ is half of the 
density slope at small r.

From this insight, assume γ is unknown, we can predict the value of γ as follows: Since the waiting time 
τg ∝ �(r)−1 ∝ r−γ , halo density should scale as ρr ∝ r−2γ from Eq. (30). The halo mass enclosed in r scales as 
mr ∝ ρr r

3 ∝ r3−2γ . The local potential at r should scale as �(r) ∝ Gmr/r ∝ r3−2γ−1 . The waiting time of particle 
at r should satisfy Eq. (26) that requires 3− 2γ − 1 = γ such that γ = 2/3 and the density slope 2γ = 4/3 . It 
should be noted that the random walk theory for halo structure formation confirms the −4/3 law ( ρr ∝ r−4/3 ) 
predicted by the energy cascade theory in Eq. (12). Predictions are tested against simulations in Figs. 12, 13, 
14,  15. Similar to halo mass function (Eq. 20), the exponent γ can be different in two different ranges, i.e. the 
power law below the scale radius rs and the exponential decay above rs . Using two different γ for r-dependence 
of waiting time τg (r) ∝ r−γ , i.e. γ1 and γ2 for two different ranges, based on the single-γ distribution in Eq. (30), 
the double-γ distribution reads

(29)
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Figure 10.   The evolution of halo density profiles for haloes with critical mass m∗
h(z) . Figure demonstrates the 

small scale permanence, i.e. the density profiles for haloes with mass m∗
h at different redshifts z collapse at small 

scale r onto the predicted density scaling (-4/3 law with ρh ∝ r−4/3 ) from the theory of energy cascade (solid 
blue line from Eq. 12).
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Introducing the conventional scale radius rs(t) where the logarithmic slope of Pr(r, t) equals -2, we should have

Substituting Eq. (32) into Eq. (31) and introducing a dimensionless spatial-temporal variable x = r/rs(t) , dis-
tribution function reads
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Figure 12.   Halo density profiles for different halo mass mh at z = 0 (solid lines). The predicted scaling law 
(Eq. 12) for halo density is presented as the solid blue line. The double-γ density model (Eq. 38) was also plotted 
for all haloes as dashed lines.
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Figure 13.   Halo density profiles for different halo mass mh at z = 4 (solid lines). The predicted scaling law 
(Eq. 12) for halo density is presented as the solid blue line. for comparison, the double-γ density model (Eq. 38) 
was also plotted as dashed lines. Model fits better for halo density at higher redshift. The asymptotic density 
slope −4/3 at small r can be identified.
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Finally, the two parameter particle distribution function can be written as [with a similar form as mass function 
in Eq. (23)]

where two dimensionless parameters α and β are

The time variation of the distribution function is absorbed into the scale radius rs(t) . The double-γ distribution 
function reduces to the Einasto profile with α = 2β . The cumulative distribution in spherical coordinate can 
be easily obtained as,

(34)Pr(x) =
αβ
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.
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Figure 14.   Halo density profiles for different halo mass mh at z = 8 (solid lines). The predicted scaling law 
(Eq. 12) for halo density is presented as the solid blue line. The double-γ density model (Eq. 38) was also plotted 
as dashed lines. The asymptotic density slope −4/3 at small r can be identified.
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Figure 15.   Halo density profiles for different halo mass mh at z = 12 (solid lines). The predicted scaling law 
(Eq. 12) for halo density is presented as the solid blue line. The double-γ density model (Eq. 38) was also plotted 
as dashed lines for comparison.
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where Ŵ(x, y) is an upper incomplete gamma function.
So far we provide physical interpretation and a possible theory for halo density. The general density profile 

can be finally written as

where ρs(t) is the density at scale radius rs . Simulated haloes were found to have different density slopes in 
different simulations as discussed in Section “Introduction”. This might be due to the different radial flow and 
mass accretion rate in these haloes, whose density profile can be modelled by the general solution in Eq. (37)9.

On small scale, virialized haloes are incompressible with vanishing (proper) radial flow54. For fully virialized 
haloes with vanishing radial flow, we would expect −4/3 law for inner density with 2γ1 = 4/3 , which is consist-
ent with the limiting density slope in Eq. (12). Combining Eq. (37) with α/β = 2/3 leads to density profile that 
is consistent with the prediction from energy cascade in Eq. (12),

The small scale permanence for halo density in Fig. 10 becomes

where Ar is an amplitude parameter of halo density, βr = β is a shape parameter of density profile, and rs is the 
scale radius.

To validate the proposed density model in Eq. (38), spherical averaged density profile was first obtained for all 
haloes with given mass in a range of 10±�mh at different redshifts z. Next, we obtained the average halo density 
profile for all haloes in the same range at same redshift. The radial flow in these haloes might be cancelled out 
after this averaging such that the averaged halo density can be better described by Eq. (38) with an inner slope 
of 2γ1 = 4/3.

Figures 12, 13, 14, 15 present the halo density profiles of different halo mass mh at different redshifts z from 
Illustris dark matter only simulations: Illustris-1-Dark (solid lines), where � is selected to be 0.1. The double-γ 
density model (Eq. 38) was also used to fit all haloes and plotted as dashed lines in these figures. The best-fit 
model parameters Ar , βr and rs can be obtained for different halo mass mh and redshifts z (as presented in Figs. 16,  
17, 18). The double-γ density model provides a reasonably well fit to all haloes at all redshifts, with slightly better 
fit at higher redshift in a matter-dominant universe.

Figure 16 presents the variation of amplitude parameter Ar with the dimensionless parameter ν defined 
in Eq. (24). As expected, the amplitude parameter Ar ∝ ν2/3 increases with halo mass mh at fixed redshift or 
decreases with time at fixed mass mh . The mass cascade across haloes is accompanied by a simultaneous energy 
cascade across haloes. The rate of cascade is independent of mass scale for group of haloes of the same mass. For 
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individual haloes with mass mh < m∗
h , the rate of energy cascade ε in these haloes is smaller due to the longer 

waiting time τg ∝ m−�

h  . The effective rate of energy cascade ε in individual haloes is inversely proportional to τg,

Therefore, the halo density ρh ∝ ε2/3G−1r−4/3 ∝ m
2�/3
h  (see Eq. 12) such that the amplitude parameter Ar ∝ ν� , 

as shown in Fig. 16. With � = 2/3 , halo density scales with halo mass as ρh ∝ m
4/9
h  at a given position r.

Figure 17 presents the variation of shape parameter βr with ν . The shape parameter βr is relatively independ-
ent of parameter ν at low redshift z. It varies in a small range between 1 and 3 and slightly decreases with halo 
mass mh , which corresponds to a range of γ2 = 2/3 for large haloes and γ2 = 0 for small haloes with γ1 = 2/3 
(see Eq. 35). In the range r > rs , the potential � is relatively independent of r due to exponential decay of density. 
Therefore, the waiting time becomes less dependent on r in this range with γ2 ≤ γ1 . Table 2 lists relevant values 
of � and γ in different ranges.

Figure 18 presents the variation of the best fitted scale radius rs with ν at different redshifts z, where rs increases 
with ν with an approximate scaling of rs ∝ ν1/2 . In summary, the amplitude parameter Ar is related to the rate of 
cascade ε in haloes (Eq. 40), while the shape parameter βr is related to the parameter γ (Eq. 35), i.e. the position 
dependence of waiting time τg ∝ r−γ.

It would be also interesting to compare the density profile obtained in this work with the Einasto and NFW 
profiles. Figure 19 presents the comparison for small ( 108.5M⊙ ) and large haloes ( 1013M⊙ ) at redshift z = 0 
(haloes in Fig. 12). These density profiles include: (1) the general double-γ profile in Eq. (37) with α and β being 
independent; 2) the Einasto profile with α = 2β in Eq. (37); (3) the double-γ profile with α = 2β/3 in Eq. (37) 
or Eq. (38) for fully virialized haloes; and (4) the standard NFW profile. Bottom plots present the relative errors 
between these density profiles and simulation results. As expected, the general double-γ profile provides the best 
fit of simulated halo density, compared to NFW profile. The double-γ profile with α = 2β/3 (Eq. 38) provides a 
slight better fit than Einasto profile for small haloes, and a much better fit for large haloes.

Finally, additional tests for different halo definitions and cosmologies should be very helpful to include data 
from simulations other than Illustris series. In this case, parameters in halo mass function and density models 
(Eqs. (21) and (37)) need to be fitted for different cosmologies. From this study, we can find how model param-
eters (halo parameters � and γ ) vary with different cosmologies, which will require extensive work in future 
study. Here a quick test of double-γ density for some simulated haloes in the literature was presented. Figure 20 
provides the best fit by the general model in Eq. (37) for these simulated haloes. Since the analytically derived 
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Figure 17.   The variation of shape parameter βr for halo density with ν at different redshifts z. The shape 
parameter βr varies in a small range between 1 and 3 and slightly decreases with halo mass mh.

Table 2.   Halo parameters � and γ from theory and simulation.

Mass range Scale range � (pred.) � (simu.) γ (pred.) γ (simu.)

Small haloes mh < m∗
h Core region r < rs �1 = 2/3 �1 = 0.856 γ1 = 2/3 γ1 = 2/3

Small haloes mh < m∗
h Outer region r > rs �1 = 2/3 �1 = 0.856 γ2 = 2/3 γ2 = 0

Large haloes mh > m∗
h Core region r < rs �2 = 2/3 �2 = 0.605 γ1 = 2/3 γ1 = 2/3

Large haloes mh > m∗
h Outer region r > rs �2 = 2/3 �2 = 0.605 γ2 = 2/3 γ2 = 2/3
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double-γ profile reduces to Einasto profile for α = 2β/3 , the general double-γ profile is expected to provide a 
better fit than Einasto profile for all simulated haloes.
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Figure 18.   The variation of scale radius rs for halo density with ν at different redshifts z. The scale radius 
increases with ν as rs ∝ ν1/2.
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Figure 19.   The comparison between different density profiles that fit to haloes with a mass of 108.5M⊙ and 
1013M⊙ at redshift z = 0 . These density profiles include: (1) the general double-γ profile in Eq. (37) with α and 
β being independent (green); (2) the Einasto profile with α = 2β in Eq. (37) (blue); (3) the double-γ profile 
with α = 2β/3 in Eq. (37) or Eq. (38) (red); (4) the standard NFW profile (black). The bottom plots present 
the relative errors between these density profiles and simulation results. Double-γ profiles provide better fit of 
simulated halo density.
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Conclusion
In this paper, a simple theory was presented for halo mass function and density profile. The small scale perma-
nence is proposed for halo group mass mg and halo density profile ρh due to scale-independent rate of mass and 
energy cascade (Figs. 2 and 10). Both halo mass function and halo density profile can be analytically derived 
based on this simple theory. The position-dependent waiting time τg ∝ m−�

h  leads to an analytical mass function 
modelled by a stretched Gaussian with a power-law behavior on small scale and exponential decay on large scale 
(Eq. 18). This can be further improved by considering two different values of � in propagation and deposition 
ranges, i.e. a double-� mass function in Eq. (21). Similarly, a double-γ halo density profile is proposed based on 
the particle random walk in 3D space with a position-dependent waiting time τg ∝ r−γ (Eq. 37). The predicted 
value of γ = 2/3 leads to a cuspy density profile with an inner slope of −4/3, consistent with the energy cascade 
theory (Eq. 12). The Press-Schechter mass function and Einasto profile are just special cases of the proposed 
model. Models were compared and validated against the Illustris simulations. Future work will involve additional 
tests for proposed models in different cosmologies.

Data availability
Two datasets for this article, i.e. a halo-based and correlation-based statistics of dark matter flow, are available on 
Zenodo at http://doi.org/10.5281/zenodo.654123059,60, along with the accompanying presentation “A comparative 
study of dark matter flow & hydrodynamic turbulence and its applications”8.
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