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Ground truth based comparison 
of saliency maps algorithms
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Deep neural networks (DNNs) have achieved outstanding results in domains such as image processing, 
computer vision, natural language processing and bioinformatics. In recent years, many methods 
have been proposed that can provide a visual explanation of decision made by such classifiers. 
Saliency maps are probably the most popular. However, it is still unclear how to properly interpret 
saliency maps for a given image and which techniques perform most accurately. This paper presents 
a methodology to practically evaluate the real effectiveness of saliency map generation methods. We 
used three state‑of‑the‑art network architectures along with specially prepared benchmark datasets, 
and we proposed a novel metric to provide a quantitative comparison of the methods. The comparison 
identified the most reliable techniques and the solutions which usually failed in our tests.

Convolutional neural networks (CNNs) achieve outstanding results solving problems in domains such as image 
recognition, computer vision and bioinformatics. However, deployment of a black-box model such as a CNN 
introduces uncertainty about the generalizability of the model and about which features were important for the 
model’s decisions. Even when the output of a classifier is correct, its decision might be based on the identification 
of the wrong set of features such as artifacts in the background of an image. This may happen when systematic 
bias is introduced in training data or when there are spurious correlations in these  data1 that remain undetected 
during the development process. One of the most famous experiments illustrating an insufficient learning base 
was presented  in2. Wolves had been systematically photographed against a snowy background, and a husky 
photographed in the same environment was misidentified as a wolf because the AI solution concentrated on the 
background while ignoring the intended subjects of the images.

Current state-of-the-art analyses and methods do not comprehensively address machine learning interpret-
ability. They rather focus on a narrow subset of issues and, as a result, only limited guidance can be extracted. 
One line of work focuses on the taxonomy definition and emphasizes interpretability mechanisms. A broad 
overview of black-box-like algorithms has been presented  in1,3. The authors outlined the deficiencies which 
should be addressed to ensure that the algorithms perform predictably. Some evaluative aspects have already been 
addressed  in4–6, but that work does not exhaustively cover the interpretability of a DNN model, and applicability 
to safety-critical systems still remains an open question.

An attempt to introduce model interpretability and to use it to optimize performance was made  by7. The 
approach was successful in reconstructing and visualizing features of the input image that had been identified 
by the intermediate layers of a network. The technique allowed for the improvement of CNN performance: it 
increased the network’s resilience against variations in image background and improved model’s focus on the 
local object structure.

The authors  of8 presented two solutions that visualize both features and activations at each internal layer of 
the CNN model. The first solution was based on the fact that the correlation between neural activation patterns 
and training inputs can increase understanding of the model’s behavior and can improve the development process 
through the application of transfer learning techniques. The second solution was based on several new regulariza-
tion methods. It proved useful in detecting weak spots in the coverage of the training set such as occurs when a 
network identifies a jaguar only by the spots on the fur, completely ignoring all other features.

Saliency maps are probably the most popular technique for providing visual explanations of the decisions of 
CNNs. As presented  in9, the visualizations provided by this approach help explain the failure of CNNs, to identify 
biases present in the datasets, and to prepare models that are robust against adversarial attacks. They therefore 
offer an improved development process and greater generalization of trained models.
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One important step toward techniques for comparing saliency maps was presented  in10. The authors per-
formed two types of randomization tests. The first focused on the randomization of a model. The second rand-
omized labels in a training dataset to check the performance of saliency map algorithms on a correctly labeled 
test dataset in the context of a search of outliers. The saliency maps in presented experiments were compared 
using Spearman rank correlation with absolute value (absolute value), Spearman rank correlation without abso-
lute value (diverging), the structural similarity index (SSIM), and the Pearson correlation of the histogram of 
gradients (HOGs). The authors found that some of the methods were independent of the model and data and 
were thus reliable. Others failed due to strong correlations between the generated saliency maps and the edges in 
the image data. Although such a methodology shows which saliency maps are strongly or weakly correlated with 
network training processes, it is still unknown whether the silency map highlights the correct areas of interest. 
Therefore, even with the methods indicated as reliable (i.e. the ones showing the weak correlation), the human 
operator can not assess which objects in the image made the largest impact on the final decision of a network.

In this paper, we analyze and compare the efficiency of saliency map based techniques that provide visual 
explanations for CNN decisions. The proposed experiments are performed in an integrated environment using 
several state-of-the-art network architectures and specially prepared and tagged datasets. In comparison to the 
 work10, we establish a controlled environment in which the efficiency of the saliency map algorithms can be 
objectively evaluated and quantified using a novel metric. We also identify techniques that allow for the detection 
of systematic failures in image datasets or in the process of CNN training. Finally, we indicate which group of 
methods should be employed to reliably explain the relations between a CNN’s inputs and outputs.

Methodology
For the proper evaluation of the efficiency of saliency maps algorithms, the use of any comparison method or 
metric needs to be justified. In the literature, several methods of saliency maps evaluation have been proposed. 
Saliency maps have been evaluated  visually9,11–14, by a comparison of the ground truth images to the automati-
cally, semi-automatically, or manually created  masks15, or by the use of numeric  methods16. In the  work16, the 
authors applied the Remove and Retrain (ROAR) and Keep and Retrain (KAR)  techniques17. However, such 
approaches require image segmentation with its exhaustive modifications and accompanying model retraining. 
This can be impractical for large datasets. Some of the methods dedicated to the evaluation of DNNs can be 
found  in18, in which the authors present a library called iNNvestigation that they developed for testing networks 
in Python 2.0 or 3.0 using Keras.

To evaluate a model’s efficacy at finding fragments relevant for classification via saliency maps, we applied 
a technique that is much simpler than ROAR or KAR. With this technique, binary ground truth (GT) masks 
are assigned manually or semi-automatically to each image in a diverse, specially prepared image database. The 
identification of the target region is possible thanks to the recognition of the objects responsible for an image 
being assigned to a given class. If we assume that a GT mask has p binary ones, in a saliency map generated for 
a given image, we select also the p brightest (i.e. most significant) pixels to create a saliency map mask. We then 
calculate how many of the binary ones align between the two masks. The proposed indicator compares the cover-
age of the most relevant pixels in the saliency map with the indicated pixels in the manually prepared GT masks. 
A graphical explanation of this new metric is presented in Fig. 1. The assumed measure is mGT = n/p , where n 
is the number of pixels in the saliency map mask falling in the positive regions of a GT mask.

The proposed evaluation methodology assumes that there is only a single area in each dataset that is responsi-
ble for class selection, and we therefore created four specially prepared datasets with unambiguously designated 
regions of interest. The other regions/features should be assumed to be uninformative background. Our approach 
greatly simplifies the amount of computation required and the effort involved in tagging images when compared 
to ROAR or KAR. However, it requires the use of relatively simple image databases and an assurance that no hid-
den relation between the background features and the assigned class exists. The proposed evaluation framework 
can be used for fully automatic and independent evaluation of the effectiveness of the saliency maps algorithms.

Methods under test
Thirteen techniques for saliency map generation have been compared using the evaluation method. The overview 
is presented in Table 1.

Figure 1.  The idea of proposed new evaluation measure mgt.
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Gradient-based saliency visualisation. These saliency maps were originally described  in11. The authors pre-
sent several uses of network internal gradients such as the generation of images representative of a given class 
according to a class scoring model or the query of a network regarding the spatial contribution of a particular 
class in a given image. In the proposed approach, saliency maps are extracted after a single back-propagation 
pass through a DNN.

Guided back propagation. This method of providing a visual explanation of network decisions was proposed 
 in12. It is based on the DeConvNet explanation  method7, but it differs in the way that it handles back propaga-
tion through the rectified linear (ReLU) non-linearity12. Compared to the usual back propagation, guided back 
propagation utilizes additional signals from the higher layers of a DNN.

Grad-CAM. Presented  in9, this method applies a gradient-based weighting to class activation maps. It uses 
gradients associated with any target concept or target class computed at the last convolutional layer to produce 
a coarse localization map that exposes regions of the image that are pertinent to a network’s prediction.

Smooth Grad. Proposed  in13, this technique is intended to remove noise from the outcomes of Grad-CAM. 
It generates similar images by adding noise to the image and averages the resulting sensitivity maps to obtain a 
high-fidelity saliency map.

Guided Grad-CAM This method is a variant of Grad-CAM proposed  in9. It combines guided back 
 propagation12 with the Grad-CAM method.

Grad-CAM++. This variant of Grad-CAM was presented  in15 to improve saliency maps in images containing 
multiple objects. The technique uses a linear combination of the positive partial derivatives of the last convo-
lutional layer.

Smooth Grad-CAM++. Presented  in14, this variant of Smooth Grad uses the Grad-CAM++ method as a 
baseline from which sensitivity maps are generated.

Fast-CAM with Grad CAM. This approach was proposed  in16 as an efficient way to produce saliency maps. 
To evaluate results, the numeric measures Remove And Retrain (ROAR) and Keep And Retrain (KAR)17 were 
proposed. Using ROAR and KAR to compare saliency maps, the authors proved that Fast-CAM achieves accuracy 
greater than or equal to that of Grad CAM.

Fast-CAM with Grad CAM++. This version of Fast-CAM16 uses Grad CAM++ to obtain a CAM map that is 
then used in the computation of a saliency map.

Eigen-CAM: The technique, described  in19, involves computing and visualizing the principal components of 
the learned features from the convolutional layers. Specifically, it focuses on computing and visualizing the first 
principal component of the 2D activations obtained from the network’s convolutional layers.

Eigen Grad-CAM: Variation of EigenCAM which incorporates class discrimination. Computes the first 
principal component of the activations. However, in EigenGrad-CAM, this computation is combined with the 
gradients.

LayerCAM: This  method20 generates class activation maps for CNN-based image classifiers to improve object 
localization. The algorithm achieves this by assigning weights to the activations in the feature map based on the 
positive gradients. LayerCAM extends the capability of generating reliable class activation maps not only from 
the final convolutional layer, but also from shallow layers, providing more accurate localization information.

Poly-CAM: The  method21 generates saliency maps by recursively merging the high-resolution activation 
maps from early network layers with upsampled versions of the class-specific activation maps from later layers. 
Additionally, the approach introduces three different methods to associate weights to each layer activation chan-
nel, measuring the impact on the network’s output when masking or unveiling the input based on the channel 
activation.

Table 1.  Overview of saliency map techniques compared in our experiments.

Method References Abbreviation

Gradient-based visualisation 11 GradientBased

Guided back-propagation 12 GuidedBackProp

Gradient-weighted Class
9  GradCAM

   Activation Mapping

Smooth Grad 13 SmoothGrad

Guided Grad-CAM 9 GuidedGradCAM

Grad-CAM++ 15 GradCAM++

Smooth Grad-CAM++ 14 SmoothGC++

Fast-CAM with Grad CAM 16 FastCAM-GC

Fast-CAM with Grad CAM++ 16 FastCAM-GC++

Eigen-CAM 19 EigenCAM

Eigen Grad-CAM 19 EigenGradCAM

LayerCAM 20 LayerCAM

Poly-CAM 21 PolyCAM
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Implementation details
To compare saliency map algorithms, a Python package was used. The package was based on  PyTorch22 and 
provided an out-of-the-box implementation of the method under consideration. It reused the core implementa-
tions  from21,23–25 but with slight modification for compatibility with a newer version of Python (3.8) and various 
network architectures such as  VGG1626,  Resnet5027 or  SCNN28, which were the ones used in the experiment. The 
only constraint on the method is that all of the layers have to be implemented as Pytorch nn.Module22. To attain 
a final saliency map of the same shape as the input image, a bi-linear interpolation was employed.

Experiments
Experiment 1
The first experiment focused on the visual and numerical comparison of saliency maps and on checking how 
selected algorithms react to noise, location change, and the size change of a salient object. For the purpose of 
analysis, we prepared an artificial dataset based on the German Traffic Sign Recognition Benchmark (GTSRB) 
 database29. This dataset, referred to as GTSRB*, contains two classes. The first class (class 0) consists of original 
images of traffic signs. The second class (class 1) consists of similar images with a green rectangle placed in the 
bottom right corner. Sample images and their corresponding GT masks from this prepared database are shown 
in Fig. 2a. Both the training and test GTSRB datasets were modified to contain 50% unaffected images and 50% 
images with the rectangle overlay. The GT masks in this experiment were easily obtained since the artifact’s exact 
location and size were retained and well known.

The model under consideration was always trained with the same size and location of the artifact. No addi-
tional rotations, flips or other transformations were introduced during the network training process. The goal 
of the experiment was to make sure that a DNN will be trained to find an object with an exact type, color and 
location while ignoring the other parts of the image. In this way we verify that any correctly working saliency 
map will indicate only the rectangular region of interest while remaining insensitive to other background features.

Experiment 2
In experiment 2, we created a Zings dataset from images available  in30. The dataset is composed of villains with 
yellow eyes and heroes with white eyes and was inspired by a popular series of children’s toys and cartoons. In 
contrast to our use of artificially altered images in GTSRB*, the intention for this more realistic dataset is to 
minimize the spurious correlations between classes. Since the drawings were designed so that the only feature 
distinguishing heroes from villains is eye color, we expect saliency map algorithms to clearly identify these parts 
of the images as the most important and that there should be no additional, hidden correlation between them. 
The GT masks in this experiment were obtained by manually annotating the boundaries of the eye regions in 
each image. Examples of the images included in this database and the respective masks that were generated are 
presented in Fig. 2b.

The dataset was divided into training and test datasets which respectively contained 80% and 20% of the 481 
different pictures. This time data augmentation (including random rotation between − 5° and 5°, horizontal flips 

Figure 2.  Examples of images, including generated masks for the analyzed databases.
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and vertical flips) was used to artificially expand the dataset during the training process, which helped increase 
the efficiency of the DNNs.

Experiment 3
In addition to GTSRB* and Zings datasets utilized in the first two experiments, we used an additional database 
composed of images from the LISA Traffic Light  Dataset31,32. This dataset contains images of real traffic lights 
collected under various environmental and weather conditions. From the original images we cropped only the 
region containing the traffic light. Only two classes from the original dataset were chosen: green (go) and red 
(stop). The main reason for using the traffic light dataset was that it is highly probable that there are no hidden 
features which might fool the classifiers since the backgrounds almost always remain black. The original divi-
sion of the LISA dataset was kept, which means that two classes were taken in both training and test sets. The 
presented dataset is later referred to as LISA*.

Preparation of the ground truth images for the GTSRB* dataset was a trivial task. The goal was to automati-
cally segment introduced artifact. In contrast, the segmentation of the Zings database was done fully manually, 
but the eyes regions were distinguishable. In case of LISA* dataset, we decided to prepare a set of masks instead of 
a single instance since the boundaries of light regions are blurry and various masks can be considered as correct.

The following segmentation methods were employed: (1) K-means clustering, (2) Otsu  thresholding33 in L 
channel in Lab color model and in R channel in RGB color model, (3) region growing segmentation, and (4) 
color thresholding in HSV color space. Masks were then evaluated manually by a human operator to remove 
some evident failures of the segmentation algorithms. Each image was left with between one and four acceptable 
masks. Because it was not evident which mask should be used, we always selected the best value of the mGT metric 
from among those obtained from the possible mask realizations. Examples of images from the LISA* database 
and three sample masks are provided in Fig. 2c.

Experiment 4
The purpose of the last experiment is to assess the effectiveness and quality of different saliency algorithms in 
capturing important visual features within images from large and real-world dataset. To accomplish this goal, we 
selected the ImageNet-S  dataset34. The ImageNet-S dataset was constructed based on the well-known ImageNet 
 dataset35, which contains millions of labeled images across a wide range of categories (1000 categories) and 
serves as a commonly used benchmark for evaluating image classification and related computer vision tasks. 
In order to facilitate research with limited computational resources, the authors of the study created a subset of 
ImageNet-S called ImageNet-S50 , consisting of 50 categories. The segmentation masks representing the ground 
truth were generated through a meticulous manual process. The annotation procedure involved strict labeling 
guidelines where annotators were divided into multiple groups, each led by a designated group leader. Following 
the annotation of images, the group leader consolidated all the annotations and ensured the overall quality of 
the annotations. Additionally, the annotations were cross-verified by other annotators within the same group, 
thereby ensuring a thorough quality check.

Our approach involved the utilization of three network architectures (VGG50, ResNet50 and ResNext50) that 
were trained using the training portion of the ImageNet dataset. In contrast to the previous experiments where 
SimpleCNN was used, ResNext50 was selected as a more suitable network for our experiment. We proceeded 
to calculate saliency maps on the validation subset of ImageNet-S50 , which consisted of 752 images across 50 

Figure 3.  Examples of saliency maps generated for Resnet50, VGG16 and SCNN architectures, trained on 
GTSRB* test set. First three rows present an input image without a pattern (class 0) and the latter present an 
input image with a defined pattern (class 1).
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categories. Subsequently, we compared the resulting saliency maps with manually segmented masks. Exemplary 
images and their correcponding masks are presented in Fig. 2d.

Results
Experiment 1
Examples of saliency maps for the GTSRB* database are presented in Fig. 3. The consecutive rows show results 
for the three architectures used while the columns give saliency maps generated by the compared techniques. We 
also input GT masks and the original images in the last two columns. In Fig. 4, we present additional maps for 
the SCNN architecture in the case of changing artifact size and location and the application of noise to either the 
background or the rectangle area. While the additional maps are primarily intended for visual analysis, we have 
also performed calculations of the mGT measure for these modified examples. The results of these calculations 
are displayed beneath each respective saliency map in the figure. Since the whole experiment was designed to 
overfit the networks to the green artifact placed in the exact place and of fixed size, the mGT in these examples was 
calculated using the square mask placed as in the training set (original width and height, bottom-right corner).

The mean mGT measures calculated for the images with squares added are presented in Table 2. The spread 
of mGT for the selected architectures (Resnet50, VGG16) can be seen in Fig. 5. Given such a simple database, the 
trained models achieved more than 99% accuracy on both the training and test datasets.

Experiment 2
Examples of saliency maps for the Zings database are presented in Fig. 6. The mean mGT measures from this 
experiment are presented in Table 2. In contrast to the data in experiment 1, the main differentiating feature is 
the eye region, and it is expected that the efficient saliency maps should indicate the eye region. Therefore, the 
mGT was calculated for the whole image dataset. In Fig. 7 we present the distribution of mGT for the selected 
architectures (Resnet50, VGG16) while the mean results are given in Table 2. The classification accuracy hero vs 
villain achieved on the Zings test dataset were 93.75% , 98.95% and 92.70% respectively for the Resnet50, VGG16 
and SCNN architectures.

Figure 4.  Saliency maps generated for SCNN architecture trained on GTSRB* test set. Maps are calculated for 
original image, image with the artifact applied and various modifications of the artifact (changing size, location 
and structure). The value under each picture represents the result of mGT measure.
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Figure 5.  Distribution of mgt measure calculated for Resnet50 and VGG16 architectures, trained on GTSRB* 
dataset.

Figure 6.  Examples of saliency maps generated for Resnet50, VGG16 and SCNN architectures, trained on 
Zings test set.
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Figure 7.  Distribution of mgt measure calculated for Resnet50 and VGG16 architectures, trained on Zings 
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Experiment 3
Examples of saliency maps for the LISA* database are presented in Fig. 8. The mGT results are given in Table 2 
while the spread of results for the two selected architectures (Resnet50, VGG16) is shown in Fig. 9. As in experi-
ment 2, all images in the dataset could be used in mGT calculations since the masks of both red and green lights 
were available. DNNs on the LISA* test dataset classifying red versus green lights achieved an accuracy of 99.96% , 
99.98% and 99.97% respectively for the Resnet50, VGG16 and SCNN models. These high accuracy values indicate 
that the DNN models are highly effective in this particular classification task.

Figure 8.  Examples of saliency maps generated for Resnet50, VGG16 and SCNN architectures, trained on 
LISA* test set.
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dataset.



9

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16887  | https://doi.org/10.1038/s41598-023-42946-w

www.nature.com/scientificreports/

Figure 10.  Exemplary saliency maps on ImageNet-S50 dataset (samples of goldfish, tree frog, cellular telephone 
and streetcar classes).

Figure 11.  Distribution of mgt measure calculated for VGG16 and Resnet50 architectures, trained on 
ImageNet-S50 dataset.
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 Method SCNN VGG16 Res50

Experiment 1 (GTSRB*)

 Grad-based 0.6616 0.8955 0.8071

 Smooth-grad 0.5760 0.8657 0.8576

 Guided Grad-CAM 0.7879 0.8695 0.8663

 Guided GradProp 0.6444 0.8693 0.8659

 Grad-CAM 0.6550 0.8519 0.8367

 Smooth Grad-CAM++ 0.6626 0.8635 0.8366

 Grad-CAM++ 0.6558 0.8548 0.8367

 Fast-CAM 0.5865 0.4893 0.6465

 Fast-CAM++ 0.5721 0.4906 0.6465

 Eigen-CAM 0.5760 0.8657 0.8576

 Eigen Grad-CAM 0.7879 0.8695 0.8663

 LayerCAM 0.6444 0.8693 0.8659

 Poly-CAM 0.6550 0.8519 0.8367

 Method SCNN VGG16 Res50

Experiment 2 (Zings)

 Grad-based 0.5332 0.6354 0.5330

 Smooth-grad 0.3256 0.3813 0.3273

 Guided Grad-CAM 0.3544 0.5608 0.4668

 Guided GradProp 0.3566 0.5023 0.4589

 Grad-CAM 0.1740 0.5380 0.3088

 Smooth Grad-CAM++ 0.1581 0.4823 0.2986

 Grad-CAM++ 0.1712 0.5231 0.3080

 Fast-CAM 0.2119 0.3603 0.2651

 Fast-CAM++ 0.2146 0.3802 0.2632

 Eigen-CAM 0.0993 0.2576 0.2949

 Eigen Grad-CAM 0.1707 0.3409 0.3203

 LayerCAM 0.1941 0.6647 0.3226

 Poly-CAM 0.2131 0.5769 0.3303

 Method SCNN VGG16 Res50

Experiment 3 (LISA*)

 Grad-based 0.6052 0.3893 0.5298

 Smooth-grad 0.4434 0.5388 0.4959

 Guided Grad-CAM 0.6885 0.6279 0.6478

 Guided GradProp 0.6427 0.5722 0.6007

 Grad-CAM 0.4144 0.3803 0.3014

 Smooth Grad-CAM++ 0.4392 0.3260 0.3082

 Grad-CAM++ 0.4323 0.3382 0.3014

 Fast-CAM 0.5246 0.5430 0.5315

 Fast-CAM++ 0.5395 0.5949 0.5307

 Eigen-CAM 0.4361 0.5069 0.4751

 Eigen Grad-CAM 0.6726 0.6389 0.6256

 LayerCAM 0.6309 0.5818 0.5954

 Poly-CAM 0.4155 0.4488 0.3193

 Method VGG16 Res50 ResNext50

Experiment 4 (ImageNet-S50)

 Grad-based 0.5349 0.5493 0.4927

 Smooth-grad 0.4674 0.4758 0.4294

 Guided Grad-CAM 0.5162 0.5249 0.4746

 Guided GradProp 0.4677 0.4744 0.4305

 Grad-CAM 0.6368 0.6489 0.6080

 Smooth Grad-CAM++ 0.6273 0.6484 0.6058

 Grad-CAM++ 0.6312 0.6500 0.6077

 Fast-CAM 0.6351 0.6403 0.6081

 Fast-CAM++ 0.6308 0.6411 0.6083

 Eigen-CAM 0.2220 0.6111 0.5793

Continued
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Experiment 4
Examples of saliency maps for the ImageNet-S50 database are presented in Fig. 10. As examples we chose four 
classes: “goldfish”, “tree frog”, “cellular telephone” and “streetcar”. The selected images represent various size of 
objects and background complexity. The distribution of mGT for two selected architectures (Resnet50, VGG16) 
are presented in Fig. 11. The mean mGT measures from this experiment are presented in Table 2. The classifi-
cation accuracy of the selected models is 71.59%, 76.13% and 77.61% respectively for VGG16, Resnet50 and 
ResNext50 models.

Experiment 1
In the first experiment, we wanted to ensure that the DNNs were trained to detect a specific object (the green 
square) at a specific and fixed location in the image. A variety of images with road signs were used as random 
backgrounds. Intuition suggests that the saliency maps for such trained networks should always highlight the 
region of the square while keeping the intensities in the remaining areas of image significantly lower. A similar 
effect should also be seen when analyzing images without the superimposed square object since the network 
should focus only on the lower right corner. Fig. 3 illustrates two exemplary results for class without a pattern 
(class 0) and class with a green square (class 1). As can be observed, for class zero saliency maps do not focus on 
any specific region and reflect traffic sign pattern. For class 1 most of the saliency maps ignore traffic sign pat-
tern and focus on square region except Eigen Grad-Cam, which gives reverse saliency maps. This shows that for 
such simple and clearly defined region of interest, all saliency maps are able to focus on the expected, artifically 
added, pattern in the image, ignoring the edges in the background. As seen in Fig. 4 such an effect is indeed 
seen for most of the algorithms when applied to class 1 images, but for class 0 images, we saw the effect only for 
the first 4 methods, as well as LayerCAM and Eigen Grad-CAM. We did not see the lower right part of image 
highlighted by the remaining methods. Some random structures were seen instead. A surprising result of this 
experiment was that the Guided Back Propagation performed well without showing structures of images from 
both classes. This is contrary to findings presented  in10.

Table 2 shows the average mGT score calculated for each method for images that include the green box. Two 
important conclusions can be drawn from the data. First, the use of maps on the much simpler SCNN results in a 
significant reduction in mGT scores. Recalling that all networks achieved similarly high levels of accuracy (above 
99%), we suppose that one possible reason for the reduction is that the huge capacity of the VGG and ResNet 
networks allowed for more overtraining compared to the SCNN. For this reason, the network structure in these 
architectures was much more concentrated on a specific area in the image than it was in SCNN.

A second finding is a clear difference in the effectiveness of the methods which was particularly distinct 
for the more advanced networks. Looking at the results in Fig. 5, we can see that for ResNet50 and VGG16 the 
Fast-CAM and Fast-CAM++ methods perform significantly worse than the remaining 11 methods, which have 
similar mGT performance levels. The poor performance of these methods is also on display in Fig. 4, which 
shows these methods highlighting blurry regions around the region of interest while other methods were much 
more concentrated.

The winning methods are Eigen Grad-CAM and Guided Grad-CAM. However, the superiority is not so evi-
dent, and the differences between the mGT values obtained for various saliency map techniques are the smallest 
apart from the SCNN architecture) when compared to the outcomes of the other experiments.

Experiments involving changing the size and position of the object and including additional noise were 
evaluated only visually. We observed that when the green square was enlarged, the methods clearly differed in 
their responses. The first four methods, as well as LayerCAM and Eigen Grad-CAM, indicated the original, small 
area of the square, but the other 7 algorithms enlarged the area toward the size of the new object. This suggests 
that the methods in the second group are biased by the content of an image while those in the first group seem 
to maintain their reasonable results. It is worth to notice that Eigen Grad-CAM for some inputs gives reverse 
silency map which focuses on the pixels outside the region of interest. The superiority of Grad-based methods 
differs from the conclusion  of10, which suggests that methods Gradient-based visualisation, Smooth Grad, Guided 
Grad-CAM and Guided back-propagation act as edge detectors. The results of our experiment, particularly when 
object size and position were modified, support exactly the opposite claim.

Quite similar conclusions can be drawn from experiments involving the displacement of the green square and 
the addition of noise in its area. As before, two groups of methods emerged with one seeming to be more effec-
tive. An interesting result was seen for the maps for images without the object present, which correspond to the 
first and last row in Fig. 4. The maps in the second group show completely random structures while the first four 
methods together with Eigen Grad-CAM and LayerCAM retained the expected indications. In the second (worse 

Table 2.  Results of mGT measure in conducted experiments. The best result per network architecture is in 
bold, while the following two highest results are underlined.

 Method VGG16 Res50 ResNext50

 Eigen Grad-CAM 0.2448 0.6275 0.6042

 LayerCAM 0.5871 0.6525 0.6094

 Poly-CAM 0.4720 0.5508 0.5307
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performing) group, PolyCAM deserves attention, which, although for the first image without a green square (first 
row) did not highlight the correct region of interest, for the second image (last row) indicated this area correctly.

Experiments 2 and 3
In these experiments we used the more complicated Zings dataset and realistic images of traffic lights (LISA*). 
Analyzing the results obtained for the Zings and LISA* databases, depicted on Figs. 6 and 8, as well as in the 
resulting tables and plots of mGT , we can see that the previous division of methods is not so clear and the results 
are more diverse.

The mentioned differences can also be seen easily in the sample maps presented in Fig. 6. The first four 
methods clearly indicated the eye regions while other methods indicated them only slightly (as was usually 
observed for GradCAM, Smooth Grad-CAM++, and Grad-CAM++) or totally missed them (as with Fast-CAM 
and Fast-CAM++). LayerCAM seems also to perform relatively well among the others. A similar effect can be 
seen in Fig. 8 for Lisa*.

The winning methods in these experiments were Grad-based, Guided Grad-CAM, Guided GradProp for 
Zings and Guided Grad-CAM, Eigen Grad-CAM for LISA* (similar to the effects obtained for GTSRB). The 
difference in average mGT over the analyzed set of saliency map techniques is larger in these databases than was 
observed in experiment 1. For the Zings database, the winning methods sometimes achieve a metric value several 
times larger. This observation confirms that in the case of a more realistic image databases with a less prominent 
sought object, performance differences are more apparent. In the case of the GTSRB* database, the green square 
added to an image has a very clear gradient around it, and its color stands out, so this situation may have been 
favorable for methods heavily biased by image content.

Experiment 4
The experiment based on the ImageNet-S50 collection using state-of-the-art convolutional network architectures 
was the closest to real-world applications of silency maps. Unfortunately, in this case, it is most difficult to assess 
whether the comparison methodology used is appropriate. This is due to uncertainty about any correlations of 
the background (or objects in the background) with the classification decision. While in previous experiments 
the background could be considered with a lot of confidence to be completely independent of the object, in this 
case such a correlation may still exist. It is also unknown if the decision on the appropriate class should be based 
on the entire segmented object, or perhaps on a part of it (e.g., the choice of the class “frog” may be made by the 
shape of the legs and not strictly on the entire object).

Nevertheless, using a similar methodology as before, we noticed that the first four methods, clearly leading in 
previous experiments, are noticeably worse this time. This reversal of results can be seen also for the EigenCAM 
and EigenGradCAM methods, which performed the worst this time as assessed by our metric. For ImageNet-
S50 dataset the best results are obtained for Grad-CAM on VGG16 architectures and LayerCAM on Res50 and 
ResNext50 models. Viewing the sample results in Fig. 10 it can be seen that the aforementioned two methods 
sometimes present the negative of the correct silency map depending on the network used. This may have been 
the reason for the drastic decrease in the value of the coefficient mgt , (see the 4th and 5th rows, EigenGradCAM 
method, in Fig. 10).

Similarly, some of the methods that present good results included the gradient of images from the original 
input. It seems questionable whether such a silency map can indicate whether a given neural network model has 
correctly focused on an object or whether it has been overfitted.

In summary, the results of this experiment should be treated with a great deal of uncertainty, mainly due to the 
fact that it is not certain which feature characterizes best a given class. We cannot assume that the whole object 
area equally contributes to the final classifier decision. This experiment shows, in our opinion, the weakness of 
a benchmark base built on an image collection with complex objects and numerous classes. The previous two 
experiments, in our opinion, have much greater potential to be a future validation set of silency maps methods 
due to their simplicity and well-controlled background.

Conclusions
Deep neural networks are very popular among modern researchers. One of the most common tasks of DNNs 
is object classification. Unfortunately, as opposed to evaluating their ability to distinguish objects in images, it 
is extremely difficult to determine which parts of an image affected a particular decision made by a network. 
A knowledge of such image regions seems crucial for identifying potential network learning errors such as a 
network fitting to some background elements that happen by chance to correlate with the assigned classes.

Saliency maps are supposed to be a solution to this problem. So far, several interesting techniques for gen-
erating this type of map have been presented. Unfortunately, it is still unclear to what extent the results of these 
algorithms indicate the real areas of interest for DNNs.

The aim of our work was to set up a series of experiments comparing the performance of saliency maps meth-
ods. The experiments varied in the classification task complexity from the detection of a simple square object 
superimposed on a random background (GTSRB*) through the detection of the color of traffic lights (LISA*), 
the analysis of eye color and the classification of objects on such a basis (as with Zings), ending on the real-world 
classification task on a sample 50 classes from the ImageNet database. All images in our databases were annotated 
fully manually or semi-automatically to unambiguously indicate the regions of the objects of interest. Further 
analyses applied a newly proposed evaluation procedure that compares agreement between saliency maps and 
object masks ( mGT ). The proposed benchmarks and evaluation methodology may be further used to develop 
more robust saliency map algorithms.
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Our study confirmed that saliency maps can be successfully used to find out what a DNN is focused on. How-
ever, different methods seem to have different performance. Some of them, mainly Fast-CAM and Fast-CAM++, 
showed minimal correlation between generated maps and the parts of images on which a DNN was expected 
to focus. Another group that includes the Grad-CAM, Grad-CAM++ and Smooth Grad-CAM++ methods 
showed only a partial ability to indicate the correct areas in images. However, our experiments highlighted the 
effectiveness of the gradient-based methods: Grad-based and Guided Grad-CAM, and they also showed that 
some methods may be biased by image content.

We also found that it can be tricky to prepare correct database for benchmarking the silency maps methods. 
The experiment on ImageNet-S50 showed results not consistent with the comparison outcomes from the artifi-
cially prepared and much simpler images. There are a lot of unknowns that disqualifies such a complex database, 
with multiple classes, as a testing set.

It seems that the use of saliency maps is the way to go and that the current methods have the potential to 
indicate the image locations that affect a DNN’s class assignment decision. However, we would like to strongly 
emphasize the need to prepare benchmark experiments using carefully created image datasets. Such experiments 
enable an objective and quantitative comparison of methods’ effectiveness, eventually leading to the improvement 
in safety of neural networks classifiers and detectors.

Data availability
 The datasets used and/or analysed during the current study available from the project leader—Krystian Radlak 
(krystian.radlak@pw.edu.pl)—on reasonable request.
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