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Associative memory by virtual 
oscillator network based on single 
spin‑torque oscillator
Yusuke Imai  & Tomohiro Taniguchi *

A coupled oscillator network may be able to perform an energy‑efficient associative memory 
operation. However, its realization has been difficult because inhomogeneities unavoidably arise 
among the oscillators during fabrication and lead to an unreliable operation. This issue could be 
resolved if the oscillator network were able to be formed from a single oscillator. Here, we performed 
numerical simulations and theoretical analyses on an associative memory operation that uses a virtual 
oscillator network based on a spin‑torque oscillator. The virtual network combines the concept of 
coupled oscillators with that of feedforward neural networks. Numerical experiments demonstrate 
successful associations of 60‑pixel patterns with various memorized patterns. Moreover, the origin 
of the associative memory is shown to be forced synchronization driven by feedforward input, where 
phase differences among oscillators are fixed and correspond to the colors of the pixels in the pattern.

The human brain has a sophisticated function called associative  memory1, whereby it can remember a pattern 
when shown a portion of that pattern. This function has been modeled in various ways with the goal of achieving 
a better understanding of brain activity and realizing energy-efficient bio-inspired computing. Since the develop-
ment of an autocorrelation model in the  1970s2–4, several theoretical models, such as the Hopfield  model5, have 
been developed that draw their inspiration from the characteristics of neural  activity6–15. These models have 
also been implemented in experimental devices. For example, the associative memory operation was recently 
performed in a spintronic memory consisting of a nanometer-scale ferromagnetic  multilayer16. In addition to 
these efforts embodying neuronal dynamics, it has been proposed that synchronized phenomena in coupled 
oscillator networks can be used to perform the associative memory  operation17–21. For example, a detailed analysis 
was conducted on an LC-circuit oscillator network performing the  operation21. A network of spintronic oscilla-
tors, called spin-torque oscillators (STOs), has also been shown to perform an associative memory  operation22.

There are two major issues with using an oscillator network for the associative memory operation. One is 
unstable operation due to inhomogeneity in the oscillator’s parameters. For example, variations in frequency 
among the oscillators are unavoidable in experimental realizations; they prevent a synchronization between the 
oscillators and decrease the accuracy of the associative  memory21. The other issue is that the required number 
of oscillators grows with the amount of input data. There are numerous challenges in fabricating a large number 
of oscillators and getting them to interact with each other. These issues might be resolved if we can construct an 
oscillator network virtually by using a single physical  oscillator23. Such a network would have no inhomogeneities 
in its parameters as only one oscillator would have to be fabricated. However, there are questions on how such 
a network could be realized and how it could show synchronization phenomena.

In this work, we demonstrate an associative memory operation by a virtual oscillator network through numer-
ical simulations and theoretical analyses. First, we provide a detailed description of the virtual oscillator network 
consisting of a single physical oscillator. In particular, we discuss the principles involved, i.e., those of the coupled 
oscillator networks and feedforward neural networks. Next, we show that a virtual oscillator network consisting 
of a single STO can recognize several different 60-pixel patterns by numerically simulating the motion of the 
STO. We reveal that the feedforward input in the virtual network forces the virtual oscillators to synchronize 
and that this phenomenon results in the associative memory operation.
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Results
Associative memory operation of this study
The associative memory operation studied here is to associate a pattern, called the pattern to be recognized, with 
a pattern in a stored set of patterns, called memorized patterns. For example, suppose that the three patterns, 
“0”, “1”, and “2”, shown in Fig. 1a are memorized, and the one shown in Fig. 1b is the pattern to be recognized: 
we can see that the pattern to be recognized is similar to the memorized pattern “1”. Throughout this paper, we 
will suppose the memorized patterns use 10(rows)× 6(columns)= 60-pixels patterns for memorized patterns 
and patterns to be recognized.

In the following subsections, we describe the concept of our virtual oscillator network after briefly reviewing 
a conventional oscillator network for comparison. Then, we demonstrate through numerical simulations that 
the virtual oscillator network can perform the associative memory operation.

Associative memory operation by conventional oscillator network
The associative memory operation by a conventional coupled oscillator network consists of two  steps21. The 
first step is to give a correspondence between the phases of the oscillators and the colors of the pattern to be 
recognized. We prepare N oscillators corresponding to the pixels of the pattern to be recognized, where N is the 
number of oscillators (pixels). We introduce phases ψi ( i = 1, · · · ,N  ) and phase differences �ψi = ψi − ψ1 . 
The color of the ith pixel is determined by cos�ψi , which is white (black) when �ψi = 0 ( π ). According to this 
definition, the color of the first pixel is always white (see also the "Methods" for the definitions of color). Initially, 
there are no interactions between the oscillators. Thus, their phases are arbitrary, and the colors in the pattern are 
random, as schematically shown on the left of Fig. 2a. When interactions between the oscillators are introduced 
and the interaction strengths are appropriately determined by the Hebbian rule, all the phase differences become 
0 or π in correspondence with the white and black pixels of the pattern to be recognized, as shown in the middle 
of Fig. 2a (see also "Methods" for model of the conventional oscillator network). Here, the Hebbian rule means 
that the interaction strength between the jth and ith oscillator is proportional to the weight,

where ξRi = +(−)1 when the color of the pattern to be recognized at the ith pixel is white (black). Thus, 
w
(1)
ij = +(−)1 when the colors of the ith and jth are the same (opposite).

The second step is to replace the weights by the following ones, which can be regarded as an average of the 
weights among the memorized patterns,

where Nm is the number of memorized patterns. The symbol m = 1, 2, · · · ,Nm is used to distinguish the memo-
rized patterns. For example, the memorized patterns “0”, “1”, and “2” in Fig. 2a are labelled m = 1 , 2, and 3. The 
parameter ξmi  is +(−)1 when the color of the ith pixel in the mth memorized pattern is white (black). Then, the 
oscillator phases change to those of the memorized pattern most resembling the pattern to be recognized, and 
the association is achieved, as shown in the right in Fig. 2a.

Description of associative memory operation by virtual oscillator network
The associative memory operation by a virtual oscillator network consists of three steps.

First, we measure an oscillation of a single oscillator and divide it into N parts, as schematically shown on the 
first line of Fig. 2b. The ith part of the measured data is regarded as the output from the ith oscillator in a virtual 
network. In this step, the phase of each part is arbitrary, and therefore, the pattern arising from it is random. The 
measured data should be stored in a computer in order for it to be used in the next step.

Second, we excite another oscillation and divide the measured data into N parts again. At the initial time of 
each part, the phase, as well as the pattern determined from it, is arbitrary, as shown in the middle of Fig. 2b. 
This time, however, we apply an external force to the oscillator that is proportional to a linear combination of 
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Figure 1.  Examples of memorized patterns and a pattern to be recognized. (a) Three ( Nm = 3 ) memorized 
patterns, “0”, “1”, and “2”. (b) The pattern to be recognized resembles memorized pattern “1”. The oscillator 
network tries to associate the pattern to be recognized with the pattern “1”. In an associative memory operation 
performed by a system consisting of N oscillators, the color of the ith ( i = 1, 2, · · · ,N ) pixel is determined 
by the phase ψi of the corresponding oscillator. The color is white (black) when the phase difference, 
�ψi = ψi − ψ1 , is 0 ( π ). The color is on a gray scale when the phase difference is 0 < �ψi < π.
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Figure 2.  Schematic illustration of conventional and virtual oscillator networks. (a) In the conventional 
oscillator network, the oscillators are initially uncoupled (left). Therefore, the phase of each oscillator is arbitrary. 
When the oscillators interact with appropriate weights [ w(1)

ij  ], the phases saturate to values corresponding to the 
pattern to be recognized (middle). When the weight changes [ w(2)

ij  ], the phases change so that the corresponding 
pattern resembles one of memorized patterns (right). (b) In a virtual oscillator network, we drive an oscillation 
of a single oscillator and divide its output into N parts. The ith part is regarded as an output from the ith virtual 
oscillator. First [top of (b)], we measure the N outputs. The corresponding pattern in this step is arbitrary 
because there is no correlation among the oscillators. Second [middle of (b)], an external force is added to the 
oscillator. This force is a linear combination of the outputs in the first step with appropriated weights [ w(1)

ij  ]. 
The phase of each part eventually saturates to a value corresponding to the pixel color in the pattern to be 
recognized. Third [bottom of (b)], the second step is repeated while the force is a linear combination of the 
outputs in the second step with weights w(2)

ij  . Eventually, the phases saturate to the values corresponding to the 
memorized pattern most resembling the pattern to be recognized.
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the measured data in the first step with weights (1). For example, in this study, the external force comes from 
a torque excited by an external magnetic field, which applied during the ith part of the oscillation is given by

where H denotes the amplitude and y(1)j  is the output from the jth oscillator measured in the first step [see also 
"Methods" for the detailed definition of y(1)j  in the numerical simulations]. Therefore, Eq. (3) is an oscillating 
function with the frequency of the oscillator. Because of the application of the magnetic field, the phase in each 
part eventually saturates to a certain value, and the pattern to be recognized is output, as shown in the middle 
of Fig. 2b. Note that the output signal of this process should be stored in a computer.

Third, we perform a measurement similar to the one in the second step but the magnetic field applied during 
the ith part is replaced by

where H′ denotes the amplitude, while y(2)j  is the output from the jth oscillator measured at the second step (see 
also "Methods" pertaining to the numerical simulations). The weights w(2)

ij  are given by Eq. (2). The phase at the 
end of each part saturates to a value corresponding to the memorized pattern most resembling the pattern to be 
recognized, as shown in the bottom of Fig. 2b; i.e., the associative memory operation is completed.

There are several differences between the conventional and virtual oscillator networks (see also "Methods" 
for the models). For example, the oscillators in the conventional oscillator network interact instantaneously, and 
their phase differences saturate to values corresponding to pixel colors as a result of mutual synchronization. 
On the other hand, the oscillators in the virtual oscillator network do not interact each other instantaneously. 
As can be seen in Eqs. (3) and (4), the oscillator outputs from the previous steps are used in the magnetic field 
in the current step. From perspective, the virtual oscillator network is similar to a feedforward neural network 
because the information on the oscillator phases in one step is sent to the oscillation in the next step. At the same 
time, we should note that the weights in the virtual oscillator network are fixed, as in the case of the conventional 
oscillator network. This is in contrast with a feedforward neural network used in deep learning, in which weights 
are updated by backpropagation. Thus, the virtual oscillator network can be regarded as a hybrid combination of 
a coupled oscillator network and a feedforward neural network. In the discussion below, we will reveal that the 
feedforward inputs cause forced synchronization among the divided parts and result in the associative memory 
operation. Before that, however, we must demonstrate that this virtual oscillator network can actually perform 
the associative memory operation.

Equation of motion of oscillator
As an oscillator in the virtual oscillator network, we use a vortex STO, which has various advantages for practical 
applications and has been frequently used in spintronics experiments on bio-inspired  computing24–27. An STO 
consists of a ferromagnetic/nonmagnetic multilayer on the nanometer scale, as schematically shown in Fig. 3a. 
A vortex of magnetic moments appears when a diameter and thickness of a cylinder-shape ferromagnet are on 
the order of 100 and 1 nm, respectively. When an electric current and/or magnetic field are applied to the STO, 
magnetic moments show precessions around their equilibrium direction. According to a recent experiment on 
chaos excitation in an  STO28, we assume that a force added to the virtual oscillator network corresponds to a 
torque excited by magnetic field, as mentioned above. It has been shown both experimentally and theoretically 
that the dynamics in a vortex STO are well described by the Thiele  equation29–36, which is the equation of motion 
for a center of the vortex structure, called the vortex core (see also "Methods" for Thiele equation):

where X = (X,Y , 0) represents the position of the vortex core in the xy plane. While the physical meanings 
and the values of many parameters are explained in "Methods", two quantities should be explained here. The 
first is the current density J, which causes a limit-cycle oscillation of the vortex core. The other is the external 
magnetic field H , which is used to excite a torque. It is useful to notice that Eq. (5) can be approximated as (see 
also "Methods" for the analytical solution of the Thiele equation)

where s = |X|/R ( 0 ≤ s ≤ 1 ) is the distance of the vortex core from the center of the ferromagnet nor-
malized by the disk radius R, while ψ = tan−1(Y/X) is the phase. Here, a = (|D|κ/G2)[(J/Jc)− 1] and 
b = (|D|κ/G2)(ξ + ζ ) , where Jc = |D|κ/(GaJpz) . The magnetic field H is assumed to have only a y component 
Hy . Note that Eqs. (6) and (7) are similar to the equation of motion of the Stuart-Landau  oscillator37. There-
fore, the vortex core shows a limit-cycle oscillation around the disk center in the xy plane with an oscillating 
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amplitude s0 =
√
a/b when J exceeds a threshold value Jc , while the terms related to Hy act as a perturbation. 

The connection to such a fundamental nonlinear oscillator model indicates that our results are also valid for 
various oscillators in nature and engineering. Figure 3b shows an example of nonperturbative vortex dynamics, 
showing an approximately circular oscillation of the vortex core around the disk center. The phase difference of 
the oscillation was used to define the colors in the patterns in the associative memory operation. Readers should 
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Figure 3.  Description of STO and demonstration of associative memory by a virtual oscillator network. (a) 
Schematic illustration of vortex spin torque oscillator and (b) vortex-core dynamics driven by electric current. 
The STO has a cylindrical shape, and the z axis is orthogonal to the circular plane. Magnetic moments, shown 
as colored arrows in top ferromagnet, form a circular structure. The black dot around which the moments turn 
is the vortex core. Electric current is injected into the STO; positive current flows from bottom to top in the 
figure. When the electric current density J exceeds a threshold value, the vortex core oscillates around the disk 
center. The output signals from the STO during the first (second) step in Fig. 2b are stored, and their linear 
combination with weights w(1)

ij  [ w(2)
ij  ] defined from the pattern to be recognized (memorized patterns) is used 

as magnetic field during the second (third) step. For simplicity, the dynamics in the absence of the magnetic 
field is shown. The components of the vortex-core’s position, X/R, and Y/R, oscillate around the disk center, 
and a trajectory is approximately a circle. The distance of the vortex-core’s position from the disk center, s, is 
approximately constant value, s0 . The phase measured from the x axis is denoted as ψ . (c) Time evolutions of 
the 59 phase differences, �ψi ( i = 2, 3, · · · , 60 ) and (d) snapshots of generating a pattern to be recognized 
on 60-pixels. (e) Time evolutions of the phase difference and (f) snapshots of the corresponding pattern for 
association from memorized patterns.
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note that the plots in Fig. 3b, as well as the results of the numerical simulations shown below, were obtained by 
solving Eq. (5), while the approximate equations, Eqs. (6) and (7), are used in the model analyses described below.

Demonstration of associative memory
Figure 3c shows the time evolution of the phase difference, �ψi , obtained by solving Eq. (5) with Eq. (3) substitut-
ing for Hy . Note that this solution corresponds to the second step in Fig. 2b. The phase differences saturate to 0 or 
π within a few hundred nanoseconds. Snapshots of patterns corresponding to this time evolution of the phases are 
shown in Fig. 3d. The patterns eventually settle to the one to be recognized. Figure 2b shows the result of solving 
Eq. (5) with Eq. (4) substituting for Hy . Here, Eq. (2) in Eq. (4) is for the three memorized patterns in Fig. 1a. 
Figure 3e and f show the time evolution of the phase differences and snapshots of the corresponding patterns. 
Remind that the information of the phases corresponding to the colors of the pixels in the pattern to be recog-
nized is included in the magnetic field in Eq. (4) through y(2)j  . Consequently, even though the initial pattern is 
random, the oscillator phases finally saturate to values corresponding to one of the memorized patterns [Fig. 3f].

The associative memory operation becomes more difficult when there are similar memorized patterns. To 
clarify this point, let us examine what happens when the number of the memorized patterns is increased, as 
shown in Fig. 4a from the three in Fig. 1a. The added patterns do not affect the second step in Fig. 2b. For the 
association corresponding to the third step in Fig. 2b, the magnetic field, defined by Eq. (4), is changed by these 
new memorized patterns. As a result, the final pattern output resembles none of the memorized ones [Fig. 4b].

This failure of the associative memory operation is due to two reasons. The first is that the pattern “7” is similar 
to the pattern “1”, which should be the one associated. When “7” is excluded from the memorized patterns, the 
association succeeds, as shown in Fig. 4c. The second reason is that the number of memorized patterns is large. 
As shown in Fig. 4d, the association succeeds when the memorized patterns include only “1” and “7”, the asso-
ciation is succeeded. Therefore, we conclude that an association may fail when the memorized patterns include 
similar patterns and the number of memorized patterns is large.

To quantify the similarity between patterns A and B, we introduce the degree of overlap:

where ξA = (ξA1 , · · · , ξAN ) is defined from the color of the ith pixel of pattern A [ ξAi = +(−)1 when the ith pixel 
is white (black)]. The overlap becomes 1 when the two patterns are completely identical or their black and white 
colors are all exchanged (see also "Methods" for the definitions of color and overlap). For example, in the example 
shown in Figs. 1 and 3, the degree of overlap between the pattern to be recognized and the memorized pattern “0” 
is O (ξR, ξ1) = 18/60 = 0.30 . It isO (ξR, ξ2) = 44/60 ≃ 0.73 for pattern “1”, and O (ξR, ξ3) = 6/60 = 0.10 for 
pattern “2” (the memorized patterns are labelled as m = 1, 2, 3, · · · while the examples of memorized patterns in 
this work are “0”, “1”, “2”, etc.; thus, the label m and the corresponding number are off by one). Since the degree 
of overlap of the pattern to be recognized and “1” is large in the examples in Figs. 1 and 3, pattern “1” should be 
associated in this case. On the other hand, in the example shown in Fig. 4, the overlap between the pattern to be 
recognized [Fig. 1(b)] and “7” is also relatively large, i.e., O (ξR, ξ8) = 32/60 ≃ 0.53 . In addition, the overlap 
between the memorized patterns “1” and “7”, O (ξ 2, ξ 8) = 28/60 ≃ 0.47 , is also relatively large compared with 
those between the other patterns; for example, the overlap between “1” and “8” is O (ξ 2, ξ 9) = 2/60 ≃ 0.03 (see 
also Supplementary Information, where the overlaps of the ten memorized patterns are summarized). Accord-
ingly, when the memorized patterns include “1” and “7”, the virtual oscillator network cannot associate a correct 
pattern, and the final pattern produced corresponds to none of the memorized ones. Similarly, when the number 
of memorized patterns is large, there might be patterns having large overlaps and the association fails.

In summary, we have shown that the virtual oscillator network based on the algorithm in Fig. 2b can perform 
the associative memory operation. Its accuracy, however, is low when the memorized patterns include some pat-
terns having large overlaps and there is a large number of memorized patterns. Note that the maximum number 
of patterns that can be memorized by neural network is approximately N/(2 logN)8. It would be of interest if 
such a formula can be derived for virtual oscillator networks in future.

We examined the associative memory operation for various cases, i.e., for different patterns to be recognized, 
and studied the rate of the accurate association; see Supplementary Information.

Discussion
Here we discuss the principles of the associative memory operation analytically by using Eqs. (6) and (7). As 
mentioned above, the operation consists of three steps, and in each step, the oscillator output is divided into N 
parts. In what follows, we denote the phase of the vortex core during the ith part of the kth step as ψ(k)

i  . We also 
assume that the oscillation amplitude s0 is approximately constant because the current density is fixed. Therefore, 
the oscillation frequency, f = Ω/(2π) = [κ/(2πG)](1+ ζ s20) , is also approximately constant (see also "Methods" 
for the analytical solution of the Thiele equation).

The phase in the second step obeys,

Thus, the phase difference between the ith and jth parts obeys,
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The steady state condition on the phase difference leads to
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Figure 4.  Problem of associative memory operation when the similarity between the memorized patterns 
is high and the number of patterns is large. (a) Ten ( Nm = 10 ) memorized patterns, “0”, “1”,· · ·,“9”. (b) Time 
evolution of the phase difference during the association and snapshots of the corresponding pattern. In this case, 
the memorized patterns include both “1” and “7”. Because of their similarity, the pattern does not finally saturate 
to “1”. (c) When “7” is removed from the memorized patterns ( Nm = 9 ), the association is successful, even 
though there are nine remaining memorized patterns. (d) The association is successful when the memorized 
patterns include only “1” and “7”.
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Note that ξRi = +(−)1 when the color at the ith pixel of the pattern to be recognized is white (black). Therefore, 
ψ

(1)
i  and ψ(1)

j  will be in-phase ψ(1)
i = ψ

(1)
j  [anti-phase ψ(1)

i = ψ
(1)
j ± π ] when the colors of the ith and jth pixels 

are the same (opposite). As a result, the phase differences in the second step saturate to 0 or π corresponding 
to the white or black in the pattern to be recognized. Note that this synchronization is caused by a feedforward 
input from the first step, which corresponds to the second term on the right-hand side in Eq. (9). Here, the term 
∑N

ℓ=1 ξ
R
ℓ y

(1)
ℓ  in Eq. (9) is the sum of the N oscillator outputs y(1)ℓ  in the first step, multiplied by the factor ξRℓ  

determining the pixel color of the pattern to be recognized, and is common for all i of Eq. (9). Equation (9) also 
includes a factor ξRi  , which determines the sign of the input. Regarding these facts, the feedforward input has 
only two values, depending on the value of ξRi  . The phase synchronization among the N parts in the second step 
is the result of forced synchronization with respect to this feedforward input, and the phase difference has only 
two values, 0 or π , depending on the value of ξRi  . This mechanism is in contrast with that of the previous  work21, 
where a mutual synchronization is the origin of the associative memory operation. Also, the method is different 
from the previous  works38,39. In Ref.38, a forced synchronization of frequency with respect to an external signal 
was studied, while the input signal in the present work is generated by the oscillator output itself and the phase 
synchronization plays the central role in the associative memory operation. In Ref.39, a delayed-feedback was 
used to generate input signal, while the input signal in the present work is generated by multiplying appropriated 
weight to perform the associative memory operation.

We also note that, when y(1)ℓ  is a simple trigonometric function, its linear combination, 
∑N

ℓ=1 ξ
R
ℓ y

(1)
ℓ  , is also 

a trigonometric function with the same frequency and a different phase. According to the above discussion, 
the phase of the term 

∑N
ℓ=1 ξ

R
ℓ y

(1)
ℓ  does not play any role to excite forced synchronization among the N parts. 

Thus, the term 
∑N

ℓ=1 ξ
R
ℓ y

(1)
ℓ  could be replaced by, for example, y(1)1  . In this case, it is unnecessary to measure 

other (N − 1) y(1)ℓ  ( ℓ = 2, 3, · · · ,N ) in the first step in Fig. 2b, although we solved the equation of motion for N 
virtual oscillators to clarify similarities and differences between the second and third step. When (N − 1) parts 
in the first step are omitted for simplicity, the power consumption to drive the oscillator in the virtual oscillator 
network is proportional to 2N + 1 , where 2N comes from the second and third steps in Fig. 2b. On the other 
hand, the power consumption in the conventional oscillator network is proportional to 2N because N oscillators 
are driven two times, as implied in Fig. 2a. For a large N, the power consumption of two oscillator networks are 
comparable. The time required for the operation increases linearly as N increases, which is not suitable for prac-
tical applications, although the same might be true for a conventional oscillator network because the relaxation 
time of the phase will depend on the number of the oscillators. the time of a conventional (coupled) oscillator 
network might also increase as N increases. However, the virtual oscillator network has an advantage from a 
viewpoint of reliability, as discussed below.

Next, we focus on the third step, where the phase during the ith part obeys

Since the oscillators in the second step are in the synchronized state, the output y(2)ℓ  can be expressed as 
y
(2)
ℓ = ξRℓ ξ

R
1 y

(2)
1  , where y(2)1  is the output of the first part in the second step. We substitute this relation into Eq. 

(12) and assume that

where the symbol A corresponds to a pattern in the memorized patterns that resembles the pattern to be rec-
ognized. The assumption (13) means that only a pattern having a large degree of overlap with the pattern to be 
recognized contributes to the feedforward input. The other memorized patterns, which are greatly different from 
the pattern to be recognized, do not contribute to the feedforward input because of their small overlap. When 
the assumption is satisfied, Eq. (12) becomes

Equation (14) is similar to Eq. (9), and therefore, the steady-state condition of the phase difference between the 
ith and jth parts in the third step is given by

Equation (15) means that in-phase or anti-phase synchronization between the N parts occurs, and the phase 
differences in the third step saturate to 0 or π corresponding to the white or black colors in a memorized pattern 
most resembling the one to be recognized.

The operation principle is based on Eq. (13). Equation (13) is satisfied if there is only one pattern that has a 
large degree of overlap with the pattern to be recognized. On the other hand, if there are other patterns having 
large overlaps with the pattern to be recognized, Eq. (13) is not satisfied. In this case, Eq. (15) is not necessarily 

(12)ψ̇
(3)
i = Ω +

cµ∗

GRs0
H

′ 1

Nm

Nm
∑

m=1

N
∑

ℓ=1

ξmi ξmℓ y
(2)
ℓ sinψ

(3)
i .

(13)
N
∑

ℓ=1

ξmℓ ξRℓ ≃ δm,A

N
∑

ℓ=1

ξmℓ ξRℓ ,

(14)ψ̇
(3)
i = Ω +

cµ∗

GRs0
H

′ 1

Nm
y
(2)
1 ξR1

(

N
∑

ℓ=1

ξ
A

ℓ ξRℓ

)

ξ
A

i sinψ
(3)
i .

(15)ξ
A

i sinψ
(3)
i − ξ

A

j sinψ
(3)
j = 0.
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satisfied, and the colors in the steady state in the third step might be different from the pattern most resembling 
the one to be recognized or they might be gray (neither black nor white); see also Supplementary Information.

Our analysis also assumed that the oscillation frequencies of the N parts are the same. This assumption is a 
natural one because each part is obtained from a single oscillator. Technically speaking, the oscillation frequency 
in each part is varied by changing the magnitude of the electric current. If the oscillation frequencies of the ith 
and jth parts, denoted as Ωi/(2π) and Ωj/(2π) , are different, the right-hand side of Eq. (10) has an additional 
term Ωi −Ωj . In such a case, the phase difference is not well defined because ψi and ψj oscillate with different 
frequencies. Even if we introduce an instantaneous phase by, for example, making a Hilbert transformation, as 
was done in  experiments40, the phase difference still does not necessarily saturate to 0 or π . In such a case, the 
associative memory operation fails. Therefore, there is no reason to change the oscillation frequency in each 
part. This fact also indicates an advantage to using the virtual oscillator network. In the conventional oscillator 
network, variations in the oscillation frequency naturally appear because inhomogeneities in the parameters of 
the oscillators are unavoidable, and such variations lead to the failure of the associative memory  operation21. The 
virtual oscillator network does not have such variation and thus would be a more reliable associative memory. 
A weak point of the present proposal is, on the other hand, that the method requires a computer to store the 
output signal in each step, which is not preferable for practical applications. We would like to keep this issue as 
a future work.

In conclusion, we described the concept of the associative memory operation by a virtual oscillator network 
and performed numerical simulations. The operation consists of three steps, where the output of one step is 
sent to the next step with weights defined by the Hebbian rule. In this sense, the virtual oscillator network can 
be regarded as a hybrid combination of a coupled oscillator network and a feedforward neural network. The 
network successfully associated black-and-white patterns with a few memorized patterns. However, it failed to 
make an association when the number of memorized patterns was large (ten compared to three) and some of 
the memorized patterns resembled each other. We also developed a theoretical analysis and clarified that the 
origin of the associative memory operation is forced synchronization driven by feedforward input. Either in-
phase or anti-phase synchronization was excited among the oscillators and provides appropriate correspondence 
between the oscillator phases and the colors in the patterns. The virtual oscillator network is more reliable than 
a conventional oscillator network, which is affected by unavoidable inhomogeneities among the oscillators.

Methods
Definitions of color and overlap
By convention, the first pixel (the pixel in the top left-hand corner of a pattern) is always white. The pattern should 
be regarded as the same even when all of the black and white pixels are swapped for each other, Mathematically, 
this means that 

∑N
i=1 ξ

A
i ξ

B
i = N  when the patterns A and B are completely the same, and 

∑N
i=1 ξ

A
i ξ

B
i = −N 

when patterns A and B represent the same pattern but their black and white colors are completely swapped. 
According to this definition of the same figure, the maximum number of the difference between two patterns is 
N/2; in this case, the degree of overlap is zero (see also the discussion on noise in Supplementary Information).

Models of conventional and virtual oscillator networks
The conventional oscillator network for the associative memory  operation21 is based on the Kuramoto  model37. 
The Kuramoto model describes the oscillator dynamics with a generalized phase, θ . Moreover, the oscillators 
interact instantaneously, and the phase of the ith oscillator obeys

where ω/(2π) is the oscillation frequency while Q is the interaction strength. For simplicity, we will assume that 
all oscillators share the same values of ω and Q . The weight wij is given by Eq. (1) or (2) depending on the step 
of the procedure. In the LC-circuit  model21, Q wij is proportional to the transconductance. The phase difference 
between the ith and jth oscillators obeys

In a limiting case of only two oscillators ( N = 2 ), the phase difference obeys

and the in-phase (anti-phase) synchronization of θ1 and θ2 is a stable fixed point when Q w12 is negative (positive). 
The phase differences of θi − θj = 0,π are always fixed points even when there are a large number of oscillators 
(N ≥ 3) . Accordingly, the phase differences in the conventional oscillator network saturate to the in-phase or 
anti-phase state, which thereby enables the associative memory operation.

In the presence of frequency variations, the right-hand side of Eq. (17) has an additional term ωi − ωj . In 
this case, the phase difference is not stabilized, and this instability leads to an inaccurate associative memory 
 operation21.

The Thiele equation is slightly different from the Kuramoto model in the following ways. First, the Thiele 
equation uses the phase ψ , which describes the vortex core’s position in the xy plane, instead of a general-
ized phase. This is because the quantity measured in experiments is the vortex core’s position, and the phase 

(16)θ̇i = ω + Q

N
∑

j=1

wij sin
(

θi − θj
)

,

(17)θ̇i − θ̇j = Q

[

N
∑

ℓ=1

wiℓ sin (θi − θℓ)−
N
∑

ℓ=1

wjℓ sin
(

θj − θℓ
)

]

.

(18)θ̇1 − θ̇2 = 2Q w12 sin (θ1 − θ2),
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synchronization studied in the  experiments40 corresponds to that of ψ , not a generalized phase θ . Note that we 
can introduce a generalized phase analytically as θ = ψ + [ζκ/(Gb)] ln(s/s0) with a phase sensitivity function 
Z = (− sin θ + [ζκ/(Gb)] cos θ , cos θ + [ζκ/(Gb)] sin θ , 0)/s0 . The analysis is mostly unchanged with the gen-
eralized phase, so we decided to use ψ for simplicity. Second, the equation of motion for the phase difference, Eq. 
(10), includes a term sinψi − sinψj whereas the Kuramoto model often uses an interacting term proportional 
to sin(θi − θj) . More generally, the interaction term in the Kuramoto model can be assumed to be a function of 
the phase difference, θi − θj after applying an averaging technique with respect to a fast variable (see Ref.37 for 
details). The difference between the two models might however be insignificant; notice that, by using formulas, 
sin x − sin y = 2 cos[(x + y)/2] sin[(x − y)/2] and sin x + sin y = 2 sin[(x + y)/2] cos[(x − y)/2] and applying 
the averaging technique, the interaction term in our model can be approximated as a function of θi − θj . Third, as 
mentioned above, the input term in the virtual oscillator network consists of the oscillator output from the previ-
ous step, while the interaction in the Kuramoto model is instantaneous. Because of these differences, the asso-
ciative memory operation by the virtual oscillator network is significantly different from those of conventional 
coupled oscillator networks on which previous experiments and the theoretical analyses have been conducted.

Parameters in the Thiele equation
Spin torque oscillators (STOs) mainly consist of a ferromagnetic metal/insulating layer/ferromagnetic metal 
trilayer. The first ferromagnetic layer of the trilayer is called the free layer and is where the magnetic vortex 
forms. The second ferromagnetic layer having a uniform magnetization is called the reference layer. When 
electric current is injected into STOs, spin-transfer  torque41–43 is excited on the magnetic moments in the free 
layer and drives their  dynamics35,36. The output signal from the STOs depends on the relative angle between the 
magnetizations in the free and reference layers.

The definitions and physical meanings of the parameters in Eq. (5) are as follows. The parameters 
G = 2πpML/γ and D = −(2παML/γ )[1− (1/2) ln(R0/R)] consist of the polarity p(= ±1) of the vortex core, 
the saturation magnetization M, the thickness L of the ferromagnet, the gyromagnetic ratio γ , the Gilbert damp-
ing constant α , and the vortex radius R0 . The chirality c(±1) of the vortex core also appears in Eq. (5). The param-
eters κ and ζ relate to a magnetic potential energy defined as W = (κ/2)[1+ (ζ/2)s2]|X|2 . The dimensionless 
parameter ξ is introduced to describe the nonlinear damping in a highly excited  state35. The parameter κ relates to 
the material parameters as κ = (10/9)4πM2L2/R35. The parameter aJ = πℏP/(2e) includes the reduced Planck 
constant ℏ , spin polarization P of the electric current, and the elementary charge e(> 0) . The vector p = (px , 0, pz) 
is the unit vector pointing in the magnetization direction in the reference layer. Here, we assume that p lies in the 
xz plane, by convention. As a result, the output signal from the vortex STO is proportional to the y component 
of the vortex core’s position. The parameter µ∗ is πMLR.

The material parameters used in this study were taken from typical experiments and  simulations35,36,44: 
M = 1300 emu/cm3 , γ = 1.764× 107 rad/(Oe s), α = 0.01 , L = 5 nm, R = 187.5 nm, R0 = 10 nm, P = 0.7 , 
ξ = 2.0 , and ζ = 0.1 . The polarity and chirality were assumed to be p = +1 and c = +1 , for simplicity. The 
magnetization direction in the reference layer was p = (sin 60◦, 0, cos 60◦) . An electric current I of 1 mA cor-
responded to a current density J of 0.9 MA/cm2 . The electric current in the numerical simulations was set to 
4.0 mA.

We do not include field-like torque in the Thiele equation, which is expressed as −cbJ JRpxey in Eq. (5); see, for 
example, Ref.45. This is because its magnitude was not visible in an experiment using CoFeB/MgO based  STO23. 
One might consider to inject the input through the field-like torque, instead of the torque due to the external 
magnetic field as we have done. However, the modulation of the field-like torque requires that of electric cur-
rent, which leads to the modulation of the frequency of the STO. Since the advantage of our proposal is that the 
frequency is unique during the operation, we do not prefer to use the field-like torque for injecting the input.

Analytical solution of the Thiele equation
The Gilbert damping constant α is often small, in such cases, |D|/G ≃ α ≪ 1 . Also, the radius R0 of the vortex 
core is much shorter than the disk radius, R. Therefore, by neglecting terms related to R0 and higher-order terms 
of α , we can approximate Eq. (5) as Eqs. (6) and (7) in terms of s = |X|/R and ψ = tan−1(Y/X) . The approxi-
mated Thiele equation without magnetic field is

These equations are identical to the Stuart-Landau  equation37, which was introduced by Landau to describe the 
evolution of turbulence phenomenologically and was derived from hydrodynamics by Stuart. This equation 
provides one of the simplest example of Hopf bifurcation. A stable solution of s is s0 =

√
a/b (0) for a > (<)0 , or 

equivalently, J/Jc > (<)1 . When J/Jc > 1 , i.e., the current density J exceeds a threshold value Jc , the vortex core 
oscillates around the disk center with an oscillation amplitude s0 and the frequency f = [κ/(2πG)](1+ ζ s20) . 
Note that the oscillation frequency is proportional to the current density J through the term s20 = a/b ( a ∝ J ), 
which has been confirmed by both experiments and  simulations35,36. Even in the presence of the magnetic field, 
the oscillation frequency remains f, if the input strength is weak.

The solution of s obtained from the exact Thiele equation, Eq. (5), shows a small oscillation around s046. This 
means that the trajectory of a limit-cycle oscillation is approximately circular but also has a small amplitude 
modulation. This small modulation is caused by the term caJ JR0pxex in Eq. (5), which breaks the axial symmetry 

(19)ṡ = as − bs3,

(20)ψ̇ =
κ

G

(

1+ ζ s2
)

.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15809  | https://doi.org/10.1038/s41598-023-42951-z

www.nature.com/scientificreports/

of the dynamics around the z-axis. The deviation of s from s0 is, however, negligible, and the oscillation trajectory 
is approximately circular, as shown in Fig. 3b. Therefore, it is reasonable to omit the term from Eqs. (6) and (7). 
Note that this term arises from the in-plane component px of the magnetization in the reference layer. px plays 
a role in experiments for the following reason. Recall that the output signal measured in experiments depends 
on the relative angle of the magnetizations in the free and reference layers. Since the vortex core is located in the 
xy plane, a finite px is necessary to detect its position. On the other hand, the z component pz is also necessary 
because the spin-transfer torque originating from it excites the limit-cycle oscillation of the vortex core. In fact, 
the threshold current density Jc = |D|κ/(GaJpz) is inversely proportional to pz ; therefore, if pz is zero, Jc becomes 
infinite and the oscillation cannot be excited. In  experiments28,40, the magnetization initially pointed in an in-
plane direction, where pz = 0 . A finite pz was induced by applying an external magnetic field in the z direction.

According to Eqs. (6) and (7), one might consider that the magnetic field changes the value of s from s0 and 
modifies the oscillation frequency. Such a frequency shift is, however, negligibly small, which can be discussed 
accordingly. First, remind that the frequency of the magnetic field applied during the second step is the fre-
quency of the vortex core without the magnetic field because it consists of the output during the first step. The 
fact that the phases in the second step are saturated to 0 or π , as shown in Fig. 3c, indicates that the forced phase 
synchronization occurs, and the frequency of the vortex core in the second step is the same with that in the first 
step. Second, let us roughly estimate the frequency shift by the application of the magnetic field. The change of 
s by the magnetic field will be maximized when the phase of the magnetic field Hy in Eq. (6) is the same with 
ψ . In this case, the magnitude of the last term in Eq. (6), averaged over a precession period τ = 1/f  , is about 
[cµ∗/(2GR)]Hyτ ∼ (γ /2)Hτ . The period τ is about 5 ns while H is on the order of 1 Oe; see next section. 
Accordingly, the shift �s of s by the application of the magnetic field is less than 0.1 at maximum. As mentioned, 
the oscillation frequency is proportional to 1+ ζ s2 . Using ζ = 0.1 and s0 ≃ 0.6 , estimated from Fig. 3b, the 
frequencies with and without �s , which are proportional to 1+ ζ s20 and 1+ ζ(s0 +�s)2 , respectively, differ 
only 1 % at maximum. Therefore, we consider that the frequency modulation by the application of the magnetic 
field is negligible.

One might be of interested in the applicability of the Thiele equation. While the original Thiele equation 
assumes a translation symmetry in an infinite space, a finite-size effect of nanostructured may restrict the applica-
bility of the equation. Therefore, the Thiele equation had been applied to analyses on small-amplitude  dynamics47. 
There have been, at the same time, several efforts to make the equation applicable to large-amplitude dynamics. 
For example, adding nonlinear frequency and damping terms is one  approach35,36, which is also used in the 
present work, where the additional terms are characterized by the dimensionless parameters ξ and ζ . Adding 
further higher-order nonlinear terms is also investigated  recently48–50. It was also shown that the Thiele equation is 
applicable to analyze small-amplitude dynamics, and effort has been made to extrapolating it to a large-amplitude 
dynamics, such as vortex-core expulsion, although there are some  limitations51. In the present study, we use the 
model developed in Refs.35,36 due to the following reasons. First, the applicability of the model to wide ranges 
of parameters has been verified by comparison with  experiments35,36,44. Second, adding higher-order nonlinear 
terms does not change main conclusion in this work. These terms might change, for example, current depend-
ence of the oscillation frequency. In the present work, however, the frequency is kept constant, and thus, adding 
such terms do not play a central role in the associative memory operation. Third, the Thiele equation with the 
present approximation clarifies the connection between spintronics and other research fields such as nonlinear 
science and computer science. This is because the equation can be reduced to the Stuart-Landau equation, as 
mentioned above. The Stuart-Landau equation has a long history, as in the case of the Thiele equation, and has 
been frequently used in nonlinear  science37,52. The present work indicates that the Stuart-Landau oscillator can 
be emulated in nanostructures and therefore, prompts communications between spintronics and other research 
fields. Therefore, although we understand that there have been great  efforts48–50,53 for the validity and applicabil-
ity of the Thiele equation, we use the model developed in Refs.35,36. Note that the Oersted field generated in the 
current, discussed in these previous works, does not play a role in the associative memory operation because 
the current magnitude is kept constant during the operation. Also, since the external magnetic field induces 
forced synchronization, a frequency shift due to an external magnetic field studied in the previous  work48 does 
not exist in the present algorithm.

Details of the numerical simulations
The associative memory operation in the virtual oscillator network consists of three steps. The initial state of the 
vortex core in each step is prepared by adding a thermal activation to the Thiele equation and solving it in the 
absence of magnetic field, as is done in Ref.45. The torque due to the thermal activation gives an additional term, 
−ηxex − ηey , to the left-hand side of Eq. (5), which obeys the fluctuation-dissipation theorem,

where the temperature T is 300 K. The solution of the Thiele equation in each step is divided into N = 60 parts, 
where the time width of each part is denoted as t̃ . In the  experiment23, a certain time period was inserted between 
these parts to remove their correlation. In contrast, our numerical simulations used parallel computations, 
wherein the initial state of each part was randomly prepared using the method described above. The value of t̃ 
was changed depending on the number of memorized patterns, as well as the number of noisy pixels in the pat-
tern to be recognized. For example, t̃ is 750 ns in Fig. 3c. For all cases, t̃ was divided into ñ = t̃/tp parts, where 
tp = 0.125 ns.

Now let us explain the meanings of y(1)ℓ  and y(2)ℓ  in Eqs. (3) and (4). Since they are defined in a similar man-
ner, we will describe only y(1)ℓ  . When defining the magnetic field in Eq. (3), it is convenient to reset the time 

(21)�ηi(t)ηj(t′)� = 2kBT|D|δijδ(t − t ′),
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origin for each part; i.e., each of the N parts runs from t = 0 to t = t̃ . Remember that the output from the STO 
is proportional to the y component of the vortex core’s position, Y. We denote the solution of the normalized y 
component, y = Y/R ( 0 ≤ y ≤ 1 ), during the ℓ th part in the first step as yℓ . Then, y(1)ℓ  is made from yℓ as follows,

where �(t) is a step function. Note that �(t − ntp)−�[t − (n+ 1)tp] is 1 for ntp ≤ t < (n+ 1)tp and is zero 
for the other times; thus, it has a pulse shape. Equation (22) means that the input strength is constant for 
ntp ≤ t < (n+ 1)tp and is proportional to yℓ(t) at t = ntp . ñ is the number of input pulses. There are two reasons 
to shape the output y into a pulse. The first one relates to numerical simulations. In this work, the Thiele equation 
was solved within a time increment of �t = 0.005 ns, which is shorter than the pulse width tp . It was, however, 
impractical to store the output at each �t step because the amount would have been huge. Second, there is a 
technical limitation in real experiments on a measurable time step. The value we used, tp = 0.125 ns, is close 
to shortest possible time step in an  experiment23. Because of these reasons, we define y(1)ℓ  used in the magnetic 
field, Eq. (3), as a pulse input. At the same time, we emphasize that tp is much shorter than an oscillation period 
of the vortex core, 1/f = 4.48 ns ( f = 223 MHz). In addition, the pulse-shaped y(1)ℓ  s are continuously injected. 
Therefore, the magnetic field can be approximately regarded as a continuously oscillating signal with respect 
to the STO.

The strength of the input H in the second step is 1.0 Oe, while that in the third step is H′ = Nm × 0.2 Oe. 
Here, we increase H′ as the number Nm of memorized patterns increases. This is because the time necessary to 
reach a steady state becomes long as Nm increases; therefore, to perform the numerical simulations efficiently, 
the input strength should be made to increase with Nm.

Data availability
The datasets used and/or analyses during the current study available from the corresponding author on reason-
able request.
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